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ABSTRACT 13 

Southern Annular Mode (SAM) is the primary mode of atmospheric variability in the 14 

Southern Hemisphere. While it is well established that the current anthropogenic-driven trend 15 

in SAM is responsible for decreased rainfall in southern Australia, its role in driving fire 16 

regimes in this region has not been explored.  We examined the connection between fire 17 

activity and SAM in southwest Tasmania, which lies in the latitudinal band of strongest 18 

correlation between SAM and rainfall in the Southern Hemisphere. We reveal that fire 19 

activity during a fire season is significantly correlated with the phase of SAM in the 20 

preceding year using Superposed Epoch Analysis.  We then synthesised new 14 charcoal 21 

records from southwest Tasmania spanning the last 1000 years, revealing a tight coupling 22 

between fire activity and SAM at centennial timescales, observing a multi-century increase in 23 

fire activity over the last 500 years and a spike in fire activity in the 21st century in response 24 

to natural and anthropogenic SAM trends.  25 

26 
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INTRODUCTION 27 

[1] Fire a key Earth System Process, driving global ecosystem patterns and processes, 28 

determining global vegetation distribution [Bond et al., 2005], modulating the carbon cycle 29 

[Liu et al., 2015] and influencing the climate system [Bowman et al., 2009]. Despite the clear 30 

importance of fire, the drivers of fire activity through time are poorly understood in many 31 

regions on Earth. A case-in-point is the range of explanations invoked to account for the 32 

increase in fire activity in temperate forest ecosystems across the globe over recent decades 33 

[Holz and Veblen, 2011; Meyn et al., 2007; Parisien and Moritz, 2009, Moritz et al., 2012], 34 

which include climate change, human ignitions, land-use change and/or altered vegetation 35 

structure and patterns [McWethy et al., 2013]. Fire activity over the last few centuries in the 36 

temperate forests of Patagonia, for example, has recently been linked to hydro-climatic 37 

variability associated with the Southern Annular Mode (SAM) [Holz and Veblen, 2011].  38 

SAM is the leading mode of Southern Hemisphere climatic variability [Fogt et al., 2009], 39 

prompting the question of whether the relationship between SAM and fire in temperate 40 

Patagonia holds across the entire Southern Hemisphere or whether it is a more localized 41 

southern South American phenomenon. In this paper, we (1) explore the relationship between 42 

SAM and fire occurrence in southwest Tasmania, Australia, a temperate region in which 43 

rainfall and temperature variability are controlled by SAM; and (2) test whether the persistent 44 

trend toward a positive SAM state over the last 500 years, particularly over the 21st century 45 

[Abram et al., 2014] has influenced fire activity in this temperate region. 46 

 47 

[2] SAM describes the north–south movement of the Southern Westerly Wind belt (SWW), a 48 

zonally symmetric climate feature that encircles Antarctica and which controls rainfall and 49 

temperature variability across the extra-tropics of the entire Southern Hemisphere [Garreaud, 50 

2007; Gillett et al., 2006; Hill et al., 2009].  In the positive phase of SAM, the SWW contract 51 
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poleward facilitating the development of high pressure systems over southern Australia and 52 

Tasmania, resulting in a decrease in rainfall. Conversely, the negative phase of SAM sees an 53 

expansion of SWW towards the equator, bringing low pressure systems and their associated 54 

storm tracks over Southern Australia and Tasmania, resulting in increased rainfall [Fogt et 55 

al., 2009; Garreaud et al., 2009; Hill et al., 2009; Risbey et al., 2009; Abram et al., 2014] 56 

(Figure 1). Inter-annual positive anomalies of SAM are associated with higher temperatures 57 

and lower precipitation across the Southern Hemisphere [Gillett et al., 2006; Hendon et al., 58 

2007; Hill et al., 2009]. Importantly, the last ~60 years is characterised by a trend toward 59 

extreme positive SAM in response to ozone depletion [Thompson and Solomon, 2002; 60 

Marshall, 2003; Perlwitz et al., 2008] that is associated with warmer and drier conditions 61 

across the southern extra-tropics [Smith and Reynolds, 2005; Fogt et al., 2009]. Moreover, 62 

this trend is embedded within a longer centennial-scale trend toward positive SAM occurring 63 

over the last 500 years [Abram et al., 2014] and it is unknown what, if any, impact this has 64 

had over Southern Hemisphere fire activity. 65 

 66 

[3] Fire occurrence and spread is determined by the confluence of sufficient fuel, an ignition 67 

source and suitable weather: the fire-triangle [Krawchuk et al., 2009]. In areas of high 68 

biomass (read: abundant fuel), such as southwest Tasmania, fire occurrence through time is 69 

modulated by fuel moisture (i.e. climate) and ignitions (lightning and humans) [Cochrane, 70 

2003; Pausas & Ribeiro, 2013; Bradstock, 2010; McWethy et al., 2013]. Humans have 71 

actively used fire to modify the Tasmanian environment for more than 40,000 years 72 

[Cosgrove, 1999; Fletcher and Thomas, 2010; Jones, 1969] and, along with lightning strike 73 

(which account for less than 0.1% of ignitions [Bowman and Brown, 1986], the constant 74 

source of ignition in this landscape effectively isolates climate variability as the principal 75 

factor modulating the occurrence of fire through time. Fires in Tasmania are driven by 76 



5 

 

seasonal, inter-annual and decadal variations in temperature and rainfall: i.e. fires occur in 77 

response to hot and dry conditions [Nicholls & Lucas, 2007]. Rainfall in southwest Tasmania 78 

is derived entirely from the SWW and inter-annual variations in rainfall are controlled by 79 

SAM (Figure 1). We posit, then, that if fire activity in this landscape is modulated by climate, 80 

inter-annual fire activity should be correlated with SAM. Further, if this relationship exists, 81 

we hypothesise that the persistent 21st century trend toward extreme positive SAM phase will 82 

have increased the risk of fire in this landscape, placing highly fire sensitive endemic 83 

ecosystems in this region at risk of extinction.   84 

 85 

[4] Southwest Tasmania is a topographically complex landscape that hosts a number of 86 

extremely fire sensitive endemic vegetation systems that have suffered substantial fire-driven 87 

range contraction throughout the Holocene [Fletcher et al., 2014; Fletcher et al., 2013] and 88 

since European colonisation [Cullen, 1987; Holz et al., 2014]. Indeed, the distribution of 89 

rainforest in this region is, like much of the highly flammable Australian continent, restricted 90 

to fire refugia that are determined principally by topography and non-linear feedbacks 91 

between vegetation type and flammability [Jackson, 1968; Bowman, 2000; Wood et al., 92 

2011].  Not only does the current SAM trend pose a potentially significant threat to the 93 

security of the remaining pockets of fire-sensitive ecosystems via a shortening of the fire 94 

return interval, the potential reduction in rainfall associated with this trend in southern 95 

Australia and Tasmania [Fyfe and Saenko, 2006; Miller et al., 2006] creates increasingly 96 

inhospitable climatic conditions for plant growth and recovery.  This threefold impact of 97 

current climate trends, termed “interval squeeze” [Enright et al., 2015], threatens fire-98 

sensitive ecosystems with extinction. Thus, it is critical that we attempt to understand the role 99 

that climate has in driving long-term fire activity, so that realistic management options for 100 

our natural systems can be explored. 101 
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 102 

[5] In this paper, we explore the relationship between climate and fire occurrence in 103 

southwest Tasmania, testing whether the reported relationship between SAM and fire activity 104 

in Patagonia is also manifest in Tasmania.  We then draw on a database of palaeofire records 105 

from this region spanning the last 1000 years to test for a link between SAM and palaeofire 106 

activity in southwest Tasmania at centennial scales.  We specifically ask: (1) does SAM 107 

driven climate variability control contemporary fire activity in southwest Tasmania? (2)  108 

Does centennial-scale SAM variability control longer-term fire activity in southwest 109 

Tasmania? (3) Is there an upward spike in fire activity related to the current positive SAM 110 

trend driven by ozone depletion?  111 

 112 

113 
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METHODS 114 

[6] To identify the principal driver of rainfall in our study region we created a correlation 115 

map between annual rainfall anomalies and all of the main climate indices identified as 116 

important drivers of rainfall anomalies in southern Australia (SAM, the El Niño Southern 117 

Oscillation [ENSO], the Indian Ocean Dipole [IOD] and the Pacific Decadal Oscillation 118 

[PDO]). We calculated correlation coefficients (r) between annual rainfall anomalies during 119 

the period 1961-1990 for 220 meteorological stations (data from Australian Bureau of 120 

Meteorology – BOM) and the annual climate indices for the Marshall (2003) SAM index 121 

(British Antarctic Survey), ENSO (SOI Index from NOAA), IOD (DMI Index, 122 

http://www.jamstec.go.jp/frcgc/research/d1/iod/HTML/Dipole%20Mode%20Index.html) and 123 

PDO (Index from NOAA) (Figure 1 and Figure S1 in the Supporting Information). Climate 124 

modes operate at scales ranging from seasonal to centennial and we selected the average 125 

annual values of the climate indices for this analysis. Rainfall anomalies are the differences 126 

between the total precipitation of each year and the average total precipitation of the 30-year 127 

baseline period. The r values from the stations have been spatially interpolated using the 128 

Universal Kriging method in ArcMap 9.3 [ESRI - Environmental Systems Resource Institute, 129 

2009, Redlands, California]. Coordinates system is GDA 1994 Zone 55 and the grid 130 

resolution is 1.8 x 1.8 km. The results of this analysis clearly reveal SAM as the key driver of 131 

rainfall variability in SW Tasmania over the analysis period (Figure S1), with all other 132 

indices displaying little or no explanatory power for rainfall anomaly in this area. Thus, we 133 

focus on SAM for the remainder of this paper. We restrict our analysis of fire occurrence to 134 

what we deem as the “SAM zone”, identified as the area with an r correlation coefficient > 135 

0.3.  136 

 137 
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[7] Fire occurrence data for the SAM zone were obtained from the Land Information System 138 

Tasmania (theList, Government of Tasmania). Since the total number of fires before the 139 

1990’s is very low, likely due to the remoteness of this area precluding accurate fire detection 140 

at that time, only contiguous years (considered as fire ignition seasons – late spring/early 141 

autumn) with a total number of fires >25 across the island have been chosen, i.e. the period 142 

between fire-seasons of 1991/1992 and 2013/2014. While this represents a relatively short 143 

period for correlation, we feel that this dataset represents the best current dataset for testing 144 

the important questions tackled by this paper, which can be crucial in fire activity forecasting 145 

and management.  This need is clear, given the current (2016) fires devastating that are 146 

sweeping across SW Tasmania and destroying fire-sensitive these ecosystems following the 147 

second strongest dry SAM year on record.  Figure 1 presents the location of all fires used in 148 

our analysis plotted with the spatial correlation between fire-season SAM and rainfall 149 

anomalies. We include both human-caused and natural fires in the analyses, with the 150 

exception of deliberate management fires (i.e. prescribed/management fires). 151 

 152 

[8] To identify a relationship between the annual SAM index and fire occurrence in the SAM 153 

zone, we performed Superposed Epoch Analysis (SEA) analysis in R v.3.0.3. This analysis 154 

allows assessing the significance of the departure from the mean for a given set of key event 155 

years (e.g. fire years) and lagged years [Lough and Fritts, 1987]. The fire occurrence data for 156 

‘fire seasons’ (number of fires and area burnt) and the SAM index were converted to z-scores 157 

(using the entire series mean) prior to analysis and significant deviations from the mean were 158 

used to identify “fire years” and “non-fire years”. Fire seasons span the period between 159 

December and March and include ca. 80% of fires occurring in any 12 month period.  The 160 

unique landscape-scale vegetation mosaic in SW Tasmania, which juxtaposes pyrophobic 161 
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(fire-retarding) and pyrogenic (fire-promoting) vegetation types, exerts a major influence 162 

over the spread and extent of fires, thus, we hypothesised that changes in the number of fires 163 

will more accurately reflect changes in the broad-scale drivers of fire activity in this 164 

landscape than the more traditionally employed area burnt metric.  165 

 166 

[9] For our last 1000 year palaeofire analysis, we synthesised new sedimentary charcoal 167 

records analysed by our research team and located within the “SAM zone” identified in our 168 

climate analysis (Figure 1 and S2).  Chronology of the charcoal records is based on 169 

radiocarbon and Lead-210 assays (Table S1), with age-depth modeling performed using 170 

Clam v2.1 [Blaauw, 2010]. A charcoal composite curve for all 14 sites was performed using 171 

the Paleofire package in R [Blarquez et al., 2014]. A 50 year interval for this analysis was 172 

chosen, since it represents the best achievable resolution in order to include the majority of 173 

records for the entire reconstruction period. The full list of the sites used in the palaeofire 174 

analysis is shown in Table S1, along with the charcoal records for the last 1000 years (Figure 175 

S2).  176 

177 
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RESULTS 178 

[10] The spatial climate correlation analysis shows a distinct pattern of correlation between 179 

SAM and rainfall anomalies across the island of Tasmania: a strong SAM-rainfall correlation 180 

in the southwest and no correlation in the north-east and east (Figure 1). A total of 368 fires 181 

(accidental human-ignited and naturally ignited) were identified in the SAM zone during the 182 

period 1992-2014 (Figure 1). The SEA reveals a statistically significant (p value <0.05) 183 

positive annual SAM departure occurring in the year preceding a fire season (Figure 3a). To 184 

support this result, we show that “non-fire years” (fire seasons with an anomalously low fire 185 

occurrence) correspond to a significant (p value <0.05) negative departure in SAM (Figure 186 

3b). Area burnt (both ”fire-years” and “non-fire years”) did not show any relationship with 187 

the annual SAM Index (Figures 3c and 3d). The palaeofire composite analysis of our new 188 

dataset of 14 southwest Tasmanian charcoal records spanning the last 1000 years shows 189 

initially high fire activity around 1000 CE, a sharp decline to minimum values at 1400 CE 190 

and a persistent increase toward the present, interrupted by a plateau between 1600-1800 CE 191 

and finally by a precipitous increase from 1800 CE to the present (Figure 4). 192 

 193 

194 
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DISCUSSION 195 

[11] Our analysis reveals, for the first time, that the phase of SAM preceding a fire season in 196 

SW Tasmania determines inter-annual fire activity in this landscape (Figure 2 and 3). Further, 197 

the results confirm our hypothesis that trends in the number of fires in the landscape of SW 198 

Tasmania are more reflective of changes in the climatic drivers governing fire activity than 199 

the area burnt.  This finding is entirely consistent with the dominant influence that the fine-200 

scale mosaic of juxtaposed pyrophobic and pyrogenic vegetation types has over the spread 201 

and extent of fires in this region  [Jackson, 1968; Wood and Bowman., 2011; Wood and 202 

Bowman, 2012]. The stark contrast in fuel moisture content, flammability and fire-sensitivity 203 

of vegetation types in this region [Pyrke and Marsden-Smedley, 2005] dictates that the 204 

relationship between the area burnt and climate is unlikely to be linear.  Rather, our results 205 

confirm that where fires ignite in relation to vegetation boundaries, topographic divides and 206 

the prevalent westerly airflow are key determinants of fire spread and extent, thereby, 207 

reducing the efficacy of the area burnt metric for our present analysis. 208 

[12] Our results indicate that an increase (decrease) in fire activity during a fire-season 209 

(DJFMAM) is preceded by an anomalously dry (wet) year associated with a positive 210 

(negative) SAM phase.  The one-year lag we have identified between SAM years and fire 211 

seasons reflects the high moisture content of fuels in this perennially wet landscape and the 212 

time required to precondition fuels to burn.  The same lag between SAM and fire occurrence 213 

was not identified in the drier temperate forests in Patagonia studied by Holz and Veblen 214 

(2011), who based their analysis on fires inferred from fire-scarred trees in forests located 215 

close to the Patagonian forest-steppe ecotone. The forest-steppe ecotone environment in 216 

Patagonia is considerably drier than southwest Tasmania [Garreaud et al., 2009; Sturman 217 

and Tapper, 2006] and, while hosting a high biomass load that does not limit fire [Holz and 218 
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Veblen, 2011], less time would be required to condition the fuel in that landscape to burn 219 

when compared with southwest Tasmania.  Thus, our analysis identifies SAM as the main 220 

driver of inter-annual fire activity across a broad swath of the Southern Hemisphere. Our 221 

results are consistent with the pervasive influence of the North Atlantic Oscillation (NAO), 222 

the northern counterpart of SAM, over fire regimes in forest ecosystems in North America, 223 

where NAO driven shifts in the Northern Hemisphere westerlies modulate temporal fire 224 

activity via their influence on hydro-climate [Le Goff et al., 2007].  Indeed, evidence is 225 

mounting that a number of climate modes play a pivotal role in modulating long term fire 226 

activity in high biomass ecosystems globally [Le Goff et al., 2007; Holz and Veblen, 2011; 227 

Ramon-Cuesta et al., 2014; Fletcher et al., 2015] and these relationships must be considered 228 

when attempting to predict future climate-fire trends [Mortiz et al., 2012]. 229 

[13] We identify tight coupling between landscape-wide fire activity in southwest Tasmania 230 

and a recent SAM reconstruction for the last millennium (Figure 4).  This coupling is entirely 231 

consistent with our findings of significant correlation between SAM and fire activity in 232 

southwest Tasmania, revealing a persistence of this relationship over longer timescales. 233 

Initially high charcoal values are consistent with relatively dry conditions through the latter 234 

part of the Medieval Climate Anomaly (ca. 1050-600 cal yr BP). A salient feature of our 235 

analysis is the persistent increase in fire activity since 1500 CE, throughout the Little Ice Age 236 

(ca 600-100 cal yr BP).  Comparison with the two leading proxy-based proxy-based SAM 237 

reconstructions [Abram et al., 2014; Villalba et al., 2012] reveals a very tight synchronicity 238 

between hemispheric-scale reconstructions of SAM and southwest Tasmanian fire activity 239 

through the last 500 years.  This period represents a phase in which SAM becomes 240 

progressively more positive, exceeding the range of SAM variability experienced over the 241 

last millennium [Abram et al., 2014; Villalba et al., 2012] and it is clear that this trend drove 242 
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an increase in landscape burning in southwest Tasmania. The observed dramatic increase in 243 

fire in this region after 1800 CE is consistent with the timing of European colonisation and a 244 

series of landscape-scale wildfires in the mid to late 1800's [Marsden-Smedley, 1998]. 245 

Critically, the relationship between SAM and southwest Tasmanian fire activity persists 246 

through the 21st century, when anthropogenic activity induced a further positive shift in SAM 247 

[Perlwitz et al., 2008], despite a move toward greater fire regulation in this landscape. Our 248 

results reveal a high sensitivity of the Tasmanian environment to SAM driven shifts in the 249 

SWW and heralds a significant threat for fire-sensitive ecosystems in this region. 250 

[14] Fire activity is predicted to increase in temperate forest biomes under projections of 251 

future climate scenarios [Moritz et al., 2012].  Our revelation of a clear link between inter-252 

annual and centennial-scale SAM dynamics and fire activity in southwest Tasmania (and 253 

across the Southern Hemisphere) introduces an additional variable that must be considered 254 

when projecting and planning for the future of these important ecosystems. While, future 255 

trajectory and mean-state of SAM is uncertain as ozone levels recover [Polvani et al., 2011; 256 

Perlwitz, 2011], it is imperative that we attempt to grasp Earth System teleconnections, such 257 

as climate-fire interactions. The implication that SAM drives hemisphere-wide fire activity 258 

adds to the vast array of natural systems that are influenced by this important component of 259 

the global climate system, such as stream discharge [Lara et al., 2008], rodent population 260 

fluctuations [Murúa et al., 2003], insect outbreaks [Paritsis and Veblen, 2011], and coastal 261 

and marine ecosystem dynamics [Forcada and Trathan, 2009; Schloss et al., 2012; Alvain et 262 

al., 2013; Weimerskirch et al., 2012]. Thus, the pervasive influence of SAM over the Earth 263 

System means that many SAM influenced or dependent systems may face deleterious effects 264 

resulting from the current anthropogenically-driven SAM trend, underscoring the need for 265 

studies such as ours which attempt to elucidate climate-biosphere interactions.  266 

267 
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CONCLUSION 268 

[15] This research constitutes the first attempt in disentangling the role of SAM in driving 269 

fire activity in Tasmania. We reveal that SAM is significantly linked with inter-annual fire 270 

occurrence (number of fires) in southwest Tasmania. Palaeofire analysis reveals a tight 271 

coupling between southwest Tasmanian fire activity and two proxy-based SAM 272 

reconstructions, revealing that SAM drives fire activity at multiple scales of time in this 273 

landscape.  We observe a multi-century increase in fire activity in southwest Tasmania in 274 

tandem with a positive trend in SAM over the last 500 years and, importantly, we note a 21st 275 

century spike in fire activity in response to the anthropogenic influence on SAM brought by 276 

ozone depletion. 277 
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CAPTIONS 430 

Figure 1a) Correlation map between zonal wind speed at 850 mb and the SAM index (all 431 

data sourced by NOAA) b) Map of the correlation between annual rainfall anomalies and 432 

annual SAM index across Tasmania. Solid line indicates the boundary of the SAM zone 433 

(r>0.3). Dots represent all the fires occurred between 1992 and 2014 within this area. White 434 

triangles indicates the sites used for the palaeofire analysis. 435 

Figure 2 a) Annual SAM index (1992-2014) [Marshall, 2003] b) Number of fires and c) 436 

Area burnt in the SAM zone of influence in Tasmania (1992-2014). Black solid lines 437 

represent the respective weighted average of the annual SAM index and the number of fires. 438 

Figure 3 Departures from mean values for annual SAM index obtained using SEA during a) 439 

fire years based on number of fires; b) non-fire years based on number of fires; c) fire years 440 

based on area burnt and d) non-fire years based on area burnt. 441 

Figure 4 a) Paleofire charcoal composite of the SAM zone (50 year interval); b) SAM index 442 

reconstruction by Villalba  et al. (2012); c) SAM index reconstruction by Abram et al., 2014; 443 

grey solid line is the annual index, black solid line represents the 70-year LOESS smoothing 444 

of the yearly reconstructed SAM indices. 445 
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