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Abstract
This continuum mechanical theory aims at detailing the underlying rational mechanics of
dynamic boundary conditions proposed by Fischer et al. (Phys Rev Lett 79:893, 1997), Gold-
stein et al. (Phys D Nonlinear Phenom 240:754–766, 2011), and Knopf et al. (ESAIM Math
Model Numer Anal 55:229–282, 2021). As a byproduct, we generalize these theories. These
types of dynamic boundary conditions are described by the coupling between the bulk and
surface partial differential equations for phase fields. Our point of departure within this con-
tinuum framework is the principle of virtual powers postulated on an arbitrary part P where
the boundary ∂P may lose smoothness. That is, the normal field may be discontinuous along
an edge ∂2P . However, the edges characterizing the discontinuity of the normal field are
considered smooth. Our results may be summarized as follows. We provide a generalized
version of the principle of virtual powers for the bulk-surface coupling along with a general-
ized version of the partwise free-energy imbalance. Next, we derive the explicit form of the
surface and edge microtractions along with the field equations for the bulk and surface phase
fields. The final set of field equations somewhat resembles the Cahn–Hilliard equation for
both the bulk and surface. Moreover, we provide a suitable set of constitutive relations and
thermodynamically consistent boundary conditions. In Knopf et al. (2021), a mixed (Robin)
type of boundary condition for the chemical potentials is proposed for the model in Fischer
et al. (1997), Goldstein et al. (2011). In addition to this boundary condition, we also include
this type of mixed boundary condition for the microstructure, that is the phase fields. Lastly,
we derive the Lyapunov-decay relations for these mixed type of boundary conditions for both
the microstructure and chemical potential.
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1 Introduction

Dynamic boundary conditions for phase segregation are ubiquitous in mathematical biology,
geology and industrial processes. Conversely, spontaneous phase segregation of binary mix-
tures has been modeled by the Cahn–Hilliard equation [4]. As for the underlying mechanics
of phase segregation, Fried and Gurtin and Gurtin [5, 6] proposed the original continuum
framework for the study of these types of equations, namely the Allen–Cahn/Ginzburg–
Landau and Cahn–Hilliard equations. Additionally, Espath, Calo and Fried [7] and Espath
and Calo [8] generalized these ideas to encompass second gradient theories, namely the
Swift–Hohenberg/Brazovskiı̌ and phase-field crystal equations.

As for the dynamic boundary conditions, a continuummechanical theory has not yet been
proposed to the best of our knowledge. Nonetheless, to account for the types of interactions
in the presence of solid walls in confined systems while focusing on the early stage of the
demixing kinetics, Fischer, Maass, and Dieterich [1] proposed a set of dynamic boundary
conditions for flat walls. These dynamic boundary conditions are characterized by an evolu-
tion equation on the boundary coupled with the bulk’s evolution equation. Many phenomena
may fit into this scenario, including polymer mixtures, metallic alloys, andmetamorphic rock
formation, among other physical and industrial processes.

In this work, we aim at exploring the underlying mechanical principles of the bulk-surface
connection for phase-field theories. Our continuum framework is constructed based on the
work by Fried and Gurtin [5, 6], Espath and Calo [8], and Espath [9, 10] to generalize the
models proposed by Fischer,Maass, andDieterich [1], Goldstein,Miranville and Schimperna
[2], and Knopf, Lam, Liu and Metzger [3]. To this end, for the bulk-surface coupling, we
provide a generalized version of the principle of virtual powers, which allows us to establish
meaningful weak forms, with a generalized version of the partwise free-energy imbalance.
Next, we derive the explicit form of the surface and edge microtractions along with the field
equations for the bulk and surface phase fields. Additionally, through this version of the
partwise free-energy imbalance, we propose the constitutive relations and a set of thermo-
dynamically consistent boundary conditions, including mixed (Robin) boundary conditions
for the microstructure (describe by the phase fields) and chemical potentials. Moreover,
this continuum framework has two different bulk-surface types of couplings, one through
the principle of virtual powers and another through the species balance (and consequently
through the free-energy imbalance). Finally, we present the Lyapunov-decay relations for a
fairly general setting.

123



Partial Differential Equations and Applications              (2023) 4:1 Page 3 of 17     1 

The remainder of this work is organized as follows. In Sect. 2, we provide a generalized
version of virtual powers for bulk-surface dynamics, and derive the surface and edge micro-
tractions along with the field equations. In Sect. 3, we postulate the species balance of the
bulk-surface system. In Sect. 4, we postulate a generalized version of the partwise free-energy
imbalance. In Sect. 5, we provide suitable constitutive relations along with a set of thermody-
namically consistent boundary conditions. In Sect. 6, we derive the Lyapunov-decay relations
for mixed (Robin) boundary conditions for both the microstructure and chemical potential.

1.1 Synopsis of purely variational models

The model proposed in [1–3] on a body P with boundary ∂P for the underlying free-energy
functional

�[ϕP , ϕ∂P ] =
∫

P
ψP dv +

∫

∂P
ψ∂P da,

=
∫

P

(
1
ε
f (ϕP) + ε

2 |gradϕP |2
)
dv +

∫

∂P

(
1
δ
g(ϕ∂P) + ιδ

2 |gradSϕ∂P |2
)
da,

(1)

reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̇P = mP�μP , in P,

μP = −ε�ϕP + 1
ε
f ′(ϕP), in P,

ϕ̇∂P = m∂P�Sμ∂P − βmP∂nμP , on ∂P,

μ∂P = −ιδ�Sϕ∂P + 1
δ
g′(ϕ∂P) + ε∂nϕP , on ∂P,

ϕP = ϕ∂P , on ∂P,

∂nμP = 1
L (βμ∂P − μP), on ∂P.

(2)

Here, the superposed dot represents the time derivative andwhen denoted on top of an integral,
it represents the total time derivative d/dt . ψP and ψ∂P represent the bulk and surface free-
energy densities, respectively. � and �S are the Laplace and Laplace–Beltrami operators,
respectively. ϕP and ϕ∂P are the bulk and surface conserved phase fields,μP andμ∂P are the
bulk and surface chemical potentials, f and g are the bulk and surface potentials, andmP and
m∂P are the bulk and surface mobility coefficients. Lastly, ε, δ, ι, β and L are real positive
constant parameters. It is important to what follows to note that (2) has the Cahn–Hilliard
type of structure for both the bulk and surface.

1.2 Synopsis of this work

In continuum mechanics, it is customary to isolate an arbitrary part P from a body B to
describe the interactions between P and adjacent parts of B to establish balance laws. That is
to say, the action ofB\P onP is represented through surface tractions and normal fluxes. This
is probably the most used concept in structural mechanics. We here abandon this hypothesis
and consider that interactions between P and adjacent parts of B are described by additional
evolution equations on ∂P . This ultimately implies that the boundary conditions on B are
defined through a partial differential equation on ∂B. We may however limit the dynamic
response of the environment to a certain region of ∂B instead of considering that the entire
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Fig. 1 Part P with nonsmooth boundary surface ∂P± oriented by the unit normal n with the outward unit
tangent-normal ν± at the smooth boundary-edge ∂2P oriented by the unit tangent σ := n × ν. The surface
∂P lacks smoothness at an edge ∂2P

surrounding environment is dynamic. Note that since balances do not depend on material
idealizations, we separate balance equations from constitutive response functions.

In Fig. 1, B denotes a region of a three-dimensional point space E where P ⊆ B is an
arbitrary subregion of B with a closed surface boundary ∂P oriented by an outward unit
normal n at x ∈ ∂P . The surface ∂P may lose smoothness along a curve, namely an edge
∂2P . In a neighborhood of an edge ∂2P , two smooth surfaces ∂P± are defined. The limiting
unit normals of ∂P± at ∂2P are denoted by the pair {n+, n−}. The pair of unit normals
characterizes the edge ∂2P . Similarly, the limiting outward unit tangent-normal1 of ∂P±
at ∂2P are {ν+, ν−}. Additionally, ∂2P is oriented by the unit tangent σ := σ+ such that
σ+ := n+ × ν+. Furthermore, the body B and all its parts are open sets in E .

In this work, we propose a continuum theory with two kinematical processes, a bulk ϕP
and a surface ϕ∂P fields on P and ∂P , respectively. Within this framework, each of∫

P
γ ϕ̇P dv,

∫

∂P
ξS ϕ̇P da,

∫

∂P
ζ ϕ̇∂P da,

∫

∂P
ξS ϕ̇∂P da, and

∫

∂2P

τ∂S ϕ̇∂P dσ,

(3)

represents an external form of power expenditure, where γ is the external bulk microforce,
ξS is the surface microtraction, ζ is the external surface microforce, and τ∂S is the edge
microtraction. These power expenditures may be described as follows.

1 The unit tangent-normal is a unit vector that is tangent to the surface and normal to the boundary of the
surface.
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• γ ϕ̇P represents the power expended on the atoms of P by sources external to the body
P;

• ξS ϕ̇P represents the power expended across ∂P by configurations neighboring the bound-
ary of the body ∂P and exterior to P;

• ζ ϕ̇∂P represents the power expended on the atoms of ∂P by sources external to the
boundary of the body ∂P and not originated from P;

• ξS ϕ̇∂P represents the power expended on the atoms of ∂P by sources external to the
boundary of the body and originated from P;

• τ∂S ϕ̇∂P represents the power expended across ∂2P by configurations neighboring the
common boundary of the boundaries ∂P± of the body P and exterior to both ∂P and P .

Conversely, the internal power expenditure is given by the contribution of the following terms∫

P
ξ · grad ϕ̇P dv, −

∫

P
πϕ̇P dv,

∫

∂P
τ · gradS ϕ̇∂P da, and −

∫

∂P
�ϕ̇∂P da,

(4)

where ξ is the bulkmicrostress, π is the internal bulkmicroforce, τ is the surface microstress,
and� is the internal surface microforce. We then base our treatment on the the virtual power
principle formulation by Gurtin [11] and Fried and Gurtin [12]. These works represent our
point of departure to propose a generalized bulk-surface version of this principle. Through
this suitable principle of virtual powers, we arrive at the microtractions presented in the
external power, ξS and τ∂S , and the field equations.

Next, given the bulk and surface species fluxes, jP and j ∂P , and the bulk and surface
external rates of species production, sP and s∂P , we postulate the partwise species balances
for P and ∂P , where the balance on ∂P is supplemented by a contribution originated from
P and given by ∫

∂P
β jP · n da. (5)

Then, with a suitable free-energy imbalance, we account for the rate at which energy is
transferred to P and ∂P due to species transport to determine the constitutive relations and
arrive at the following set of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇P = sP − divjP , in P,

μP = −divξ − γ + ∂ϕPψP , in P,

ϕ̇∂P = β jP · n + s∂P − divSj ∂P − 2K j ∂P · n, on ∂P,

μ∂P = −divSτ + 2Kτ · n − ζ + ξ · n + ∂ϕ∂Pψ∂P , on ∂P,

(6)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ = ∂gradϕPψP , in P,

jP = −MP gradμP , in P,

τ = ∂gradSϕ∂Pψ∂P , on ∂P,

j ∂P = −M∂P gradSμ∂P , on ∂P,

(7)
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where K := − 1
2divSn is the mean curvature, ∂ϕP := ∂/∂ϕP , ∂ϕ∂P := ∂/∂ϕ∂P , ∂gradϕP :=

∂/∂(gradϕP), and ∂gradSϕ∂P := ∂/∂(gradSϕ∂P). Additionally, MP and M∂P are the bulk
and surface mobility tensors, respectively.

Also, note that the appearance of bulk microstress ξ in the surface chemical potentialμ∂P ,
in Eq. (6)4, results from the coupling at the principle of virtual powers’ level, whereas the
presence of the bulk species flux jP in the surface species time derivative ϕ̇∂P , in Equation
(6)3, results from the coupling at the surface species balance’s level.

Aside from the fact that we present a new version of the principle of virtual powers and
free-energy imbalance, there are three key differences between our continuum framework
and previous works on dynamic boundary conditions. First, our theory is based on underlying
mechanical principles. Second, our theory generalizes the resulting equations in [2, 3]. Third,
we consider that the boundary ∂P may be endowed with a discontinuous normal field,
allowing the assignment of edge microtractions. Lastly, in [3], a mixed (Robin) type of
boundary condition for the chemical potentials is proposed for the model in [1, 2]. In addition
to this boundary condition, we also include this type of mixed boundary condition for the
microstructures, that is the phase fields.

1.3 Differential tools

In this subsection, we present helpful mathematical tools, from [8, 9], to be used in the
remainder of this study. We derive the relevant differential relations on a body B and a
surface S.

Let P be an arbitrary part embedded in a region B of a three-dimensional point space E .
With the coordinates τ i (i = 1, 2, 3), the i th contravariant basis gi , and the conventional
partial derivative ∂i := ∂/∂τ i , let κ and κ be, respectively, a smooth and a vector fields on
B. Then, within this setting, the gradient differential operator is defined as

gradκ := ∂iκ gi . (8)

Next, consider a smooth surface S ⊂ P oriented by the unit normal n at x ∈ S. Let S be
parameterized by coordinates τ p with p = 1, 2 and z be a smooth extension of S along its
normal n at x such that

z(x, τ ) := x + τn(x), ∀ x ∈ S, (9)

with τ representing the normal coordinate n and taking values in an open interval of zero so
that there exists a one-to-one mapping z ↔ (x, τ ). Such parameterization induces the local
covariant basis

g p := ∂p z = ∂px + τ∂pn, and gn := ∂3z = n. (10)

With expression (10) at x = z(x, 0), we define

ep := g p|τ=0. (11)

Thus,

ep = ∂px. (12)

Furthermore, the contravariant g p and covariant gq bases satisfy

g p · gq = δ
p·q . (13)

123



Partial Differential Equations and Applications              (2023) 4:1 Page 7 of 17     1 

Bearing in mind the parameterization (9), consider the differential operators as follows.
The gradient definition given in expression (8) takes the form

gradκ = ∂nκ n + ∂pκ ep. (14)

Next, let Pn := Pn(n) be the projector onto the plane defined by n at x ∈ S such that

Pn := 1 − n ⊗ n = P

n . (15)

In view of the expression (14) along with (15), the surface gradient is given by

gradSκ := ∂pκ ep = Pngradκ, (16)

and the surface divergence by

divSκ = ∂pκ · ep = gradκ : Pn. (17)

Then, the Laplace–Beltrami operator may be written as

�Sκ := divSgradSκ = grad (Pngradκ) : Pn. (18)

Lastly, for any smooth vector field κ on a smooth closed oriented surface S, the surface
divergence theorem states that ∫

S
divS(Pnκ) da = 0, (19)

whereas, owing to the lack of smoothness at an edge C, on a nonsmooth closed oriented
surface S with limiting outward unit tangent-normals ν+ and ν− at C, the surface divergence
theorem exhibits a surplus, that is,∫

S
divS(Pnκ) da =

∫

C
{{κ · ν}} dσ, (20)

where {{κ · ν}} := κ · ν+ + κ · ν−. Conversely, for open nonsmooth surfaces, we have to
consider an extension of the surface divergence theorem (20), that is,∫

S
divS(Pnκ) da =

∫

∂S
κ · ν dσ +

∫

C
{{κ · ν}} dσ. (21)

2 Virtual power principle

We are now in a position to postulate the principle of virtual powers. Considering the power
expenditures discussed in the previous section, the principle reads

Vext(P, ∂P;χP , χ∂P) = Vint(P, ∂P;χP , χ∂P), (22)

where χP and χ∂P are two sufficiently smooth virtual fields defined, respectively, on P and
∂P . The external and internal virtual power are, respectively, given by

Vext(P, ∂P;χP , χ∂P) =
∫

P
γχP dv +

∫

∂P
(ζ + ξS)χ∂P da +

∫

∂P
ξSχP da +

∫

∂2P

τ∂Sχ∂P dσ,

(23)
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and

Vint(P, ∂P;χP , χ∂P) =
∫

P
ξ · gradχP dv −

∫

P
πχP dv

+
∫

∂P
τ · gradSχ∂P da −

∫

∂P
�χ∂P da. (24)

Next, we aim at deriving the explicit forms of the surface microtraction ξS and the edge
microtraction τ∂S . Noting that τ · gradSχ∂P = Pnτ · gradSχ∂P while combining (23) and
(24) through (22) along with the divergence theorem and the surface divergence theorem for
nonsmooth closed surfaces (20), we are led to

∫

P
χP(divξ + π + γ ) dv +

∫

∂P
χP(ξS − ξ · n) da

+
∫

∂P
χ∂P(divS(Pnτ ) + � + ζ + ξS) da +

∫

∂2P

χ∂P(τ∂S − {{τ · ν}}) dσ = 0. (25)

Then, by variational arguments, the microtractions read

ξS = ξ · n, and τ∂S = {{τ · ν}}, (26)

while the bulk and surface field equations are given by

divξ + π + γ = 0, and divS(Pnτ ) + � + ζ + ξS = 0. (27)

Note that the bulk microforce balance (27)1 has the standard form proposed by Fried and
Gurtin [5]. However, the surface microforce balance (27)2 has a contribution from the bulk,
namely ξS . Additionally, the term divS(Pnτ ) may be split as divS(Pnτ ) = divSτ + 2Kτ · n.
Then, the surface microforce balance (27)2 may be written as

divSτ + 2Kτ · n + � + ζ + ξS = 0, (28)

for each smooth part of ∂P .

3 Conserved species

We now account for the case where the bulk and surface phase fields, ϕP and ϕ∂P , represent
the concentration of a conserved species. We therefore supplement the field equations (27)
by two partwise species balances, that is, the bulk species balance

˙∫

P
ϕP dv =

∫

P
sP dv −

∫

∂P
jP · n da, (29)

and the surface species balance

˙∫

∂P
ϕ∂P da =

∫

∂P
β jP · n da +

∫

∂P
s∂P da −

∫

∂2P

{{j ∂P · ν}} dσ. (30)
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The partwise bulk and surface balance of species, respectively given by expressions (29) and
(30), are motivated by the fact that we assume that the total balance of species satisfies

˙∫

P
β ϕP dv +

˙∫

∂P
ϕ∂P da =

∫

P
β sP dv +

∫

∂P
s∂P da −

∫

∂2P

{{j ∂P · ν}} dσ. (31)

Using the divergence theorem and the surface divergence theorem for nonsmooth closed
surfaces (20) in expressions (29) and (30), respectively, followed by localization, we are led
to

ϕ̇P = sP − divjP , (32)

and

ϕ̇∂P = β jP · n + s∂P − divS(Pnj ∂P). (33)

Note that the bulk species balance has a standard form. However, the surface species balance
has a contribution from the bulk, namely β jP · n. Additionally, the term divS(Pnj ∂P) may
be split as divS(Pnj ∂P) = divSj ∂P + 2K j ∂P · n. Then, the surface species balance (33) may
be written as

ϕ̇∂P = β jP · n + s∂P − divSj ∂P − 2K j ∂P · n, (34)

for each smooth part of ∂P .

4 Free-energy imbalance

First, note that the actual power is given by

Wext(P, ∂P) := Vext(P, ∂P; ϕ̇P , ϕ̇∂P). (35)

In the free-energy imbalance, together with the external power expenditure, we account for
the rate at which energy is transferred to P and ∂P due to species transport. Thus, the
free-energy imbalance reads

˙∫

P
ψP dv +

˙∫

∂P
ψ∂P da ≤ Wext(P, ∂P)

+
∫

P
μPsP dv −

∫

∂P
μPjP · n da

+
∫

∂P
βμ∂PjP · n da +

∫

∂P
μ∂Ps∂P da −

∫

∂2P

{{μ∂Pj ∂P · ν}} dσ.

(36)

Noting that Pnj ∂P · gradSμ∂P = j ∂P · gradSμ∂P and uncoupling ∂P from P , for the sake
of simplicity, we have that

ψ̇P + (π − μP)ϕ̇P − ξ · grad ϕ̇P + jP · gradμP ≤ 0, (37)

and

ψ̇∂P + (� − μ∂P)ϕ̇∂P − τ · gradS ϕ̇∂P + j ∂P · gradSμ∂P ≤ 0. (38)
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Additionally, assuming that the bulk and surface free-energy densities ψP and ψ∂P are,
respectively, given by constitutive response functions that are independent of μP , μ∂P ,
gradμP , and gradSμ∂P

ψP := ψP(ϕP , gradϕP), and ψ∂P := ψ∂P(ϕ∂P , gradSϕ∂P), (39)

we have that

ψ̇P = ∂ϕPψP ϕ̇P + ∂gradϕPψP(gradϕP )̇, (40)

and

ψ̇∂P = ∂ϕ∂Pψ∂P ϕ̇∂P + ∂gradSϕ∂Pψ∂P(gradSϕ∂P )̇. (41)

Then, combining (37), (38), (40), and (41), we are led to two pointwise free-energy imbal-
ances

(μP − π − ∂ϕPψP)ϕ̇P + (ξ − ∂gradϕPψP) · grad ϕ̇P − jP · gradμP ≥ 0, (42)

and

(μ∂P − � − ∂ϕ∂Pψ∂P)ϕ̇∂P + (τ − ∂gradSϕ∂Pψ∂P) · gradS ϕ̇∂P − j ∂P · gradSμ∂P ≥ 0.

(43)

The bulk and surface free-energy imbalance equations, (42) and (43), serve to devise addi-
tional constitutive response functions in what follows.

5 Additional constitutive response functions

We now assume that the set of independent variables is given by {ϕP , ϕ∂P , gradϕP ,

gradSϕ∂P , μP , μ∂P} while the set of dependent variables is {π,�, ξ , τ , jP , j ∂P}. Thus,
we find that the local inequality (42) and (43) are satisfied in all processes if and only if:

• The bulk and surface microstress ξ and τ are, respectively, given by

ξ := ∂gradϕPψP , and τ := ∂gradSϕ∂Pψ∂P . (44)

• The internal bulk and surface microforces π and � are, respectively, given by consti-
tutive response functions that differs from the bulk and surface chemical potential by a
contribution derived from the response functions ψP and ψ∂P

π := μP − ∂ϕPψP , and � := μ∂P − ∂ϕ∂Pψ∂P . (45)

• Granted that the bulk and surface species fluxes jP and j ∂P depend smoothly on the
gradient of the bulk chemical potential, gradμP , and the surface gradient of the surface
chemical potentials, gradSμ∂P , these fluxes are, respectively, given by a constitutive
response function of the form

jP := −MPgradμP , and j ∂P := −M∂PgradSμ∂P , (46)

where the mobility tensors MP and M∂P must obey the residual dissipation inequalities

gradμP · MPgradμP ≥ 0, and gradSμ∂P · M∂PgradSμ∂P ≥ 0. (47)
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For the sake of simplicity, we let MP := mP1 and M∂P := m∂P1. With this choice for M∂P ,
the surface flux j ∂P remains proportional to gradSμ∂P and therefore tangential to ∂P . Thus,
the normal component of j ∂P appearing in expression (34) vanishes. Also, note that nonlinear
constitutive response functions for jP and j ∂P could be admissible as well, for instance, if
h : R

3 
→ R is a convex, differentiable function, one could assume jP := gradh(gradμP).
Important to what follows is the explicit form of the bulk and surface chemical potentials

when using (27)1 and (28) in (45). That is,

μP = −divξ − γ + ∂ϕPψP , (48)

and

μ∂P = −divSτ − 2Kτ · n − ζ + ξ · n + ∂ϕ∂Pψ∂P , (49)

which take the following form when considering (44),

μP = ∂ϕPψP − div
(
∂gradϕPψP

)
− γ, (50)

and

μ∂P = ∂ϕ∂Pψ∂P − divS
(
∂gradSϕ∂Pψ∂P

)
− ζ + ∂gradϕPψP · n, (51)

for each smooth part of ∂P . Note that the normal component of τ vanishes for the free-energy
function (1) with (44)2.

In what follows, consider that P := B.

5.1 Further connections: boundary conditions

To be slightly more general, let us define different parts of the boundary ∂P . Let ∂Pdyn be
the boundary with the dynamic bulk-surface interplay and ∂Psta the static boundary such
that ∂P := ∂Pdyn ∪ ∂Psta and ∂Pdyn ∩ ∂Psta = ∅. Also, let ◦∂2P denote the boundary of
the dynamic boundary ∂Pdyn while ∂2P still denotes the edge along which the normal field
is discontinuous. Thus, given the boundary conditions derived based upon thermodynamical
principles in [7, 8, 13],we stipulate that the boundary conditionsmay be prescribed as follows.

The essential (Dirichlet) boundary conditions, that is, the assignment of microstructure,
read

ϕP(x, t) = ϕ∂P(x, t), ∀x ∈ ∂Pdyn
ess , (52)

and

ϕ∂P(x, t) = ϕenv
∂2P(x), ∀x ∈ ∂2Psta

ess ∪ ◦∂2Psta
ess, (53)

where the surface phase field ϕ∂P is the action of the dynamic environment on ∂Pdyn
ess and

ϕenv
∂2P is the action of the static environment on ∂2Psta

ess. On a static environment, expression
(52) takes the form

ϕP(x, t) = ϕenv
∂P (x), ∀x ∈ ∂Psta

ess, (54)

where ϕenv
∂P is the action of the static environment on ∂Psta

ess.
Instead,wemay opt for the natural (Neumann) boundary conditions, that is, the assignment

of microtractions. Then, we have

ξS(x, t) = ξ envS (x), ∀x ∈ ∂Psta
nat, (55)
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and

τ∂S(x, t) = τ env
∂S (x), ∀x ∈ ∂2Psta

nat, (56)

and

◦τ∂S(x, t) = τ env
∂S (x), ∀x ∈ ◦∂2Psta

ess, (57)

where ξS = ξ · n, τ∂S = {{τ · ν}} on ∂2Psta
nat, ◦τ∂S = τ · ν on ◦∂2Psta

nat due to (21), and ξ envS and
τ env

∂S are the actions of the static environment, respectively, on ∂Psta
nat and ∂2Psta

nat ∪ ◦∂2Psta
nat.

As for the bulk species balance, as an essential boundary condition, we may prescribe

μP(x, t) = βμ∂P(x, t), ∀x ∈ ∂Pdyn
ess , (58)

where βμ∂P is the action of the dynamic environment on ∂Psta
nat. Expression (58), on a static

environment, takes the form

μP(x, t) = μenv
∂P (x), ∀x ∈ ∂Psta

ess, (59)

where μenv
∂P is the action of the static environment on ∂Psta

ess.
Instead, as a natural boundary condition, we may opt for

jP(x, t) · n = −j env
∂P (x), ∀x ∈ ∂Psta

nat, (60)

where j env
∂P is the action of the static environment on ∂Psta

nat through the normal component of
the flux jP . Conversely, for the surface species balance, as an essential boundary condition,
we may prescribe

μ∂P(x, t) = μenv
∂2P(x), ∀x ∈ ∂2Psta

ess ∪ ◦∂2Psta
ess, (61)

where μenv
∂2P is the action of the static environment on ∂2Psta

ess ∪ ◦∂2Psta
ess, whereas, as a natural

boundary condition, we may opt for

{{j ∂P(x, t) · ν}} = −j env
∂2P(x), ∀x ∈ ∂2Psta

nat, (62)

and, due to (21),

j ∂P(x, t) · ν = −j env
∂2P(x), ∀x ∈ ◦∂2Psta

nat, (63)

where j env
∂2P is the action of the static environment on ∂2Psta

nat through the tangent-normal
component of the flux j ∂P .

For mixed boundary conditions on static environments, the reader is referred to [8, 9].
Here, we restrict attention to the mixed boundary conditions on ∂Pdyn. Specifically, we
invoke relation proposed by Fried and Gurtin [12, surface free-energy imbalance (92)] and
stipulate that

Tsurf (−∂P) + Tenv(∂P) ≥ 0, (64)

where Tsurf (−∂P) combines the power expended on ∂P by the material insideP and the rate
at which energy is transferred toP and ∂P , whereas and Tenv(∂P) combines power expended
by the environment on ∂P and the rate at which energy is transferred from the environment
to ∂P . For ∂Pdyn, we here define

123



Partial Differential Equations and Applications              (2023) 4:1 Page 13 of 17     1 

Tsurf (−∂Pdyn) := −
∫

∂P
(ϕ̇∂P + ϕ̇P)ξS da −

∫

∂2P

τ∂S ϕ̇∂P dσ +
∫

◦∂2P
◦τ∂S ϕ̇∂P dσ

−
∫

∂P
(βμ∂P − μP)jP · n da +

∫

∂2P

{{μ∂Pj ∂P · ν}} dσ

+
∫

◦∂2P

μ∂Pj ∂P · ν dσ, (65)

where, owing to (21), ◦τ∂S := τ · ν is the analogous of τ∂S but developed on ◦∂2P . We also
define

Tenv(∂Pdyn) :=
∫

∂2P

τ env
∂S ϕ̇env

∂2P dσ +
∫

◦∂2P
◦τ env∂S ϕ̇env

∂2P dσ

−
∫

∂2P

μenv
∂2Pj env

∂2P dσ −
∫

◦∂2P

μenv
∂2Pj env

∂2P dσ. (66)

Now, we consider that on ∂2P ∪ ◦∂2P , τ env
∂S = τ∂S , ϕ̇env

∂2P = ϕ̇∂P , μenv
∂2P = μ∂P , whereas

on ∂2P , j env
∂2P = {{j ∂P · ν}} and on ◦∂2P , j env

∂2P = j ∂P · ν. Thus, expression (64) reads

−
∫

∂P

(
(ϕ̇∂P + ϕ̇P) ξS + (βμ∂P − μP) jP · n)

da ≥ 0. (67)

Unclupling this expression, we have that2

∫

∂P
(ϕ̇∂P + ϕ̇P) ξS da ≤ 0, and

∫

∂P
(βμ∂P − μP) jP · n da ≤ 0. (68)

Note that, the terms in (68) are dissipative. That is, as amixed boundary condition, expressions
(68) read

ξ(x, t) · n = − 1
Lϕ

(ϕ̇∂P + ϕ̇P), ∀x ∈ ∂Pdyn
mix, (69)

and

jP(x, t) · n = − 1
Lμ

(βμ∂P − μP), ∀x ∈ ∂Pdyn
mix, (70)

where Lϕ, Lμ > 0.

2 This type of condition was derived by Espath and Calo [8, Eq. (152)] based upon mechanical and thermo-
dynamical arguments.
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5.2 Specialized equations

In view of the free-energy functional (1), and expressions (32), (34), (50), and (51), our theory
renders the following set of equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ̇P = sP + mP�μP , in P
μP = −ε�ϕP + 1

ε
f ′(ϕP) − γ, in P,

ϕ̇∂P = s∂P + m∂P�Sμ∂P − βmP ∂nμP , on ∂P,

μ∂P = −ιδ�Sμ∂P + 1
δ
g′(ϕ∂P) + ε ∂nϕP − ζ on ∂P.

(71)

The boundary conditions, may be summarized as follows:

∀x ∈ ∂Pdyn

{
ϕP = ϕ∂P , or ε ∂nϕP = − 1

ϕ
(ϕ̇∂P + ϕ̇P),

μP = βμ∂P , or − mP ∂nμP = − 1
Lμ

(βμ∂P − μP),
(72)

and

∀x ∈ ∂Psta

{
ϕP = ϕenv

∂P , or ε ∂nϕP = ξ envS ,

μP = μenv
∂P , or − mP ∂nμP = −j env

∂P ,
(73)

and

∀x ∈ ∂2Psta

{
ϕ∂P = ϕenv

∂2P , or ιδ {{∂νϕ∂P}} = τ env
∂S ,

μ∂P = μenv
∂2P , or − m∂P{{∂νμ∂P}} = −j env

∂2P ,
(74)

and

∀x ∈ ◦∂2Psta

{
ϕ∂P = ϕenv

∂2P , or ιδ ∂νϕ∂P = τ env
∂S ,

μ∂P = μenv
∂2P , or − m∂P ∂νμ∂P = −j env

∂2P .
(75)

6 Decay relations

We now aim to establish Lyapunov-decay relations for the case where all the boundary ∂P
is dynamic and of the mixed type for both the microstructure and chemical potential. Thus,
in view of (40) and (41) combined with the constitutive relations for the bulk and surface
microstresses (44), we have that

∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da =

∫

P

(
∂ϕPψP ϕ̇P + ∂gradϕPψP(gradϕP )̇

)
dv

+
∫

∂P

(
∂ϕ∂Pψ∂P ϕ̇∂P + ∂gradSϕ∂Pψ∂P(gradSϕ∂P )̇

)
da,

=
∫

P

(
∂ϕPψP ϕ̇P + ξ · grad ϕ̇P

)
dv

+
∫

∂P

(
∂ϕ∂Pψ∂P ϕ̇∂P + Pnτ · gradS ϕ̇∂P

)
da,
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=
∫

P

(
(∂ϕPψP − divξ)ϕ̇P + div (ϕ̇P ξ)

)
dv

+
∫

∂P

(
(∂ϕ∂Pψ∂P − divS(Pnτ ))ϕ̇∂P + divS(ϕ̇∂P Pnτ )

)
da. (76)

Next, using the pointwise balances of microforces (27), we arrive at
∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da =

∫

P

(
(∂ϕPψP + π + γ )ϕ̇P + div (ϕ̇P ξ)

)
dv

+
∫

∂P

(
(∂ϕ∂Pψ∂P + � + ζ + ξS)ϕ̇∂P + divS(ϕ̇∂P Pnτ )

)
da. (77)

Note that relation (77) holds whether or not the species transports in the bulk and on the
surface are present or not. Conversely, in view of expression (26)1, the surface microtraction,
and accounting for the bulk and surface internal microforces, given by expressions (45), in
(77), we are led to

∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da =

∫

P

(
(μP + γ )ϕ̇P + div (ϕ̇P ξ)

)
dv

+
∫

∂P

(
(μ∂P + ζ + ξ · n)ϕ̇∂P + divS(ϕ̇∂P Pnτ )

)
da. (78)

We now use the bulk and surface species balances, respectively given by (32) and (33) in
expression (78), to arrive at

∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da

=
∫

P

( − gradμP · MPgradμP + μPsP + γ ϕ̇P

+ div (ϕ̇P ξ − μPjP)
)
dv

+
∫

∂P

( − gradSμ∂P · M∂PgradSμ∂P + μ∂P(β jP · n + s∂P)
)
da

+
∫

∂P

(
(ζ + ξ · n)ϕ̇∂P + divS(ϕ̇∂P Pnτ − μ∂P Pnj ∂P)

)
da. (79)

Then, using the surface divergence theorem for closed nonsmooth surfaces (20), we are led
to ∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da =

∫

P

( − gradμP · MPgradμP + μPsP + γ ϕ̇P
)
dv

+
∫

∂P

( − gradSμ∂P · M∂PgradSμ∂P + μ∂Ps∂P

+ (βμ∂P − μP) jP · n)
da
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+
∫

∂P

(
ζ ϕ̇∂P + (ϕ̇∂P + ϕ̇P) ξ · n)

da

+
∫

∂2P

({{ϕ̇∂P τ · ν}} − {{μ∂P j ∂P · ν}}) dσ. (80)

6.1 Decay relations for mixed boundary conditions

For a mixed boundary condition on ∂P := ∂Pdyn
mix given by expressions (69) and (70) along

with the boundary-edge conditions (56) and (62), we obtained the final relation

∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da =

∫

P

( − gradμP · MPgradμP + μPsP + γ ϕ̇P
)
dv

+
∫

∂P

( − gradSμ∂P · M∂PgradSμ∂P + μ∂Ps∂P + ζ ϕ̇∂P
)
da

+
∫

∂P

( − 1
Lϕ

(ϕ̇∂P + ϕ̇P)2 − 1
Lμ

(βμ∂P − μP)2
)
da

+
∫

∂2P

(
ϕ̇∂P τ env

∂S + μ∂P j env
∂2P

)
dσ. (81)

Thus, the final Lyapunov-decay relation is

∫

P
ψ̇P dv +

∫

∂P
ψ̇∂P da ≤

∫

P

(
μPsP + γ ϕ̇P

)
dv +

∫

∂P

(
μ∂Ps∂P + ζ ϕ̇∂P

)
da

+
∫

∂2P

(
ϕ̇∂P τ env

∂S + μ∂P j env
∂2P

)
dσ. (82)
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