
Automated Algorithm Design Using Proximal Policy
Optimisation with Identified Features

Wenjie Yia,∗, Rong Qua, Licheng Jiaob

aSchool of Computer Science, University of Nottingham, Nottingham, UK
bSchool of Artificial Intelligence, Xidian University, China

Abstract

Automated algorithm design is attracting considerable recent research atten-

tion in solving complex combinatorial optimisation problems, due to that most

metaheuristics may be particularly effective at certain problems or certain in-

stances of the same problem but perform poorly at others. Within a general

algorithm design framework, this study investigates reinforcement learning on

the automated design of metaheuristic algorithms. Two groups of features,

namely search-dependent and instance-dependent features, are firstly identified

to represent the search space of the algorithm design to support effective rein-

forcement learning on the new task of algorithm design. With these key features,

a state-of-the-art reinforcement learning technique, namely proximal policy op-

timisation, is used to automatically combine the basic algorithmic components

within the general framework to develop effective metaheuristics. Patterns of

the best designed algorithm, in particular the utilisation and transition of algo-

rithmic components, are investigated. Experimental results on the capacitated

vehicle routing problem with time windows benchmark dataset demonstrate the

effectiveness of the identified features in assisting automated algorithm design

with the proposed reinforcement learning model.

Keywords: automated algorithm design, feature identification, reinforcement

learning, search pattern

∗Corresponding author
Email addresses: wenjie.yi@nottingham.ac.uk (Wenjie Yi),

rong.qu@nottingham.ac.uk (Rong Qu), lchjiao@mail.xidian.edu.cn (Licheng Jiao)

Preprint submitted to Expert Systems with Applications January 9, 2023

1. Introduction

To tackle complex combinatorial optimisation problems (COPs), effective

metaheuristics have shown to be able to obtain acceptable solutions within a

reasonable computational time in the optimisation research community. How-

ever, most metaheuristics in the literature are manually designed for a specific

problem model or even to a specific problem instance. They cannot always be

easily extended to solve other problems or even other instances of the same

problem. Furthermore, the large amount of data generated during the search

of metaheuristics, leading to either good or bad solutions, may carry useful

knowledge. The knowledge retained in these data can be extracted and used

for designing more general and intelligent metaheuristics; for example, with the

key information on the search space to better determine the most suitable op-

erator to be applied during different search stages. This represents one line of

research, automatically designing search algorithms to solve different instances

of the same COP or cross-domain COPs.

In automated algorithm design, a standard called GCOP, which models the

problem of algorithm design itself as a COP, has been established to support

automated design of algorithmic components and design of new metaheuristics

(Qu et al., 2020). Based on the GCOP model, a general framework called

AutoGCOP has been proposed to support the automated design of local search

algorithms (Meng & Qu, 2021). A general search framework (GSF) has also

been developed to support the automated design of both local search algorithms

and population-based algorithms (Yi et al., 2022). Based on GSF, we further

explore automated algorithm design using machine learning techniques in this

study for solving the capacitated vehicle routing problem with time windows

(CVRPTW).

Identifying effective features to characterise the search space of algorithm

design and the problem instance plays an important role in the automated

algorithm design process. A suitable feature set can help to distinguish different

2

states, which is the key to the performance improvement. For this purpose,

different features have been proposed in the literature.

In supporting effective automated algorithm design, we identified and cate-

gorised existing features for designing general search algorithms into two groups.

The first group, namely search-dependent features, is composed of features ob-

serving the search, such as the mean and standard deviation of the popula-

tion fitness, and the average distance from the best individual (Eiben et al.,

2006). The second group, namely instance-dependent features, consists of the

basic characteristics of the problem instances. Taking the VRP as an example,

different instance-dependent features identified in (Gutierrez-Rodŕıguez et al.,

2019) include the vehicle capacity, the average customer demand and the av-

erage time-window size. Other types of features, such as landmarking features

(Gutierrez-Rodŕıguez et al., 2019) and image features (Jiang et al., 2021), are

not included in this study as they are specifically associated with the solution

encoding scheme and therefore are not transferable for developing a general

methodology; this would not serve the purpose of automated algorithm design.

The present research has been conducted with the following two motivations

based on the literature review. At the application level, the CVRPTW instances

share the same problem structure but differ in the data (e.g. customer locations

and demand). However, existing evolutionary algorithms and metaheuristics

treat each instance independently, requiring considerable human efforts in al-

gorithm design. Furthermore, these manually designed algorithms are usually

discarded after solving the specific instances. At the methodology level, utilising

machine learning techniques to assist algorithm design is still at a preliminary

stage albeit some successful attempts. One of the important issues is on how to

identify the key features to accurately characterise the search space for building

successful machine learning. Although various features have been extracted for

effective algorithm design, there is a lack of a systematic investigation analysing

the extracted features within a consistent and general framework. The aim of

this study is therefore to identify and analyse feature sets which provide suf-

ficient key information on the state of the evolutionary search, and to verify

3

the effectiveness of the identified features in assisting algorithm design with the

support of machine learning techniques. More specifically, we aim to answer the

following research questions (RQ):

• RQ1 What kind of features we can identify to provide useful information

for assisting algorithm design?

• RQ2 Is machine learning effective to utilise such data and to automatically

design effective search algorithms with little human intervention?

• RQ3 Are there search patterns we can observe from the automatically de-

signed algorithms to derive new knowledge in evolutionary computation?

The main contributions of this study are listed as follows:

• Two groups of features, search-dependent and instance-dependent fea-

tures, are identified to provide the key information on the search space

of algorithm design (RQ1).

• A state-of-the-art reinforcement learning technique, proximal policy op-

timisation, is employed to extract useful knowledge hidden in the search

data, which is plugged into the algorithm design process. The influence

of state representation (i.e. with different features) is investigated (RQ2).

• Search patterns of the algorithms which are automatically designed by

the learning technique, consisting of the utilisation and transition of algo-

rithmic components, are analysed to further provide insights into reusing

knowledge extracted in algorithm design using machine learning (RQ3).

The remainder of this paper is organised as follows. Section 2 presents

related work on the existing features and reinforcement learning methods for

automated algorithm design. Section 3 describes the features identified and

learning techniques proposed in this study within the general algorithm design

framework. Further, in Section 4, experiments are conducted to demonstrate

the effectiveness of the identified feature sets and to analyse the search patterns

4

of the best designed algorithms. Section 5 presents the conclusion and future

work.

2. Related work

In the existing literature of automated algorithm design, there is relatively

less work on systematic analysis on different types of features for developing

reinforcement learning to support the design of general population-based algo-

rithms within a coherent framework.

2.1. Existing Features for Automated Algorithm Design

To support automated design of metaheuristics, the first important step is

to identify features which can comprehensively capture the characteristics of the

search space of algorithms and the problem instances. Existing features used for

automated algorithm design can be roughly categorised into search-dependent

features and instance-dependent features.

Search-dependent features aim to describe the search process accurately.

These features can be extracted during the search of metaheuristics, and roughly

divided into two categories. The first category is stage-based, such as the current

iteration or stage of the search process (Wauters et al., 2013). The second

category is solution-based which are usually derived from the solutions obtained

by the metaheuristics, such as the best fitness, the fitness growth (Gutierrez-

Rodŕıguez et al., 2019), the number of feasible solutions, the number of feasible

solutions that are better than the initial solution (Jiang et al., 2021), and the

mean and the standard deviation of explored solutions (Eiben et al., 2006)

(Gutierrez-Rodŕıguez et al., 2019).

Instance-dependent features consist of specific characteristics extracted from

the problem instance definition, which can be divided into two categories. For

VRP, the first category includes customer-based features, for example, the

mean/maximum/median and the skewness of the customer demand and the

service time of customer, etc (Jiang et al., 2021). The second category of

5

constraint-based features include the vehicle capacity, the average time-window

size and the average time-window overlap (Gutierrez-Rodŕıguez et al., 2019),

etc.

Although various features have been proposed in the literature, it is still

challenging to represent the search space of algorithm design and to characterise

problem instances, resulting in the low generalization of the existing metaheuris-

tics. Although showed to perform well on some selected benchmark datasets,

existing features cannot always be easily extended to solve other benchmark

datasets or real-world problem instances. It is necessary to conduct a system-

atic investigation of the impact of different feature sets on the performance of

the metaheuristics, thus to support automated algorithm design with effective

learning.

2.2. Reinforcement Learning Method for Automated Algorithm Design

Reinforcement learning (RL) techniques have been employed to repeatedly

interact with an environment of algorithmic components and make decisions to

maximise a reward, demonstrating a great potential to learn a policy for au-

tomatically composing new metaheuristics. In recent studies, researchers have

attempted to utilise reinforcement learning techniques, such as Q-learning (QL)

(Watkins & Dayan, 1992), deep Q-network (DQN) (Mnih et al., 2015) and proxi-

mal policy optimisation (PPO) (Schulman et al., 2017), in automated algorithm

design. In particular, automated algorithm design is modelled as a Markov de-

cision process (MDP), which is a typical sequential decision problem.

In the literature on automated algorithm design, QL-based automated meth-

ods showed to be effective on the unmanned aerial vehicles (Duflo et al., 2020)

and different COPs (Choong et al., 2018). DQN-based automated methods also

obtained promising results for the container terminal truck routing problem

and online 2D strip packing problem (Zhang et al., 2022), the vehicle routing

problem and the travelling salesman problem (Dantas et al., 2021). In addi-

tion, DQN-based automated methods have also been used to select evolution

operators during the search process, which is a key issue in the design of search

6

algorithms (Yi et al., 2022) (Tian et al., 2022).

It is shown from research studies that value-based RLs are unstable and

suffer from poor convergence, due to that they aim to learn a state-action value

function approximation, which is then used to find a corresponding policy, rather

than directly optimise the policy itself. Furthermore, some value-based RLs such

as QL used in the context of automated algorithm design are based on tabular

values from the discretization of the continuous state space.

Compared with the value-based RLs, there are fewer studies on policy-based

RLs for the task of automated algorithm design in the literature. A possible

explanation is that policy-based RLs tend to be much less sample efficient than

value-based RLs. However, these policy-based RLs showed to be more stable

and less prone to failure because of their stronger exploration capability. Policy-

based RL has been utilised to select and combine evolution operators for solving

VRP in our previous study (Yi et al., 2022).

Therefore, in this study, we apply an actor-critic RL technique, which com-

bines the advantages of both policy-based RLs (i.e. learn the policy directly)

and value-based RLs (i.e. sample efficiently) to automatically design search

algorithms. More specifically, the policy function is responsible for generat-

ing actions and interacting with the environment. The state-value function is

responsible for evaluating the performance of the selected actions.

3. Identified Features and Proposed Method

Figure 1 depicts the research framework of the proposed reinforcement learn-

ing method in the context of automated algorithm design. This study involves

the use of a reinforcement learning method to automatically generate search

algorithms for solving different instances of the vehicle routing problem with

time windows. Specifically, the overall research framework has been defined in

five steps. The first three steps are related to the definition of three key com-

ponents of the RL method (i.e. state, action and reward scheme), shown in

Sections 3.2.1-3.2.3. Note that one of the focuses of this study is on identifying

7

Figure 1: Research framework of the proposed reinforcement learning method in the context

of automated algorithm design

8

key features to capture and characterise the search space of algorithm design,

details of these identified features are discussed in Section 3.1. The fourth step is

the main optimisation process, i.e. automatically generating search algorithms

based on RL. The final step is related to solving the specific CVRPTW instance

using the generated search algorithms in Step 4.

3.1. Feature Identification for Automated Algorithm Design

Identifying appropriate features is a crucial step to conduct effective rein-

forcement learning for automated algorithm design. Different features provide

different aspects of essential information, making a significant impact on the

performance of the automated algorithm design methods. In this section, two

groups of features (i.e. search-dependent and instance-dependent features) are

identified for developing a general methodology to solve different CVRPTW

instances.

3.1.1. Search-dependent Features

To assist algorithm design, ten search-dependant key features have been

extracted from the data collected during the optimisation process, as defined in

Table 2.

Table 1: Symbols used for defining search-dependent features shown in Table 2

Symbol Description

fi The fitness value of the ith individual

f̄ The average fitness value of the population

N The size of the population

P Population

I The initial population

C The current population

Features in Table 2 capture the characteristics of the search process from dif-

ferent aspects. With this information on the intensification and diversification

of the search, the learning agent can be guided toward making better decisions

9

on selection of algorithm components during the search, considering the balance

between searching beyond the already explored area (i.e. exploration) and fo-

cusing on the already explored area (i.e. exploitation). Such balance makes a

significant impact on the performance of the designed search algorithms.

Table 2: Search-dependent features

Features Mathematical expression Description

f1: search stage S indicates which stage the learning agent is in

f2: fitness improvement FI =
∑

i∈I fi−
∑

j∈C fj∑
i∈I fi

evaluates the quality of fitness value between the current

population and the initial population

f3: standard deviation of fitness std (f) =
√

1
N−1

∑N
i=1

(
fi − f̄

)2 evaluates the bumpiness of the fitness space by measuring

each value’s deviation

f4: mean of fitness f̄ = 1
N

∑N
i=1 fi evaluates the general fitness value of the fitness space

f5: skewness of fitness γ1 (f) = E

{[
(fi−f̄)
std(f)

]3
}
, i = 1, · · · , N measures the lack of symmetry of the fitness space

f6: kurtosis of fitness γ2 (f) =
E
[
(fi−f̄)

4
]

(
E
[
(fi−f̄)

2
]2) , i = 1, · · · , N measures the fitness space relative to the normal distribution

f7: amplitude of fitness Amp (P) =
N ·
(

max fi
i∈I

−max fi
i∈P

)
∑

i∈P fi
,

4Amp = |Amp(C)−AMP (I)|
Amp(I)

evaluates the degree of the search space altitude on the basis

of difference between the upper and lower bound of fitness

f8: Q1 of fitness (25%) Q1 represents the lower quartile of fitness

f9: Q2 of fitness (50%) Q2 represents the median quartile of fitness

f10: Q3 of fitness(75%) Q3 represents the upper quartile of fitness

3.1.2. Instance-dependent Features

Instance-dependent features assist algorithm design with the basic informa-

tion on problem instances. Values of these features are determined and will

not change in algorithm design once an instance is given. Related symbols are

shown in Table 3 for the definitions of instance-dependent features listed.

10

Table 3: Symbols for instance-dependent features defined in Table 4

Symbol Description

i Customer i

n The number of customers

qi The demand for customer i

si The service time for customer i

ri The ready time for customer i

di The due date for customer i

In Table 4, average time-window overlap as calculated based on Equation (1)

and Equation (2) is proposed in (Gutierrez-Rodŕıguez et al., 2019) to measure

the relationships between the time-windows of all customer in a given instance.

inter (i, j) =

 I = min {di, dj} −max {ri, rj} , I > 0

0, otherwise
(1)

union (i, j) =

 I = min {di, dj} −max {ri, rj} , I > 0

(di − ri) + (dj − rj) , otherwise
(2)

Table 4: Instance-dependent features

Features Mathematical expression Description

f11: vehicle number V the number of available vehicles

f12: capacity Q vehicle capacity

f13: demand
∑n
i=1

qi
n average customer demand

f14: service
∑n
i=1

si
n average service time

f15: time-window TW =
(
∑n

i=1 di−
∑n

i=1 ri)
n average time-window size

f16: time-window overlaps
∑n
i=1

∑n
j=1

Oij

n , Oij = inter(i,j)
union(i,j) average time-window overlaps between customers

f17: time-window density D
the percentage of time-constrained customers

(25%, 50%, 75%, 100%)

3.2. Reinforcement Learning Method for Automated Algorithm Design

This study aims to address the key issue of automated algorithm design

rather than considering the whole design space. Based on the general search

framework (Yi et al., 2022), the key focus of algorithm design is on selecting

11

and composing evolution operators at different stages during the search process.

An actor-critic proximal policy optimisation method is used to determine the

suitable evolution operators of the search algorithm.

For the task of automated algorithm design, due to the random character-

istics, the stochastic policy generated by policy-based RLs is better than the

deterministic policy generated by value-based RLs. The Proximal Policy Op-

timisation (PPO) which is a policy-based RL method, is used to obtain the

optimal stochastic policy. However, the policy of the original PPO is trained

per episode, resulting in a slow convergence. Therefore, the PPO method in

this paper is modified with an Actor-Critic architecture to generate stochastic

policy trained per timestep rather than per episode with a clipped objective to

determine evolutionary operators for automated algorithm design.

3.2.1. State Representation

The search-dependent features in Table 2 and instance-dependent features

in Table 4, are used to define the state space.

3.2.2. Action Representation

Table 5: OE : Evolutionary operators for CVRPTW

Operator Description

ochg in Exchange m and n nodes from the same route in a solution

ochg bw Exchange m and n nodes from different routes in a solution

oins in Insert m nodes to other positions of the same route in a solution

oins bw Insert m nodes to other positions of different routes in a solution

oruin recreat Remove m nodes from different routes in a solution and insert them back satisfying feasibility

o2opt Exchange two nodes in the same route in a solution

o2opt∗ Take the end sections of two routes in a solution and swap them to create two new routes

The action space is defined by the set of evolutionary operators in Table

5, which are the algorithmic components of Evolution module in the general

search framework (GSF). Refer to (Yi et al., 2022) for more information of the

GSF and its basic modules. The main task of the proposed PPO method is

12

to address the key issue of automated selection and combination of the most

efficient evolutionary operators during different optimisation stages.

3.2.3. Reward Scheme

Reward scheme is used for the learning agent to determine whether the

selected action is appropriate, thus, is very important for an RL method. As

shown in Equation (3) and Equation (4), the reward in the proposed PPO model

is calculated based on the fitness improvement of the current population over

the initial population. A higher reward is given to the same fitness improvement

when population fitness is optimised above a certain threshold.

r =
fcurrent
finitial

(3)

reward =

−r, if r > C

−r − log10 (r) , if r 6 C
(4)

3.2.4. Optimisation Process and Problem Solving

Table 6: Notations used in PPO methods shown in Figure 1 (Step 5)

Notation Description

t current timestep

st state at timestep t

at selected action at timestep t

rt reward value at timestep t

λ parameter of λ-step return

V state-action value function

θ parameter of the actor neural network

ϕ parameter of the critic neural network

The overview of the actor-critic PPO method is shown in Figure 1 (Step 5).

Related notations are given in Table 6.

The reward and state (defined by the identified features) (¬) obtained from

the environment is taken as the input of the critic neural network, the output

13

of which is the state-action value V̂θ (). At the same time, state (®) is also

taken as the input of the actor neural network. The corresponding output is the

probability of each action (i.e. operator) (¯). The chosen action is executed

(¯) in the environment (i.e. the optimisation process), and the next loop is

started.

The temporal difference error (TD-error) is calculated (°) by the state-

action value V̂θ (). The actor neural network is updated by JPPO(θ) (²), as

shown in Equation (5), and the critic neural network is updated based on the

calculation of Lclip(ϕ) (±), as shown in Equation (8).

The output of the learned policy is a probability distribution of actions (i.e.

operators). The sequential sample results of one episode are the composition

operators in the automated algorithm design. The action (i.e. operator) ob-

tained (¯) by the actor neural network is executed in the environment (i.e. the

optimisation process).

The objective function of the actor neural network JPPO(θ) is shown in

Equation (5).

JPPO(θ) =

T∑
t=1

πθ (at |st)
πold (at |st)

At (5)

where At is the advantage function representing the gap of the currently selected

action relative to the average of all actions, such that

At = δt + (γλ) δt + · · ·+ (γλ)
T−t+1

δT−1 (6)

δt = rt + γV (st+1)− V (st) (7)

Clearly, At is obtained by performing a complete episode when there is only

an actor neural network. In the critic neural network, the value function can

be estimated at every timestep, so the update process (²) of the actor neural

network is accelerated than that in the original PPO.

The critic neural network Lclip(ϕ) aims at minimising the loss function, as

shown in Equation (8).

14

Lclip (ϕ) = Et {min [rt (ϕ) ·At, clip [rt (ϕ) , 1− ε, 1 + ε] ·At]} (8)

Here, ε is the clipping probability ratio. With the lower bound, the ‘min’ oper-

ator, the trained policy increases monotonically with a low computing require-

ment.

4. Experiments and Discussion

The experimental analysis aims to address two research issues, 1) verifying

the impact of the identified features on the reinforcement learning model and 2)

analysing the search patterns of the best designed algorithm compositions. In

assessing the impact of the identified features, two learning models with different

features are trained and tested Section 4.2. In the analysis of search patterns,

the utilisation and transition of algorithmic components are included in Section

4.3.1 and Section 4.3.2, respectively. The results of the proposed method are

compared with the best-known results in the literature.

4.1. Problem Definition and Dataset

To verify the performance of the learning model with different identified fea-

tures, the capacitated vehicle routing problem with time windows (CVRPTW)

is considered as the testing combinatorial optimisation problem. CVRPTW con-

cerns routing for a fleet of vehicles to serve a set of customers with the known

demand and time windows from and back to a depot. The vehicle capacity is

limited and each customer must be visited exactly by one vehicle within the

predefined time windows. To better illustrate the problem definition, Figure 2

provides an illustrative example of four routes/vehicles and a single depot to

illustrate the problem.

In the CVRPTW, there are two objectives, minimising the number of vehicle

(NV) and minimising the total travelled distance (TD). Similar to the literature

(Walker et al., 2012), the weighted sum objective function, as shown in Equation

15

(9), is adopted. c is set to 1000 empirically to define the higher importance of

NV.

f = c×NV + TD (9)

Figure 2: Example of a CVRPTW instance with four routes and a single depot

The widely studied Solomon dataset (Solomon, 1987) which consists of six

sets of instances of different characteristics (C1, C2, R1, R2, RC1, RC2), is used

for the investigation. Four instances are selected from each set as representa-

tives, as shown in Table 7.

Customers in type-C instances are distributed in clusters while customers in

type-R instances are distributed randomly. Type-RC instances contain a mix-

ture of random and clustered customers. Each type of instances also differs with

respect to the vehicle capacity, the density and tightness of the time windows.

Note that the focus of this study is on developing a learning method to auto-

matically design general-purpose search algorithms for solving vehicle routing

problems. Therefore, the selected benchmark dataset consisting instances with

different characteristics is enough to justify the performance of the developed

learning method.

16

4.2. Effectiveness of the Identified Features

To verify the effectiveness of instance-dependent features, we train the PPO

model with only search-dependent features. It is meaningless to train the PPO

model with only instance-dependent features, due to the fact that the values of

instance-dependent features are determined once an instance is given and do not

change during the training process. The performance of the PPO model with

both search-dependent features and instance-dependent features is recorded for

comparison.

The learning of the PPO model is shown in Figures 3-5. In most instances,

the performance of the learning model during the training process deterio-

rates without the instance-dependent feature set, except on instances R103 and

RC103. This indicates that the instance-dependent features can provide useful

information to the learning process, by assisting the population to accurately

determine the resulting state with better action choice.

In the testing process, the same conclusion is reached that the instance-

dependent feature set is effective for learning algorithm design, as shown in

Table 7. When instance-dependent features are included, the four performance

indicators, i.e. the average fitness value (AVG), the standard deviation of fitness

value (SD), the best fitness value within 10 runs (BEST), and the gap between

BEST and the best-known solution in the literature (GAP), achieve better val-

ues in most instances. Both learning models (i.e. one with both feature sets,

and one with only search-dependent features) achieve quite similar BEST to the

current best-known results in the literature (i.e. the GAP values are less than

5% in most instances), which verifies the effectiveness of the proposed PPO

models. Noted that the aim of automated algorithm design is not trying to

beat all the other manually designed metaheuristics but to develop an effective

search algorithm without too much human involvement.

17

(a) C101 (b) C103

(c) C201 (d) C203

Figure 3: Influence of different feature sets on the learning model during training (type-C)

18

(a) R101 (b) R103

(c) R201 (d) R203

Figure 4: Influence of different feature sets on the learning model during training (type-R)

19

(a) RC101 (b) RC103

(c) RC201 (d) RC203

Figure 5: Influence of different feature sets on the learning model during training (type-RC)

20

Table 7: Performance of the algorithms with different features during testing

Instance Vehicle Density of the Best-known solutions Both feature sets Search-dependent features only

capacity time windows in the literature AVG SD BEST GAP AVG SD BEST GAP

C101 200 100% 10828.94 (Rochat & Taillard, 1995) 10828.94 0 10828.94 0 10828.94 1.8E-12 10828.94 0

C102 200 75% 10828.94 (Rochat & Taillard, 1995) 10829.40 0.93 10828.94 0 10829.93 2.011 10828.94 0

C103 200 50% 10828.06 (Rochat & Taillard, 1995) 10856.97 12.07 10837.15 0.08% 10858.79 17.80 10839.29 0.1%

C104 200 25% 10824.78 (Rochat & Taillard, 1995) 10916.01 20.64 10887.99 0.58% 10921.54 16.28 10896.9 0.67%

C201 700 100% 3591.56 (Rochat & Taillard, 1995) 3591.56 4.55E-13 3591.56 0 3591.56 4.55E-13 3591.56 0

C202 700 75% 3591.56 (Rochat & Taillard, 1995) 3591.56 4.55E-13 3591.56 0 3591.56 2.4E-10 3591.56 0

C203 700 50% 3591.17 (Rochat & Taillard, 1995) 3592.67 4.48 3591.17 0 3592.90 3.66 3591.17 0

C204 700 25% 3590.6 (Rochat & Taillard, 1995) 3613.71 9.35 3599.58 0.25% 3613.05 8.95 3598.93 0.23%

R101 200 100% 20645.79 (Homberger, 2000) 20658.64 3.60 20653.64 0.04% 20659.79 3.85 20654.3 0.04%

R102 200 75% 18486.12 (Rochat & Taillard, 1995) 18519.28 18.02 18499.30 0.07% 18621.61 293.55 18511.18 0.14%

R103 200 50% 14292.68 (Li & Lim, 2003) 15048.02 416.20 14365.01 0.51% 15256.21 11.75 15228.24 6.5%

R104 200 25% 10007.24 (Mester et al., 2007) 11090.22 23.09 11051.22 10.43% 11097.74 15.93 11063.67 10.56%

R201 1000 100% 5252.37 (Homberger & Gehring, 1999) 5320.51 13.56 5290.00 0.72% 5320.84 23.52 5288.58 0.69%

R202 1000 75% 4191.7 (Rousseau et al., 2002) 5003.77 341.68 4307.68 2.77% 5163.65 11.86 5141.74 22.66%

R203 1000 50% 3939.54 (Woch & Lebkowski, 2009) 4036.05 10.23 4016.02 1.94% 4035.76 16.50 4010.36 1.8%

R204 1000 25% 2825.52 (Bent & Van Hentenryck, 2004) 3732.08 270.78 2920.27 3.35% 3828.59 5.09 3822.51 35.29%

RC101 200 100% 15696.94 (Taillard et al., 1997) 16839.69 300.13 16703.71 6.41% 16896.18 396.64 16677.99 6.25%

RC102 200 75% 13554.75 (Taillard et al., 1997) 15431.22 294.17 14550.96 7.35% 15545.00 13.85 15528.14 14.56%

RC103 200 50% 12261.67 (Shaw, 1998) 13152.01 294.17 12356.41 0.77% 13359.17 15.04 13329.82 8.71%

RC104 200 25% 12135.487 (Cordeau et al., 2001) 12233.65 388.17 11248.41 1.01% 12131.09 281.68 11287.67 1.37%

RC201 1000 100% 5406.91 (Mester et al., 2007) 5492.96 18.48 5455.76 0.90% 5505.30 12.14 5482.79 1.40%

RC202 1000 75% 4367.09 (Czech & Czarnas, 2002) 5287.89 29.74 5226.54 19.68% 5261.77 12.14 5242.94 20.06%

RC203 1000 50% 4049.62 (Czech & Czarnas, 2002) 4191.46 22.89 4165.96 2.87% 4180.07 18.61 4137.23 2.16%

RC204 1000 25% 3798.41 (Mester et al., 2007) 3877.75 17.78 3851.04 1.39% 3879.58 9.79 3863.21 1.71%

4.3. Search Pattern Analysis of the Best Designed Algorithm

4.3.1. Utilisation of Algorithm Components

Figures 6-8 show the proportion of each operator called in the PPO model

with search-dependent and instance-dependent features during the training pro-

cess, while Figures 9-11 show the utilisation of operators in the PPO models

with only search-dependent features. Both PPO models identify ins bw and

2opt∗ as the most frequently selected operators in the best designed algorithms.

ins bw is selected most often by both PPO models, although this phenomenon

is more obvious in the type-R and type-RC instances. Although the operators

with a high frequency of combination are quite similar in both PPO models, the

specific utilisation rates of each operator during each episode are different, indi-

cating that the algorithm compositions obtained by these two PPO models (i.e,

one with only search-dependent features and one with both search-dependent

and instance-dependent features) are different.

21

(a) C101 (b) C103

(c) C201 (d) C203

Figure 6: Utilisation of operators during training (type-C, with search-dependent and

instance-dependent features)

(a) R101 (b) R103

(c) R201 (d) R203

Figure 7: Utilisation of operators during training (type-R, with search-dependent and

instance-dependent features)

22

(a) RC101 (b) RC103

(c) RC201 (d) RC203

Figure 8: Utilisation of operators during training (type-RC, with search-dependent and

instance-dependent features)

(a) C101 (b) C103

(c) C201 (d) C203

Figure 9: Utilisation of operators during training (type-C, with only search-dependent fea-

tures)

23

(a) R101 (b) R103

(c) R201 (d) R203

Figure 10: Utilisation of operators during training (type-R,with only search-dependent fea-

tures)

(a) RC101 (b) RC103

(c) RC201 (d) RC203

Figure 11: Utilisation of operators during training (type-RC, with only search-dependent

features)

24

4.3.2. Transition of Algorithmic Components

An analysis of the best designed algorithms that are automatically designed

by the PPO models with different feature sets is analysed in this section. Figures

12-14 show the transition pattern of operators in the best designed algorithm

compositions obtained by the PPO model with both feature sets, including the

number of operators, the proportion of each operator and the number of transi-

tions between operators during 50 timesteps. For example, for C101 instance in

Figure 12, only two out of seven operators are called, namely 54.0% for the 2opt∗

operator and 46% for the ins bw operator with the corresponding number of

transitions between operators (28). The transition patterns of the best designed

algorithm obtained by the PPO model with only search-dependent features are

shown in Appendix.

As can be seen from all the figures, the diversity of the operators in the best

designed algorithm compositions (i.e. the number of operators) increases when

the capacity of the vehicle increases. Taking type-C instances as examples, Fig-

ure 12 shows that the number of called operators in the best designed algorithm

compositions (obtained by the PPO model with two feature sets) for solving

the type-C2 instances with a larger vehicle capacity (i.e. 700), is larger than

that of the type-C1 instances with a smaller vehicle capacity (i.e. 200). The

same phenomenon can be observed in type-R and type-RC instances, details of

which are shown in Figure 13 and Figure 14. Similar conclusions can be reached

regarding the diversity of operators in the best designed algorithm compositions

obtained by the PPO model with only search-dependent features, as shown in

figures in Appendix.

There is a negative correlation between the diversity of operators and the

density of the time-window (i.e. the percentage of time-constrained customers),

as shown in Figures 12-14. Taking type-RC instances as examples, Figure 14

shows that with the decrease of time window density, dropping from 100% in

RC101 to 25% in RC104, the diversity of operators increases, rising from 3 to 6.

The same phenomenon can be observed in the other types of instances as well.

25

Considering the above two findings, in the best designed algorithm compo-

sitions, more types of operators are called when the problem constraints are

relaxed (i.e. a larger vehicle capacity and a smaller time-window density). A

possible reason may be that the feasible solution space expands with the relax-

ation of problem constraints.

The number of transitions between operators is more than 25 over 50 timesteps

in most instances although the number of operators is relatively small. This indi-

cates that operators in the best designed algorithm compositions are frequently

called interchangeably during the optimisation process, although some types of

operators (i.e. ins bw and 2opt∗) are called much more frequently than others.

When a continuous selection of an operator fails to trigger a shift in state and

an increase in reward, switching to another operator brings unexpected results.

This means that the operators which are called less frequently are also useful.

One possible explanation is that the search space of COPs is a non-stationary

environment containing a variety of search regions with different characteristics.

Different operators with different search behaviours, only perform well in some

regions. Therefore, solving COPs using a search algorithm with only a single

operator is less effective. Hence, it is reasonable to expect that the search al-

gorithms which are automatically designed based on combinations of algorithm

components (e.g. operators) will produce better performance.

26

(a) C101(2,28) (b) C102(3,29)

(c) C103(7,38) (d) C104(5,39)

(e) C201(3,29) (f) C202(5,34)

(g) C203(7,38) (h) C204(6,37)

Figure 12: Transition of operators in the best designed algorithm (type-C, with search-

dependent and instance-dependent features)

27

(a) R101(4,28) (b) R102(3,25)

(c) R103(3,21) (d) R104(5,31)

(e) R201(7,35) (f) R202(6,22)

(g) R203(5,18) (h) R204(7,36)

Figure 13: Transition of operators in the best designed algorithm (type-R, with search-

dependent and instance-dependent features)

28

(a) RC101(3,21) (b) RC102(4,26)

(c) RC103(5,24) (d) RC104(6,37)

(e) RC201(5,33) (f) RC202(5,29)

(g) RC203(6,32) (h) RC204(6,35)

Figure 14: Transition of operators in the best designed algorithm (type-RC, with search-

dependent and instance-dependent features)

29

5. Conclusion

In this study, two groups of features, namely search-dependent features and

instance-dependent features, are identified to provide the key information to

assist learning on algorithm design. Search-dependent features describe the

search space of algorithm design, while instance-dependent features characterise

the problem instances. Using the proposed features to represent the state, a

state-of-the-art reinforcement learning technique, namely proximal policy opti-

misation, is developed to automatically combine the evolution operators during

different stages of the evolutionary process. Search patterns of the best designed

algorithms which are obtained by the reinforcement learning models resulting

from different state representation schemes are analysed.

With controlled experiments on the state representation, the impact of the

identified features on the reinforcement learning model is verified on the bench-

mark instances of the capacitated vehicle routing problem with time windows.

The results show that both search-dependent and instance-dependent features

can provide useful information to the learning process by assisting the popula-

tion to accurately detect the resulting state with better action choice.

Regarding the search pattern of the best designed algorithms, utilisation

and transition of evolution operators are analysed. The analysis shows that two

reinforcement learning models with different features identify ins bw and 2opt∗

as the most frequently selected components. Different operators are frequently

called interchangeably during the optimisation process. This indicates the im-

portance of adaptive operator selection for designing effective search algorithms.

For future work, the proposed feature sets and reinforcement learning models

can be applied to automate the process of algorithm design by making other

decisions, including selecting evolution heuristics and replacement heuristics. It

would be interesting to further improve the reinforcement learning models on

the extended whole algorithm design space with enhanced scheme to the loss

function to encourage exploration of the learning agent.

30

6. Acknowledgement

This research has been funded by the School of Computer Science, University

of Nottingham, UK.

7. Appendix

(a) C102 (b) C104

(c) C202 (d) C204

Figure 15: Influence of different feature sets on the learning model during training (type-C)

31

(a) R102 (b) R104

(c) R202 (d) R204

Figure 16: Influence of different feature sets on the learning model during training (type-R)

32

(a) RC102 (b) RC104

(c) RC202 (d) RC204

Figure 17: Influence of different feature sets on the learning model during training (type-RC)

33

(a) C102 (b) C104

(c) C202 (d) C204

Figure 18: Utilisation of operators during training (type-C, with search-dependent and

instance-dependent features)

(a) R102 (b) R104

(c) R202 (d) R204

Figure 19: Utilisation of operators during training (type-R, with search-dependent and

instance-dependent features)

34

(a) RC102 (b) RC104

(c) RC202 (d) RC204

Figure 20: Utilisation of operators during training (type-RC, with search-dependent and

instance-dependent features)

(a) C102 (b) C104

(c) C202 (d) C204

Figure 21: Utilisation of operators during training (type-C, with only search-dependent fea-

tures)

35

(a) R102 (b) R104

(c) R202 (d) R204

Figure 22: Utilisation of operators during training (type-R,with only search-dependent fea-

tures)

(a) RC102 (b) RC104

(c) RC202 (d) RC204

Figure 23: Utilisation of operators during training (type-RC, with only search-dependent

features)

36

(a) C101(5,23) (b) C102(7,39)

(c) C103(5,23) (d) C104(7,40)

(e) C201(5,27) (f) C202(7,27)

(g) C203(7,39) (h) C204(6,35)

Figure 24: Transition of operators in the best designed algorithm (type-C, with only search-

dependent features)

37

(a) R101(4,24) (b) R102(3,20)

(c) R103(6,33) (d) R104(5,32)

(e) R201(5,29) (f) R202(6,32)

(g) R203(7,38) (h) R204(6,35)

Figure 25: Transition of operators in the best designed algorithm (type-R, with only search-

dependent features)

38

(a) RC101(4,31) (b) RC102(5,20)

(c) RC103(7,25) (d) RC104(5,25)

(e) RC201(4,28) (f) RC202(6,36)

(g) RC203(6,36) (h) RC204(6,44)

Figure 26: Transition of operators in the best designed algorithm (type-RC, with only search-

dependent features)

39

References

Bent, R., & Van Hentenryck, P. (2004). A two-stage hybrid local search for

the vehicle routing problem with time windows. Transportation Science, 38 ,

515–530.

Choong, S. S., Wong, L.-P., & Lim, C. P. (2018). Automatic design of hyper-

heuristic based on reinforcement learning. Information Sciences, 436 , 89–107.

Cordeau, J.-F., Laporte, G., & Mercier, A. (2001). A unified tabu search heuris-

tic for vehicle routing problems with time windows. Journal of the Operational

research society , 52 , 928–936.

Czech, Z. J., & Czarnas, P. (2002). Parallel simulated annealing for the vehicle

routing problem with time windows. In Proceedings 10th Euromicro workshop

on parallel, distributed and network-based processing (pp. 376–383). IEEE.

Dantas, A., Rego, A. F. d., & Pozo, A. (2021). Using deep q-network for

selection hyper-heuristics. In Proceedings of the Genetic and Evolutionary

Computation Conference Companion (pp. 1488–1492).

Duflo, G., Danoy, G., Talbi, E.-G., & Bouvry, P. (2020). Automated design

of efficient swarming behaviours: a q-learning hyper-heuristic approach. In

Proceedings of the 2020 Genetic and Evolutionary Computation Conference

Companion (pp. 227–228).

Eiben, A., Horvath, M., Kowalczyk, W., & Schut, M. C. (2006). Reinforcement

learning for online control of evolutionary algorithms. In International Work-

shop on Engineering Self-Organising Applications (pp. 151–160). Springer.

Gutierrez-Rodŕıguez, A. E., Conant-Pablos, S. E., Ortiz-Bayliss, J. C., &

Terashima-Maŕın, H. (2019). Selecting meta-heuristics for solving vehicle

routing problems with time windows via meta-learning. Expert Systems with

Applications, 118 , 470–481.

40

Homberger, J. (2000). Eine verteilt-parallele metaheuristik. In Verteilt-parallele

Metaheuristiken zur Tourenplanung (pp. 139–165). Springer.

Homberger, J., & Gehring, H. (1999). Two evolutionary metaheuristics for the

vehicle routing problem with time windows. INFOR: Information Systems

and Operational Research, 37 , 297–318.

Jiang, H., Wang, Y., Tian, Y., Zhang, X., & Xiao, J. (2021). Feature con-

struction for meta-heuristic algorithm recommendation of capacitated vehicle

routing problems. ACM Transactions on Evolutionary Learning and Opti-

mization, 1 , 1–28.

Li, H., & Lim, A. (2003). Local search with annealing-like restarts to solve the

vrptw. European journal of operational research, 150 , 115–127.

Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning

on algorithmic components. Expert Systems with Applications, 185 , 115493.

Mester, D., Bräysy, O., & Dullaert, W. (2007). A multi-parametric evolution

strategies algorithm for vehicle routing problems. Expert Systems with Appli-

cations, 32 , 508–517.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al.

(2015). Human-level control through deep reinforcement learning. nature,

518 , 529–533.

Qu, R., Kendall, G., & Pillay, N. (2020). The general combinatorial optimiza-

tion problem: Towards automated algorithm design. IEEE Computational

Intelligence Magazine, 15 , 14–23.

Rochat, Y., & Taillard, É. D. (1995). Probabilistic diversification and intensifi-

cation in local search for vehicle routing. Journal of heuristics, 1 , 147–167.

Rousseau, L.-M., Gendreau, M., & Pesant, G. (2002). Using constraint-based

operators to solve the vehicle routing problem with time windows. Journal

of heuristics, 8 , 43–58.

41

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 , .

Shaw, P. (1998). Using constraint programming and local search methods to

solve vehicle routing problems. In International conference on principles and

practice of constraint programming (pp. 417–431). Springer.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling

problems with time window constraints. Operations research, 35 , 254–265.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J.-Y. (1997). A

tabu search heuristic for the vehicle routing problem with soft time windows.

Transportation science, 31 , 170–186.

Tian, Y., Li, X., Ma, H., Zhang, X., Tan, K. C., & Jin, Y. (2022). Deep rein-

forcement learning based adaptive operator selection for evolutionary multi-

objective optimization. IEEE Transactions on Emerging Topics in Computa-

tional Intelligence, .

Walker, J. D., Ochoa, G., Gendreau, M., & Burke, E. K. (2012). Vehicle routing

and adaptive iterated local search within the hyflex hyper-heuristic frame-

work. In International conference on learning and intelligent optimization

(pp. 265–276). Springer.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning , 8 , 279–292.

Wauters, T., Verbeeck, K., Causmaecker, P. D., & Berghe, G. V. (2013). Boost-

ing metaheuristic search using reinforcement learning. In Hybrid metaheuris-

tics (pp. 433–452). Springer.

Woch, M., & Lebkowski, P. (2009). Sequential simulated annealing for the ve-

hicle routing problem with time windows. Decision Making in Manufacturing

and Services, 3 , 87–100.

Yi, W., Qu, R., Jiao, L., & Niu, B. (2022). Automated design of metaheuristics

using reinforcement learning within a novel general search framework. IEEE

42

Transactions on Evolutionary Computation, (pp. 1–1). doi:10.1109/TEVC.

2022.3197298.

Zhang, Y., Bai, R., Qu, R., Tu, C., & Jin, J. (2022). A deep reinforcement learn-

ing based hyper-heuristic for combinatorial optimisation with uncertainties.

European Journal of Operational Research, 300 , 418–427.

43

http://dx.doi.org/10.1109/TEVC.2022.3197298
http://dx.doi.org/10.1109/TEVC.2022.3197298

	Introduction
	Related work
	Existing Features for Automated Algorithm Design
	Reinforcement Learning Method for Automated Algorithm Design

	Identified Features and Proposed Method
	Feature Identification for Automated Algorithm Design
	Search-dependent Features
	Instance-dependent Features

	Reinforcement Learning Method for Automated Algorithm Design
	State Representation
	Action Representation
	Reward Scheme
	Optimisation Process and Problem Solving

	Experiments and Discussion
	Problem Definition and Dataset
	Effectiveness of the Identified Features
	Search Pattern Analysis of the Best Designed Algorithm
	Utilisation of Algorithm Components
	Transition of Algorithmic Components

	Conclusion
	Acknowledgement
	Appendix

