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Abstract

During embryo development, the heart is the first functioning organ. Although quiescent in the adult, the

epicardium is essential during development to form a normal four-chambered heart. Epicardial-derived cells

contribute to the heart as it develops with fibroblasts and vascular smooth muscle cells. Previous studies have

shown that a heartbeat is required for epicardium formation, but no study to our knowledge has shown the

effects of haemodynamic changes on the epicardium. Since the aetiologies of many congenital heart defects are

unknown, we suggest that an alteration in the heart’s haemodynamics might provide an explanatory basis for

some of them. To change the heart’s haemodynamics, outflow tract (OFT) banding using a double overhang knot

was performed on HH21 chick embryos, with harvesting at different developmental stages. The epicardium of the

heart was phenotypically and functionally characterised using a range of techniques. Upon alteration of

haemodynamics, the epicardium exhibited abnormal morphology at HH29, even though migration of epicardial

cells along the surface of the heart was found to be normal between HH24 and HH28. The abnormal epicardial

phenotype was exacerbated at HH35 with severe changes in the structure of the extracellular matrix (ECM). A

number of genes tied to ECM production were also differentially expressed in HH29 OFT-banded hearts, including

DDR2 and collagen XII. At HH35, the differential expression of these genes was even greater with additional

downregulation of collagen I and TCF21. In this study, the epicardium was found to be severely impacted by

altered haemodynamics upon OFT banding. The increased volume of the epicardium at HH29, upon OFT-banding,

and the expression changes of ECM markers were the first indicative signs of aberrations in epicardial

architecture; by HH35, the phenotype had progressed. The decrease in epicardial thickness at HH35 suggests an

increase in tension, with a force acting perpendicular to the surface of the epicardium. Although the developing

epicardium and the blood flowing through the heart are separated by the endocardium and myocardium, the

data presented here demonstrate that altering the blood flow affects the structure and molecular expression of

the epicardial layer. Due to the intrinsic role the epicardium in cardiogenesis, defects in epicardial formation could

have a role in the formation of a wide range of congenital heart defects.

Key words: altered haemodynamics; epicardium; extracellular matrix; heart development; outflow tract

banding.

Introduction

The epicardium emerges from an aggregation of progeni-

tor cells, forming the proepicardial organ (PEO), which is

located inferior to the heart tube. The PEO forms around

HH14 from splanchnic mesoderm as an outpouching from

the septum transversum, a folding of mesodermal

mesenchyme cells that give rise to the thoracic and abdom-

inal cavities (Cano et al. 2016). These proepicardial (PE)

cells migrate to the myocardium at HH17 and cover it to

form the epicardium (Hiruma & Hirakow, 1989). Studies in

Xenopus suggest that the PEO attaches to the atrioventric-

ular canal and then proceeds to form an epicardial sheet

around the heart (Tandon et al. 2013). The epicardium is

of great importance, as a fraction of its cells, termed epi-

cardium-derived cells (EPDC), migrate into the heart and

are crucial for the development of the heart and coronary

vessels (Gittenberger-de Groot et al. 1998). EPDC undergo

EMT at HH19, invade the myocardium and the subendocar-

dial region, giving rise to the subepicardial mesenchyme,

or subepicardium (Lie-Venema et al. 2005). EPDC are multi-

potent cardiac progenitor cells, which are important for
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the structural and functional integrity of the heart (Gitten-

berger-de Groot et al. 1998). For example, EPDC can differ-

entiate into vascular smooth muscle cells (SMCs) and

fibroblast cells, which are important for the formation of

the heart’s coronary vessels and fibrous skeleton,

respectively.

WT1 is responsible for the expression of the enzyme

RALDH2, which produces retinoic acid (RA; von Gise et al.

2011). RA signalling is required for the expression of TCF21

(Braitsch et al. 2012). TCF21 is a bHLH transcription factor

that is essential for EPDC differentiation into fibroblast cells

while inhibiting their differentiation into SMCs, as demon-

strated in a mouse null mutant (Acharya et al. 2012). Early

during epicardial migration, EPDCs expressing TCF21 are

multipotent, but as development progresses, only fibroblast

cells express TCF21. Mice with a TCF21 knockdown lack epi-

cardial-derived cardiac fibroblasts, have lower collagen

levels and defective EPDC migration, but normal epicardial

apoptosis and proliferation (Acharya et al. 2012). In chicks,

EPDC destined to become fibroblasts start invading the

myocardium and the subendocardial region at HH25, with

a subsequent invasion of the AV cushions at HH32 (Gitten-

berger-de Groot et al. 1998).

As stated previously, one of the major cell types that

develops from the migrating EPDC is fibroblast cells. As

the heart develops in the embryo, the number of fibrob-

lasts increases and so does the amount of collagen they

deposit (Camelliti et al. 2005). The study of fibroblast cells

is challenging due to the lack of specific markers (Gold-

smith et al. 2004). DDR2 is a receptor that binds to fibrillar

collagen; although it is found in a number of cells, it is

absent from cardiac endothelial cells (EC), cardiomyocytes

and SMCs. The absence of DDR2 expression in most of the

heart makes it a reasonably specific fibroblast marker, with

the only other cells expressing it being certain white blood

cells which appear later in development (Goldsmith et al.

2004). DDR2 null mice were found to have a smaller heart

and a lower collagen density, due to slower collagen

deposition, compared with the wild type (Cowling et al.

2014).

Epicardial fibroblasts are in part responsible for the pro-

duction of collagen XII, a fibril-associated collagen with

interrupted triple helices (FACIT), which forms complexes

with collagen I (Marro et al. 2016). Collagen XII was found

in the epicardium and subepicardium of early zebrafish

embryos, outlining the ventricles; as development pro-

gresses, its expression increased until it fully encases the

heart and penetrates into the compact myocardium (Marro

et al. 2016). Further, its expression in bone and skeletal

muscle has been associated with modifying the stiffness of

the tissue in response to shear stress (Chiquet et al. 2014;

Marro et al. 2016).

Three main mechanical forces affect the heart: pressure,

shear stress and stretch. Blood flow induces shear stress,

which is a force parallel to the endocardium (Andr�es-

Delgado and Mercader, 2016). Blood also creates a pressure

force, which is applied perpendicular to the heart wall. Any

changes in blood flow during contraction–relaxation as

well as differences in blood viscosity can create a cyclic

strain (Andr�es-Delgado & Mercader, 2016). Strain can cause

stretching of myocardium; the factor that defines the ratio

between stress and strain is the stiffness of the material.

These forces can disturb normal homeostasis and result

in extensive tissue remodelling (Andr�es-Delgado & Mer-

cader, 2016).

The aim of this paper is to elucidate the effect of altered

haemodynamics, by OFT-banding, on the structure of the

epicardium. The structure of the epicardium is important, as

it is a multipotent progenitor of cardiac cells and changes in

the ECM can affect cell migration along with other biologi-

cal mechanisms (Smits et al. 2018). The epicardial morphol-

ogy of OFT-banded hearts was found to be aberrant at

HH29 and HH35. The ECM alterations were mainly caused

by downregulation of gene and protein expression linked

to collagen and fibroblast cells. In this study, we have

shown that HH29 OFT-banded hearts have an initial epicar-

dial phenotype with increased volume and changes in ECM

expression which are exacerbated with development. By

HH35, OFT-banded hearts had increased expression of

COL12A1 and DDR2, which suggests a change in the ECM

composition and tissue remodelling under stress.

Methods

Outflow tract banding

All works in this study were Schedule 1 procedures; they were ethi-

cally reviewed at the University of Nottingham and all procedures

and facilities are compliant with local and institutional guidelines.

Gallus fertilised eggs (Henry Stewart & Co., UK), of the White Leg-

horn variety, were placed at 38 °C in a humidified rotating incuba-

tor. At HH21, the eggs were fenestrated. The OFT-banded embryos

had their OFT constricted with a transverse, double-overhang knot

as previously published (Sedmera et al. 1999), using an Ethilon�
Nylon Suture (Ethicon; W1770), which had a 3/8 circle needle

attached to a 10-0 suture. The ‘shams’ had the suture passed below

the OFT but no ligature was made. Any embryos that showed haem-

orrhage during the banding procedure or had phenotypic malfor-

mations were excluded from the studies. The banding procedure

was carried out using a Stemi SV 11 stereomicroscope (Carl Zeiss). All

eggs were sealed and reincubated until HH26-35 without rotation.

Incubation times as well as the staging criteria were according to

Hamburger-Hamilton stages (Hamburger & Hamilton, 1992).

Embryo isolation

Outflow tract-banded and sham were isolated at required develop-

mental stage and external analysis was performed. The OFT-banded

hearts were only processed further if the suture was still attached

around the OFT with the knot intact. Any embryos with structural

deformities or developmental delays were excluded from further

studies. Hearts were isolated for all described studies except whole
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mount in situ hybridisation, where whole embryos were used.

Whole embryos and hearts were fixed overnight in 4%

paraformaldehyde (PFA) or were snap-frozen in liquid nitrogen and

kept at �80 °C.

Processing for paraffin-embedding and sectioning

Fixed HH29 and HH35 hearts were dehydrated in increasing con-

centrations of ethanol (EtOH). All hearts were sectioned at 5 lm,

unless stated otherwise, anterior to posterior, on a DSC1 micro-

tome (Leica).

External and internal phenotypic analysis

The external phenotypic analysis of the HH29 OFT-banded hearts

(sham n = 16; OFT-banded n = 16) was carried out using a stereo-

scope (SteREO Discovery.V8; Carl Zeiss). For internal phenotypic

analysis of the HH29 OFT-banded hearts (sham n = 6; OFT-banded

n = 7), sections were stained with Alcian blue (Sigma Aldrich, UK)

for 15 min followed by Mayer’s haemalum. Imaging was acquired

with an Axioplan microscope (Zeiss). A 96-point grid was placed

over every fourth 8-lm section throughout the HH29 embryonic

hearts. Each point at which the grid hit the epicardium was

counted. Once the counting was complete, the total number of

counts in the epicardium was divided by the total number of counts

for that heart, giving a percentage of the proportion of the epi-

cardium contributing to the heart.

Apoptosis and proliferation analysis

HH29 hearts (n = 3 per treatment group) were serially sectioned

into five groups. One of these groups was used for the apoptosis

study and another group for the proliferation study. All sections

were collected on superfrost plus slides (Thermo Fisher Scientific).

All the stained sections were digitally captured (University of York

Imaging and cytometry facility; AxioScan.Z1 slide scanner; Carl

Zeiss). Visual analysis was performed using ZEN 2 (blue edition; Carl

Zeiss) software. Positive 3,3-diaminobenzidine (DAB)- and 40,6-dia-
midino-2-phenylindole cells (DAPI) were counted manually in the

epicardium of alternating sections.

For the apoptosis study, the sections were deparaffinised in

xylene and rehydrated in decreasing concentrations of alcohol. The

ApopTag� Peroxidase In Situ Apoptosis Detection (S7100; Millipore)

kit and protocol was used, with the following variations. Briefly,

Proteinase K was applied to sections. Endogenous peroxidase activ-

ity was quenched using 3% hydrogen peroxidase. Equilibration buf-

fer was applied to the sections followed by working terminal

deoxynucleotidyl transferase (TdT) enzyme. Stop/wash buffer was

applied on the sections, which were then incubated with anti-

digoxigenin conjugated antibody followed by 0.05% DAB with

hydrogen peroxide. For counter-staining, sections were treated

with 0.5 lg mL�1 DAPI (Sigma Aldrich).

For the proliferation study, the sections were deparaffinised in

xylene and rehydrated in decreasing concentrations of alcohol.

The proliferating cell nuclear antigen (PCNA) Staining (Invitrogen)

kit and protocol was used, with the following variations. Briefly,

the sections were treated with H2O2, followed by blocking solu-

tion and then the anti-PCNA primary antibody. The sections were

incubated with streptavidin peroxidase followed by 0.05% DAB

chromogen. They were then treated with 0.5 lg mL�1 DAPI

(Sigma Aldrich).

Collagen I immunohistochemistry

HH29 hearts (n = 4 per treatment group) were serially sectioned

into three groups. One of these groups was used for the extracellu-

lar matrix study. HH35 hearts (n = 3 per treatment group) were seri-

ally sectioned into five groups. One of these groups was used for

the fibroblast and extracellular matrix study.

The sections were deparaffinised and hydrated in decreasing con-

centrations of ethanol and permeabilised with 0.1% Triton X-100

(Fisher). The sections were blocked with 10% normal goat serum

(Invitrogen) and 1% bovine serum albumin (BSA). HH29 sections

were incubated with anti-collagen I antibodies (1 : 200; PA1-26147;

Fisher), and HH35 sections were incubated with anti-TCF21 antibod-

ies (1 : 200; sc377225; Santa Cruz). HH29 sections were incubated

with 488 anti-mouse antibodies (1 : 400; ab150113; Abcam), and

HH35 sections were incubated with 568 anti-rabbit antibodies

(1 : 400; ab175471; Abcam). Mowiol 40-88 (Sigma-Aldrich) was used

as mounting medium.

HH29 sections were digitally captured using an Axiovert 200M

microscope (Carl Zeiss). HH35 sections were digitally captured using

an AxioScan.Z1 slide scanner (Carl Zeiss; University of York Imaging

facility). TCF21 analysis was performed on alternating HH35 sections

using ZEN 2 (blue edition; Carl Zeiss) software, by counting the cells

manually in the myocardium, epicardium and atrioventricular canal.

Twelve alternating sections from each sample, with both the epi-

cardium and the AV canal present on each section, were chosen for

further analysis. FIJI (Schindelin et al. 2012) was used to quantify the

void to area fraction (VAF) of collagen I by measuring the total area

where collagen I was absent in the fixed area and then dividing it

by the fixed area, and counting the number of cells in a region of

interest (ROI). The ROI was kept at a constant area of 0.06 mm2 for

the epicardium and 0.015 mm2 for the AV canal. The ROI width and

height changed to accommodate the size of the epicardium.

Using the fixed area polygons, an ellipse fit was carried out,

where a major and minor axis was measured in the ROI. This

allowed an axes ratio measurement to be calculated using the

major and minor axis (axes ratio = major axis/minor axis). As the

area had a fixed size of 0.06 mm2 for the epicardium above the RV

and 0.015 mm2 for the epicardium in the AV canal, any change in

the major axis would be compensated by an opposite change on

the minor axis. In that way, the thickness, but not the total area, of

the epicardium could be measured in the two different areas.

Western analysis

HH29 and HH35 snap-frozen hearts (n = 6 per treatment groups)

were lysed using lysis buffer. The tissue was homogenised by sonica-

tion. Protein concentration was determined by Bradford protein

assay (Sigma). GAPDH was used for normalisation.

The samples were run on an SDS-PAGE gel with precision plus

protein dual colour standards ladders (Bio-Rad) transferred to a

nitrocellulose membrane (Pall Corporation) and blocked using 5%

BSA. Immunoblotting was performed using primary antibodies

against TCF21 (1 : 750; sc377225; Santa Cruz), GAPDH (1 : 500;

ab9485; Abcam), N-cadherin (1 : 100; 6B3; DSHB) and E-cadherin

(1 : 25; 8C2; DSHB). The secondary antibodies used were horserad-

ish peroxidase (HRP) conjugated rabbit anti-mouse (1 : 2000; P0260;

Dako) and swine anti-rabbit (1 : 2000; P0217; Dako). Chemilumines-

cence was carried out using Amersham ECL Western Blotting Detec-

tion Reagents (GE Healthcare) and detected using photographic

film (GE Healthcare). The photographic film was electronically
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scanned in TIF format. Both studies at HH29 and HH35 were

repeated in triplicate. The analysis was carried out on FIJI using the

relative density of the pixels in each protein band, which was then

normalised against GAPDH.

RNA isolation and cDNA synthesis

Snap-frozen hearts were homogenised in TRI Reagent� (Sigma-

Aldrich), and 1-bromo-3-chloro-propane (BCP; Sigma-Aldrich) then

added. The upper aqueous phase, after centrifugation, was mixed

with 2 M pH 4 sodium acetate and isopropanol. After centrifugation,

the resulting pelletwas dissolved inRDDbufferwithDNaseI (Qiagen).

Phenol : chloroform was added and the supernatant was removed,

mixed with chloroform and centrifuged again. The supernatant was

removed and mixed with 3 M NaAc pH 5.2 and ethanol. After cen-

trifugation, the resulting pellet was dissolved in DEPC-treated H2O.

Purity of RNAwas checked usingNanoDrop 2000 (Thermo Scientific).

The cDNA synthesis was performed according to the SuperScriptTM

II Reverse Transcriptase (RT) (Invitrogen) protocol. RT-positive sam-

ples had SuperScript II RT added to them, and in RT-negative sam-

ples, SuperScript II RT was replaced with dH2O.

Primer design

All primers were designed using Primer-BLAST (Ye et al. 2012),

except for WT1, whose primers were sourced from the literature

(Ishii et al. 2007; Supporting Information Table S1). Primers

designed for in situ hybridisation (ISH) had a product size of 450–

850 bp with various melting temperatures. Primers for qPCR had a

product size of 100–230 bp and their optimal melting temperature

was 62 °C.

RT-PCR and qPCR

The cDNA for RT-PCR was amplified using the T100TM Thermal Cycler

(Bio-Rad). The PCR was run for 34 cycles. A 1-kb Plus DNA Ladder

(Invitrogen) was also added in one of the wells of each gel.

The standard curve was performed for each pair of primers to be

used for qPCR. A duplicated, six-point, 1 : 3 dilution series was used

starting from an undiluted RT+, which was diluted in water control.

In addition, one undiluted duplicate was used for RT� and one for

the water control. Relative quantification was performed with

three technical repeats for each biological sample. HH29 and HH35

hearts were used (n = 3 per treatment group, for both studies). A

water control and an RT-control were added for each gene of inter-

est tested. All primers had an R2 > 0.990 and an efficiency between

90 and 110%.

A MicroAmp� Optical 96-Well Reaction Plate (Applied Biosys-

tems) was used. The plate was sealed with optical adhesive film

(Applied Biosystems) and the readings were taken using the 7500

Fast Real-Time PCR System (Applied Biosystems). Analysis of the

readings was done using the Pfaffl method (Pfaffl, 2001). GAPDH

and TBP were used for normalisation.

Transmission electron microscopy

HH35 hearts (n = 4 per group) were harvested and fixed in 3.4%

glutaraldehyde diluted in 0.1 M cacodylate buffer at 4 °C. The

hearts were then washed with 0.1 M cacodylate buffer. Subse-

quently, the hearts were post-fixed in 1% osmium tetroxide (Agar

Scientific) diluted in 0.1 M cacodylate buffer and washed in dH2O.

The tissue was dehydrated in graded ethanol (Sigma-Aldrich) series

until it was incubated in propylene oxide (TAAB). The hearts were

infiltrated with a mixture of propanol oxide and resin 3 : 1 (propa-

nol oxide : resin) and then 1 : 1 (propanol oxide : resin). Subse-

quently, the hearts were infiltrated with resin and left to

polymerise at 60 °C.

Sectioning took place using an EM UC6 (Leica) ultramicrotome.

Samples were sectioned at a thickness of 90 nm using a diamond

knife (DiATOME, TAAB) and collected on a 3.05 mm diameter cop-

per grid (G200HH, Gilder). The sections were further stained with

50% methanolic uranyl acetate and washed briefly in 50% metha-

nol followed by dH2O. Subsequently, the sections were incubated

in Reynold’s lead citrate solution and briefly washed in dH2O. Sec-

tions were visualised using a Tecnai G2 T12 BioTwin (FEI) with an

accelerating voltage of 100 kV and a MegaView II (Olympus) cam-

era system.

Riboprobe synthesis

The GenEluteTM PCR Clean-Up (Sigma-Aldrich) kit and protocol was

used for PCR clean-up of genes of interest (GOI) fragments,

obtained by RT-PCR. After the products had been purified, their

concentration was measured with NanoDrop (Thermo Scientific).

Ligation of the GOI fragments and transformation was done using

the pGEM�-T Easy Vector Systems (Promega) kit and protocol.

For the transformation, DH5a competent cells (in-house) were

used. Colonies with the right insert were midiprepped using the

GenElute� Plasmid Midiprep (Sigma-Aldrich) kit and protocol. The

plasmid, in the eluate, had its concentration measured using Nano-

Drop (Thermo Scientific). Linearised plasmid was used as a template

to synthesise digoxigenin (DIG)-labelled RNA probes using in vitro

transcription with SP6 or T7 RNA polymerases. The reaction was set

up using Riboprobe� in vitro Transcription Systems (Promega)

reagents and protocol. Riboprobes were purified using the Probe-

Quant G-50 micro columns (Illustra) kit and protocol.

In situ hybridisation

Fixed HH24, HH26 and HH28 embryos (n = 8 per treatment group)

were dehydrated in increasing concentrations of methanol (MeOH).

The processed embryos were stored at �20 °C for a maximum per-

iod of 2 weeks. Embryos were hydrated in decreasing concentra-

tions of methanol. The embryos treated with Proteinase K, refixed

in 4% PFA and treated with 75% post-hybridisation buffer followed

by pre-hybridisation buffer. The ISH probes WT1 and TCF21 were

added to the Prehybridization solution in a concentration of

530 ng ll�1 and left for 24 h at 65 °C.

After hybridisation, the embryos were washed with decreasing

saline-sodium citrate (SSC), followed by RNase treatment and block-

ing by 2% Boehringer blocking reagent (Roche) with 20% sheep

serum (Sigma). Finally, embryos were incubated with anti-digoxi-

genin antibody (1 : 5000; Roche) and colour development was car-

ried out with 50% BM purple (Roche). The embryos were

photographed in 100% glycerol using a Stemi SV 11 stereomicro-

scope (Carl Zeiss).

Statistics

Statistics were carried using the statistical language R and its pack-

ages R commander (Fox, 2005), unless stated otherwise. GrapheR

(Herv�e, 2011) was used for the generation of most graphs; all the
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other graphs were generated in EXCEL. The assumption of normality

was tested using a Shapiro–Wilk normality test. The assumption of

variance was also tested using a Levene’s test for homogeneity of

variance. All statistical tests were two-tailed and had a cut-off value

of P < 0.05.

For qPCR, statistical analysis was done in REST (software; Pfaffl,

2002). A t-test was used for the apoptosis and proliferation

study, the internal phenotypic analysis and the protein expression

in immunoblots. For the ROIs on the collagen 1 sections, a t-test

was used for the axes ratios but a Hotelling’s T2 for the number

of cells and the VAF. A two-sample Wilcoxon test was used

instead of a t-test when the data were not normally distributed.

A two-way ANOVA was used to assess statistical significance of the

number of TCF21+ cells in the different compartments of the

heart. For two-way ANOVA, the assumption of variance was tested

in the interaction of the dependent variable with the treatment

and the different regions, using a Levene’s test for homogeneity

of variance. The Tukey test was used as the chosen post-hoc test

after the two-way ANOVA analysis.

Results

The epicardium of OFT-banded hearts has an

aberrant morphology at HH29

HH21 chicken embryos had their OFT banded by making a

ligature around it, thus constricting blood flow. The chicks

were reincubated up to the required stage for analysis. An

impaired epicardial development was found in the OFT-

banded embryos. Increased epicardial volume could be seen

in whole OFT-banded hearts (Fig. 1Ab,Bb) in comparison

with controls (Fig. 1Aa,Ba), as well as blebbing of the epicar-

dial surface (n = 10/23) at HH29 (Fig. 2Ab’,Bb) in comparison

with controls (Fig. 2Aa’,Ba). No fistulae were observed

between the ventricular lumen and the epicardium. To per-

form accurate quantification of structural features within

the heart, stereology was performed (n = 6 for sham, n = 7

for OFT-banded hearts). Each point at which the grid hit the

epicardium was counted. For the sham and OFT-banded

hearts, a total of 4437 and 7868 points were counted,

respectively. The epicardiumwas found to have an increased

volume (total epicardial area divided by total heart area) of

60.1% in the OFT-banded hearts (sham 11.3 � 1.18%, OFT-

banded 18.15 � 2.02%; P = 0.02; Fig. 1C). This was in line

with the increased epicardial volume phenotype found in

the external morphological assessments (Fig. 2Ab,Bb).

Normal epicardial cell migration was found upon

OFT-banding

As an aberrant epicardial phenotype was fully manifested

at HH29, previous stages were selected for screening. The

developmental stages chosen were HH24 (early stage of epi-

cardial cell migration over ventricles), HH26 (epicardial for-

mation is still active but now over the atrial region) and

HH28 (epicardium formation is complete and cells migrate

in the myocardium; M€anner, 1999). Sixteen embryos were

harvested for each developmental stage (n = 8 per treat-

ment group). The sense control for the ISH experiments can

be found in Fig. S1.

The morphology of the heart was very similar between

sham and OFT-banded hearts at HH24 and HH26, with no

noticeable differences in the outer morphology of the ven-

tricles and atria (Fig. 2A,B). In contrast, in HH28 OFT-banded

hearts, the OFT was not properly aligned and wedged

between the atria as in controls, with the OFT appearing to

be shifted right (Fig. 2A,B). There was no apparent differ-

ence between OFT-banded and control hearts in the expres-

sion of the epicardial markers TCF21 (Fig. 2A) and WT1

(Fig. 2B) in the epicardium itself.WT1 expression (Fig. 2B) at

HH24 and HH26 was lower compared with TCF21 (Fig. 2A).

At HH28, WT1 had a strong expression around the ventricles

and atria (Fig. 2B). TCF21 had the strongest gene expression;

its expression increased as development progressed and it

was remarkably strong at HH28 (Fig. 2A).

Hearts at HH29 and HH35 had abnormal expression

of ECM-related genes

A literature review was done to select genes that were

found to be important in epicardial development (SMAD2,

WT1), migration (SNAI1, SNAI2) and ECM structure (DDR2,

COL1A2, COL12A1). The qPCR was performed at HH29 and

HH35 hearts (n = 3 per treatment group for both stages) on

genes of interest. At HH29 (Fig. 3Aa,b), the genes DDR2

and COL12A1 were found to be significantly upregulated.

SNAI1, SNAI2, SMAD2, COL1A2 and WT1 showed no signifi-

cant difference (Fig. 3Aa,b). At HH35 (Fig. 3Ba,b), from the

seven genes analysed by qPCR, COL1A2 was significantly

downregulated, DDR2 and COL12A1 were upregulated and

four of the genes showed no change (SNAI1, SNAI2, WT1

and SMAD2).

Hearts at HH29 had a normal collagen I morphology

and epicardial thickness

To determine the epicardial thickness and phenotypically

analyse the structure of the epicardium, HH29 heart (n = 4

per treatment group) sections were stained for collagen I

and counterstained with DAPI to allow for quantification of

collagen I area and cells (Fig. 4A). Three dependent vari-

ables were used for statistical analysis in each area, the axes

ratio (Fig. 4B), the VAF (Fig. 4C) and the number of cells in

the epicardium (Fig. 4D).

For the epicardial area above the AV canal (control in

Fig. 4Ac,c’ in comparison with OFT-banded in Fig. 4Af,f’),

the number of cells and VAF were normally distributed. The

number of cells and VAF also had equal variances. The

Hotelling’s T2-test showed no significant difference

between the two treatment groups (T2 = 2.339, F = 3.118,

df = 3, P = 0.150; Fig. 4B,C). For the epicardial area above

the right ventricle (control in Fig. 4Ac,c” in comparison with

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Fig. 1 Abnormal phenotype seen in HH29 OFT-banded hearts. (A) Controls (a,a’) displayed a normal external phenotype with an epicardium of

normal size with no ruffles or blebbing (denoted by white arrow). The OFT-banded hearts (b,b’) exhibited an enlarged epicardium with ruffles on

the epicardial surface and blebbing (red arrows). Scale bars: 1 mm (a,b), 0.5 mm (a’,b’). (B) In controls (a), the interventricular septum which

grows in a superior direction has fused with the cushion in the control embryos. However, this fusion failed to occur in the OFT-banded hearts (b),

which led to a formation of an opening (asterisk) and thus a communication between the ventricles (a ventricular septal defect). An aberrant epi-

cardium can also be seen in the OFT-banded hearts (arrows). Scale bars: 1000 lm (a,b). (C) An enlarged epicardial volume was found in OFT-

banded (OFT) hearts in comparison with shams (control). Significant differences are indicated: *P < 0.05. Error bars indicate SEM. LA, left atrium;

LV, left ventricle; RA, right atrium; RV, right ventricle.

Fig. 2 Epicardial markers were not differentially expressed in OFT-banded hearts. (A) The expression of TCF21 around the heart region at HH24,

HH26 and HH28 and a representative whole embryo at HH26. Scale bars: 2 mm. (B) The expression of WT1 around the heart region at HH24,

HH26 and HH28 and a representative whole embryo at HH26. Scale bars: 2 mm. Hd, head; Ht, heart; LA, left atrium; LL, lower limb; LV, left ven-

tricle; OFT, outflow tract; RA, right atrium; RV, right ventricle; UL, upper limb.
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OFT-banded in Fig. 4Af,f”), the number of cells and VAF

were normally distributed. The number of cells and VAF

also had equal variances. The Hotelling’s T2-test showed no

significant difference between the two treatment groups

(T2 = 2.191, F = 2.921, df = 3, P = 0.164; Fig. 4B,C). Apopto-

sis and proliferation was also normal in OFT-banded hearts

(Supporting Information Fig. S2).

In the epicardial area above the right ventricle, the axes

ratio had a normal distribution and a homogeneous vari-

ance. There was no significant difference (t = �0.176,

df = 6, P = 0.866; Fig. 4D) between OFT-banded hearts

(Fig. 4Af,f”) and shams (Fig. 4Ac,c’’). In the epicardial area

around the AV canal, the axes ratio had a normal distribu-

tion but a significant difference in variance. There was no

significant difference (t = �1.261, df = 4.274, P = 0.272;

Fig. 4D) between the OFT-banded hearts (Fig. 4Af,f’) and

comparison shams (Fig. 4Ac,c’).

OFT-banded hearts at HH35 had an abnormal

collagen I morphology and epicardial thickness

To determine whether the epicardial phenotype develops

in older hearts, HH35 hearts (n = 3 per treatment group)

were stained for collagen I and counterstained with

DAPI (Fig. 5A). The epicardial morphology of HH35

hearts (n = 4 per treatment group) was also further

examined using transmission electron microscopy (TEM;

Fig. 5B). Three dependent variables were used for statis-

tical analysis in each area: the axes ratio (Fig. 5C,D), the

VAF (Fig. 5E) and the number of cells in the epicardium

(Fig. 5F).

For the epicardial area in the AV canal (control in

Fig. 5Ac,c’ in comparison with OFT-banded in Fig. 5Af,f’),

the number of cells and VAF were normally distributed. The

number of cells and VAF also had equal variances. The

Hotelling’s T2 test showed no significant difference

between the two treatment groups (T2 = 111.751,

F = 27.938, df = 4, P = 0.141; Fig. 5E,F). For the epicardial

area above the right ventricle (Fig. 5Ac,c” in comparison

with Fig. 5Af,f”), the number of cells and VAF were nor-

mally distributed. The number of cells and VAF also had

equal variances. The Hotelling’s T2 test showed no signifi-

cant difference between the two treatment groups

(T2 = 6.075, F = 1.519, df = 4, P = 0.537; Fig. 5E,F). How-

ever, the collagen I morphology of the epicardium, above

the right ventricle (Fig. 5Af,f’’), was found to have a thicker

fibres running along the myocardium. Upon further exami-

nation, the collagen I fibres in OFT-banded hearts were

found to be closer together (Fig. 5Af,f”), whereas the colla-

gen fibres in shams were spaced normally (Fig. 5Ac,c”). Fur-

ther examination using TEM revealed that the ECM fibres

of OFT-banded hearts were stretched anterior to posterior,

parallel to the ventricular myocardium (Fig. 5Bb); in com-

parison, shams had relaxed ECM fibres (Fig. 5Ba).

Fig. 3 Altered expression of ECM-related genes in OFT-banded hearts. (A) Relative expression of genes analysed at HH29. In fold change (a), black

error bars denote SEM of OFT-banded heart gene expression, and the red error bars denote SEM of shams. The same data are also presented in

log2 fold change (b). Significant differences: **P < 0.01; ***P < 0.001. (B) Relative expression of genes analysed at HH35. In fold change (a), black

error bars denote SEM of OFT-banded heart gene expression, whereas the red error bars denote SEM of shams. The same data are also presented

in log2 fold change (b). Significant differences: **P < 0.01; ***P < 0.001.
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In the epicardial area above the right ventricle, the axes

ratio had a normal distribution and homogeneous variance.

The OFT-banded hearts had a significantly higher axes ratio

(t = 3.528, df = 4, P = 0.024; Fig. 5Ca) in comparison with

shams, denoting a thinner and wider epicardial area

(Fig. 5Cb,Cc,D). In the epicardial area around the AV canal,

the axes ratio had a normal distribution and homogeneous

variance. There was no significant difference (t = �0.807,

df = 4, P = 0.465) between the OFT-banded hearts and

shams (Fig. 5C,D).

Upon closer inspection of the major and minor axes, it

can be seen that the OFT-banded hearts’ epicardium

above the right ventricle had a longer major axis

(Fig. 5Cb) but a shorter minor axis (Fig. 5Cc). It was

expected that the major and minor axis would have a

negative linear relationship, as the area of the polygon

has a fixed size. The fact that their relationship was not

linear denotes changes in curvature (Fig. 5Da). The

changes in the morphology of the area did not follow

any kind of direction on the z plane (e.g. getting smaller

or bigger) and were variable through the different sec-

tions of the same biological repeat.

Hearts at HH35 had a reduced amount of TCF21

protein

To further elucidate epicardial epithelium integrity and

migration as well as fibroblast development, Western analy-

sis was performed on HH29 and HH35 hearts (n = 6 per

treatment group for both stages). The relative protein

expression levels of N-cadherin and E-cadherin, markers of

migration of the epicardial epithelium, along with the epi-

cardial/fibroblast marker TCF21 were measured.

For the HH29 hearts, N-cadherin and TCF21 were normally

distributed, whereas E-cadherin was not. The assumption of

variance was only tested on normally distributed dependent

variables. Both N-cadherin and TCF21 had equal variances.

The cell adhesion molecules N-cadherin (t = 0.511, df = 10,

P = 0.620) and E-cadherin (W = 12, P = 0.393) showed no

significant difference (Fig. 6Aa,b). The transcription factor
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Fig. 4 Normal collagen I expression, morphology and cell counts in HH29 hearts. (A) Hearts were stained for DAPI (b,e) and collagen I (c,f, boxes

c’,c”,f’,f”). The region of interest chosen for the statistical analysis is denoted by the yellow boxes (a’,a”,d’,d”) in composite images (a,d). Collagen

I morphology can be seen in detail around the atrioventricular (AV) canal (c’,f’) and above the right ventricle (c”,f”). RV, right ventricle. Scale bar:

200 lm (b–f). Scale bars: 50 lm (c’,c”, f’,f”). (B) There was no significant difference in the axes ratio of AV canal and right ventricle epicardium

(EPI) region. Error bars denote SEM. (C) There was no significant difference in the void ratio of the AV canal and right ventricle epicardium region

(EPI) (collagen I area/total area*100). Error bars denote SEM. (D) There was no significant difference in the cell counts of the AV canal and right

ventricle epicardium region (EPI). Error bars denote SEM.
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and epicardial marker TCF21 (t = 0.506, df = 10, P = 0.624)

also showed no significant difference (Fig. 6Aa,b).

For the HH35 hearts, N-cadherin, TCF21 and E-cadherin

were normally distributed. N-cadherin, E-cadherin and

TCF21 also had equal variances. The cell adhesion molecules

N-cadherin (t = 0.161, df = 10, P = 0.875) and E-cadherin

(t = 0.043, df = 10, P = 0.966) showed no significant differ-

ence (Fig. 6Ba,b). The transcription factor TCF21

(t = �6.374, df = 10, P < 0.0001) showed a significant dif-

ference (Fig. 6Ba,b).

HH35 OFT-banded hearts have a normal number of

TCF21+ cells

The low protein expression of TCF21 together with the dif-

ferential expression of collagens by qPCR led to a further
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Fig. 5 Aberrant collagen I morphology in HH35 OFT-banded hearts. (A) Hearts were stained for DAPI (b,e) and collagen I (c,f, boxes c’,c”,f’,f”).

The region of interest chosen for the statistical analysis is denoted by the yellow boxes (a’,a”,d’,d”) in composite images (a,d). Collagen I morphol-

ogy can be seen in detail around the atrioventricular (AV) canal (c’,f’) and above the right ventricle (c”,f”). OFT-banded hearts had a thinner epi-

cardium in comparison with shams (double arrows). RA, right atrium; RV, right ventricle. Scale bars: 200 lm (a,b,c,d,e,f), 50 lm (c’,c”,f’,f”). (B)

Transmission electron microscopy images of the ventricular epicardium in sham (a) and OFT-banded (b) hearts. OFT-banded hearts had more tense

ECM fibres in comparison with shams (arrows). Scale bars: 10 000 nm (a,b). (C) There was a significant difference in the right ventricle epicardium

(EPI) region, but not the AV canal, in the axes ratio (a) between sham and OFT-banded hearts; the OFT-banded hearts had a higher major axis (b)

and a lower minor axis (c). Significant differences: *P < 0.05. Error bars denote SEM. (D) The graph shows the major to minor axis of the epicardial

region above the right ventricle (a) and the AV canal (b). Orange, sham controls; blue, OFT-banded. (E) There was no significant difference in void

ratio between the AV canal and right ventricle epicardium (EPI) region (collagen I area/total area*100). Error bars denote SEM. (F) There was no

significant difference in the cell counts in the AV canal and right ventricle epicardium (EPI) region. Error bars denote SEM.
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investigation of the phenotype, as TCF21 is also a marker of

cells destined to become fibroblasts. Six HH35 hearts (n = 3

per treatment group) were used for fluorescent immunohis-

tochemistry with anti-TCF21 and anti-collagen I antibodies,

and counter-staining with DAPI (Fig. 7A). The average num-

ber of TCF21+ cells was counted in four regions: AV canal,

epicardium, ventricles and atria (Fig. 7B).

The average number of TCF21+ cells (W = 0.949,

P = 0.252) was normally distributed. The average number

of TCF21+ cells (F(df) = 0.538(7,16), P = 0.794) had an equal

variance. There was no significant difference between the

two treatments (F(1,16) = 0.071, P = 0.794) or the interaction

between the treatment and the different regions

(F(3,16) = 0.571, P = 0.642), but there was a significant differ-

ence between the four regions (F(3,16) = 28.239, P < 0.0001).

It was expected that different regions would have differ-

ent amounts of TCF21+ cells (Fig. 7B) due to differences in

region sizes and the permissiveness of epicardial migration.

The epicardium had significantly more TCF21+ cells in com-

parison with the atria (P < 0.0001), AV canal (P < 0.0001)

and ventricles (P = 0.009). The ventricles were the only

other tissue to have significantly more TCF21+ cells and this

was in comparison with the atria (P = 0.001). The number

of TCF21+ cells also had a negative linear relationship with

the VAF, denoting that an increased number of TCF21+ cells

meant more collagen I in the immediate area (Supporting

Information Fig. S3).

Discussion

Within the literature, OFT-banding is predominately per-

formed between stages HH18 to HH21 (Sedmera et al.

1999; Midgett et al. 2014; Stovall et al. 2016). The ligature

around the OFT causes a number of mechanistic effects at

the OFT and within the heart, even before any major struc-

tural or genetic changes are evident. The changes seen in

the OFT-banded heart cannot be due only to the physical

restriction imposed by the ligature, as the tissues above and

below the band exhibit different mechanical aberrations.

These mechanical responses can be observed in a matter of

hours, while the embryo is still at the same HH stage, show-

ing the adaptability of the heart (Tobita et al. 2002; Shi

et al. 2013; Stovall et al. 2016). Although the motion of the

ventricular wall was found to be identical between OFT-

banded and control embryos at HH18, the motion in the

region of the OFT wall undergoes faster expansion and con-

traction movements, rather than the peristaltic-like move-

ments seen in controls (Stovall et al. 2016). Blood pressure,

wall shear stress and pulse wave velocity (the speed of the

arterial pulse in the cardiovascular system) were also found

to increase in the outflow region of HH18 OFT-banded

embryos (Shi et al. 2013). In the ventricle of HH18 and

HH21 OFT-banded hearts, there was an increase in end-dia-

stolic blood pressure and pressure amplitude (Tobita et al.

2002; Shi et al. 2013).

Fig. 6 OFT-banding reduced TCF21 protein at HH35. (A) Protein expression of E-cadherin, N-cadherin and TCF21 normalised to GAPDH for HH29.

Intensity measurements of the bands on immunoblot (a) showed no significant difference between OFT-banded and sham hearts (b). Error bars

denote SEM. (B) Protein expression of E-cadherin, N-cadherin and TCF21 normalised to GAPDH for HH35. Intensity measurements of the bands on

immunoblot (a) showed a significant difference between OFT-banded and sham hearts (b) regarding TCF21. Significant difference:

****P < 0.0001. Error bars denote SEM.
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In addition to the epicardium, studies have shown that a

second epicardial population exists, called the arterial epi-

cardium, which only covers the distal part of the OFT (Git-

tenberger-de Groot et al. 2000; P�erez-Pomares et al. 2003).

The arterial epicardium originates from the pericardial coe-

lom and the two epicardial populations do not make con-

tact with each other until HH26 (P�erez-Pomares et al. 2003).

Although the arterial epicardium does not seem to make

any contributions to the development of the heart, it might

have a regulatory role in OFT development due to its posi-

tion above the distal portion of the OFT (P�erez-Pomares

et al. 2003). Since the ligature, which resulted from the

OFT-banding procedure, is located closed to the proximal

OFT, it does not affect the spreading of the two epicardial

populations up to HH26. After HH26, there is the possibility

that it acts as a barrier to the spreading of the arterial epi-

cardium. As the arterial epicardium was shown to have a

quiescent phenotype (P�erez-Pomares et al. 2003), its effects

on the architecture of the epicardium along the surface of

the heart are considered negligible. Another point of

potential interest is previous studies showing that a heart-

beat is required for epicardial migration (Plavicki et al.

2014). OFT models have shown an average heart rate similar

to that of controls (Menon et al. 2015), thus heartbeat was

also considered to have a negligible effect in epicardial

migration.

Since the epicardium is a highly heterogeneous popula-

tion, no epicardial-specific genes have been discovered (Git-

tenberger-de Groot et al. 2012). Although WT1 and TCF21

have been used as the main epicardial markers, epicardial

cells may not express both of them (Braitsch & Yutzey,

2013). In addition, these markers are not epicardial-specific,

as TCF21 is also expressed in the allantois (Soulet et al.

2010) and WT1 in the liver (Ishii et al. 2007). Although each

of the main epicardial markers is by itself deemed ineffi-

cient for tracking all the epicardial cells, in this paper, WT1

and TCF21 were used at the same stages, using ISH, to get a

clear picture of epicardial migration. At HH24, all the mark-

ers showed some weak expression over the heart but strong

expression on the venous proepicardial organ, below the

heart’s apex, and the arterial PEO, on distal part of the OFT.

Both PEOs are still present even after formation of their

respective epicardial populations in the early embryo (Git-

tenberger-de Groot et al. 2012).

The genes SNAI1, SNAI2, WT1, COL1A2, COL12A1, DDR2

and SMAD2 were chosen as genes of interest to further

analyse quantitatively. WT1 is known to affect migration of

epicardial cells through the gene SNAI2 (Takeichi et al.

2013). SNAI1 promotes EMT together with SNAI2 (Medici

et al. 2008). COL1A2 (collagen I) is a major structural colla-

gen, which primarily, though not exclusively, comes from

epicardium-derived cardiac fibroblast cells (Acharya et al.

2012). COL12A1 (collagen XII) is a type of fibril associated

collagen with interrupted triple helices. Collagen XII was

found to be expressed in the epicardium of zebrafish

(Marro et al. 2016) and binds to collagen I, changing its

biomechanical properties (Koch, 1995). COL12A1 expression

also changes based on tensile stress (Fl€uck et al. 2003), with

the stressed state leading to expansion. DDR2 is a mem-

brane receptor found in a number of cells but data suggest

that in the heart it is found on cardiac fibroblasts (Morales

et al. 2005). DDR2 expression can impact collagen deposi-

tion and fibrillogenesis (Cowling et al. 2014). SMAD2 is one

of the mediators of transforming growth factor b (TGFb)

signalling and it is responsible for inducing gene transcrip-

tion (Nakao, 1997). TGFb is important for the epicardium as

it promotes EMT (Craig et al. 2010).

At HH29, there was upregulation of COL12A1, suggesting

that the heart is under tensile stress, possibly due to the

increased blood pressure in the ventricles. In addition, the

upregulation of DDR2 at HH29 can signal the start of

altered collagen deposition in the OFT-banded hearts and
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Fig. 7 Numbers of TCF21+ cells are unaltered in HH35 hearts. (A) Hearts stained for DAPI (a,e), TCF21 (b,f) and collagen I (c,g). A composite can

also be seen (d,h). Zoomed sections (a’,b’,d’,e’,f’,h’) show TCF21+ cells (arrows) as well as their collagen I surroundings (c’,g’). Scale bars: 1 mm

(a,b-h), 100 lm (a’,b’–h’). (B) No significant difference was found concerning the numbers of TCF21+ cells in the different heart regions between

sham and OFT-banded hearts. Error bars denote SEM. AV, atrioventricular.
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points to a signalling cascade where DDR2 will bind to the

altered collagen and further change the molecular sig-

nalling within the fibroblasts. At HH35, the further increase

in expression of COL12A1 and DDR2, as seen by qPCR, sug-

gests a change in ECM composition and tissue remodelling

under stress. The downregulation of COL1A2, at HH35, also

suggests ECM remodelling.

The adhesion proteins N- and E-cadherin are expressed in

the cells of the epicardial epithelium (Mart�ınez-Estrada

et al. 2010; Wu et al. 2010). An immunoblot was favoured

over qPCR for the quantification of E- and N-cadherin, to

allow for the visualisation of any cleavage products (Ferber

et al. 2008; Wheelock et al. 2008). In addition, TCF21

expression was also assessed as the only transcription factor

in the epicardium with a very clearly defined role; the speci-

fication of fibroblast cells (Acharya et al. 2012). Whole

uncleaved N- and E-cadherin protein bands were easily visi-

ble in the immunoblot with no significant difference

between HH29 sham and OFT-banded hearts. TCF21 also

showed a clear band with no significant difference

between sham and OFT-banded hearts at HH29. However,

at HH35, TCF21 expression was found to be downregulated

in OFT-banded hearts. Downregulation of TCF21 was previ-

ously associated with downregulation of collagen I expres-

sion (Acharya et al. 2012).

The number of epicardial cells also showed no significant

difference between HH29 or HH35 sham and OFT-banded

hearts. These findings, together with the qPCR data show-

ing no difference in the expression of epicardial migration

markers SNAI1 and SNAI2 at both HH29 and HH35, suggest

that epicardial migration in OFT-banded hearts is normal.

This is supported by normal expression of the epicardial

markers WT1 and TCF21 over the surface of the heart dur-

ing epicardial migration. The apoptosis and proliferation

ratio was also not significantly different between sham and

OFT-banded hearts at HH29 (Supporting Information

Fig. S2).

The polygons, which were used to define the affixed area

at HH29 and HH35, were characterised using an ellipse fit.

The ellipse fit measurements give a minor and major axis.

The minor axis is always the shortest one and the major

always the longest. Using the axes ratio, it is possible to

measure by what approximation the shape resembles a per-

fect square. A perfect square is expected to have an axes

ratio of 1; any deviation from 1 suggests that the shape is

more elongated in one axis than the other, resulting in an

elongated rectangle. Further, to quantify the total amount

of collagen I in the epicardium of OFT-banded and control

hearts, the void area fraction (VAF) was determined.

Although collagen I expression was not found to be signifi-

cantly different in OFT-banded hearts at HH29, the collagen

I phenotype was still examined, as an aberrant expression

of other ECM factors could cause a deformation of collagen

I fibres. Collagen I in the epicardium of HH29 OFT-banded

hearts was found to have a normal patterning similar to

shams and the epicardial thickness was found to be similar,

at least in the right side of the heart. Although migration,

cell number and collagen I morphology were found normal

in HH29-banded hearts, the change in the epicardial mor-

phology could be explained by transudation of extravascu-

lar fluid from the early heart vessels coming from the sinus

venosus (Poelmann et al. 1993). The extravascular fluid

being pooled in the epicardium could be due to increased

hydrostatic pressure in the ventricles, a well known effect

of OFT-banding (Clark et al. 1989).

HH35 OFT-banded hearts had a higher axes ratio, in com-

parison with shams, meaning that the epicardium of

banded hearts is more elongated along the surface of the

heart and thinner. VAF analysis at HH35 showed that the

amount of collagen I was unaffected in OFT-banded hearts.

However, a phenotypic difference could be seen in the

arrangement of collagen I fibres in the epicardium. The col-

lagen I fibres appeared thicker due to the epicardium being

thinner, forcing the collagen fibres to group together. This

ECM maturation phenotype is quite interesting, as the colla-

gen I morphology was normal in HH29-banded hearts. The

maturation could be due to increased stiffness and stress in

the hearts, as the COL12A1 expression indicates. In addition,

epicardial-derived fibroblast cells, which appear in later

stages of development (Acharya et al. 2012), could be mak-

ing a greater contribution in the remodelling of the ECM at

HH35. A caveat in this type of study is that the total area of

the epicardium is not measured at HH35, so a higher axes

ratio does not necessarily mean a smaller or larger total epi-

cardial area. The change in the axes ratio explains the colla-

gen I phenotype, as the same amount of collagen possibly

exists in both treatments but is pressed together in the epi-

cardium, giving it a thicker appearance. In conclusion, the

epicardium at HH35 is thinner over the ventricles due to the

expansion of the underlying myocardium, causing the epi-

cardium to stretch and also to respond with an opposing

force, compressing the epithelium against the myocardial

surface.

The average number of TCF21+ cells was the same

between OFT-banded and sham hearts, which suggests that

the downregulation of TCF21 did not affect the number of

TCF21+ cells but was due to a lower expression of TCF21 in

each cell. In addition, there was a positive correlation

between the number of TCF21+ cells and the amount of col-

lagen I. There was less void area with increased number of

TCF21+ cells at HH35, indicating that the TCF21+ cells had a

fibroblast fate (Fig. S3).

It is now known that a number of factors affect EPDC dif-

ferentiation and migration. In addition, there is a signalling

cross-talk between the endocardium, myocardium and epi-

cardium, where changes in one tissue can affect the devel-

opment of the neighbouring layers (Lavine et al. 2005).

Many of these factors have yet to be teased apart, especially

the ones affecting epicardial-derived fibroblasts (Morabito

et al. 2001). Fibroblast growth factors (FGFs) are the main
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family of signalling molecules that are expressed by the

developing myocardium and affecting epicardial EMT

(Morabito et al. 2001; Vega-Hernandez et al. 2011). FGF1, 2

and 7, in birds, were found to promote general epicardial

EMT (Morabito et al. 2001) and FGF10, in mice, was found

to have the ability to promote the migration of epicardial

fibroblasts into the compact myocardium (Vega-Hernandez

et al. 2011). In addition, FGF9, 16 and 20 are expressed by

the endocardium and epicardium, and are indispensable for

normal proliferation and differentiation of epicardial cells

(Lavine et al. 2005).

As the number of TCF21+ cells found in this study was

unaltered, as well as the total number of epicardial cells,

the role of FGF signalling in the epicardium, after OFT-

banding, is harder to elucidate. It is possible that an altered

myocardial signalling cascade created the change in the epi-

cardial architecture; however, we postulate that the thin-

ning of the epicardium is due to mechanical reasons. It is

well known that the ventricular area of OFT-banded hearts

is enlarged (Clark et al. 1989; Tomanek, 1999); this enlarge-

ment can result in stretching of the epicardial epithelium,

adding pressure against the developing epicardium, and

resulting in an equilibrium with a force perpendicular to

the epicardial epithelium. The mechanistic effect does not

exclude any further signalling cascades that could poten-

tially further alter the epicardial architecture.

During myocardial infarction (MI) in the adult, the quies-

cent epicardium is activated and increases the expression of

epicardial markers, including WT1, resulting in the migra-

tion of epicardial cells and differentiation of EPDC into

fibroblasts and smooth muscle cells (Smart & Riley, 2012;

van Wijk et al. 2012). In comparison with OFT-banding, the

expression of the epicardial markers WT1 was normal at

HH29 and HH35, whereas, although TCF21 expression was

normal at HH29, it was decreased at HH35. Interestingly,

MI models result in an increased differentiation of EPDC

cells into fibroblasts; in contrast, the OFT-banded model

showed no change in the number of potential fibroblast

cells (Zhou et al. 2011; van Wijk et al. 2012). A number of

ECM proteins are upregulated after MI, including collagen

I (Zhou et al. 2011); no upregulation of collagen I was seen

in the OFT-banded model and although the number of

TCF21+ cells remained the same, there was an increased

expression of the fibroblast marker DDR2 and of collagen

XII.

In conclusion, the abnormal epicardium morphology seen

in OFT-banded hearts is not caused by aberrant migration

or cell proliferation and apoptosis but by mechanical

changes in the ECM due to the change in haemodynamics.

Epicardial cells respond to the mechanical changes, mainly

tension, by altering the expression of a number of genes

that are tied to the ECM. The upregulation of collagen XII

and DDR2 increases from HH29 to HH35, denoting a pheno-

type that progresses through development. By HH35, colla-

gen I and TCF21 are downregulated and the ECM

architecture shows a severe phenotype. These changes

denote how a mechanical change in blood flow can cause a

cascade of gene signalling in the epicardium, which is

shown to affect collagen production and deposition in the

epicardium.
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