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Abstract—Mapping surface water bodies from fine spatial 

resolution optical remote sensing imagery is essential for the 

understanding of the global hydrologic cycle. Although satellite 

data are useful for mapping, the limited spectral information 

captured by some satellite systems can be sub-optimal for the task. 

For example, the very high resolution images of Google Earth 

(GE) only contain RGB bands, which often means many water 

bodies and land objects are confused. Sentinel-2 (S2) imagery 

have a spectral resolution more suitable for mapping water 

bodies, but its medium spatial resolution limits the ability for 

detailed mapping of water-land boundaries. This letter proposes a 

deep feature and domain knowledge fusion network (DFDKFNet) 

for mapping surface water bodies by fusing GE and S2 images 

while incorporating domain knowledge. DFDKFNet uses the 

remote sensing indices of normalized difference water index 

(NDWI) and normalized difference vegetation index (NDVI) 

derived from the S2 image as the representative domain 

knowledge to better extract water bodies from terrestrial features. 

A similar pixel-based approach is used to downscaling the NDWI 

and NDVI maps to match the spatial resolution between the GE 

and S2 images. The DFDKFNet uses the GE and downscaled 

NDWI and NDVI images to extract the deep semantic features of 

water bodies, which are fused with the domain knowledge 

extracted from the NDWI and NDVI images. DFDKFNet was 

compared with several state-of-the-art algorithms, and the results 

show that DFDKFNet can enhance water body mapping 

accuracy.  

Index Terms—Water body, deep learning, domain knowledge. 

I. INTRODUCTION 

emote sensing can map the surface water bodies which 

are vital to environmental systems and processes [1, 2]. 

In recent years, shallow machine learning classifiers 

such as support vector machine have been used to map surface 

water from remote sensing imagery. Compared with the 

shallow classifiers, deep learning (DL) convolutional neural 

networks can extract inherent and deep-level features from a 

large amount of training data and have great potential in 

mapping water bodies. Many DL methods, including FCN8s 

[3], UNet [4, 5] DeepLabV3+ [6], and HRNet [7], as well as 

their derivative networks, have been widely applied for water 

body mappings from satellite images.  

Commonly, DL methods are applied to map water bodies 

from fine-spatial-resolution multispectral remote sensing 

imagery [8]. One of the biggest challenges is that 

fine-resolution imagery have only limited spectral information 

for water body mapping [9]. Most fine resolution images such 

as PlanetScope do not supply bands such as the short-wave 

infrared band in which water and land are distinguishable. The 

limitation in spectral bands is more severe for DL methods 

when applying them to high spatial but low spectral resolution 

RGB images such as those obtained from GE [10] or captured 

from sensors carried on accessible unoccupied aerial vehicles 

[11]. In the GE RGB images, water bodies may sometimes be 

confused with terrestrial features (e.g. shadowed areas) [12]. 

In addition, different water bodies have different chemical 

(e.g. chlorophyll) concentrations and physical components 

(such as sediment content). Lastly, the sun glint effect gives 

rise to different RGB colors for water bodies with different 

surface water roughness in GE images. The data-driven DL 

methods require a large number of training samples, but the 

collection of representative samples considering the 

aforementioned aspects is usually difficult [13].  

Incorporating RGB images with multispectral images helps 

increase the surface water mapping accuracy of DL [9]. For 

instance, Yuan et al. [14] demonstrated that DL using both 

RGB and multispectral bands dealt better with the wide range 

of GE color shifts and outperformed the DL using only RGB 

bands. Although fusing RGB and multispectral images is 

promising in DL water mapping, challenges still exist. 

First, current water mapping studies fuse RGB and 

multispectral bands from the same satellite sensor [14, 15], 

and the fusion from different satellite sensors has not been 
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reported to the best of our knowledge. Among the range of 

remote sensing images available, the S2 multispectral image 

with near-infrared and shortwave infrared bands has great 

potential in the fusion with GE RGB images. The combination 

of GE with S2 images, which are acquired at the same or 

similar date, assuming there is no land cover change between 

them, could enhance the inter-class separability between water 

and terrestrial features in the GE image. However, there is a 

large gap in the spatial resolution between S2 (typically 10 m) 

and GE images (typically about 1 m). The simplest resampling 

algorithms (such as bilinear interpolation) may generate 

blurred boundaries if the scale factor between the original and 

output image is too large. It is, therefore, necessary to develop 

a new downscaling method before the fusion of GE and S2.  

Second, the DL fusion of RGB and multispectral bands may 

be not significantly superior to DL using only RGB bands, 

because DL mixes the RGB and multispectral values through 

concatenation without fully utilizing the independent 

information from each [14, 16]. The incorporation of domain 

knowledge is an efficient way to guide the DL training process 

and better use independent information [17]. The domain 

knowledge is represented in various forms such as prior 

information, but is usually unavailable or laborious to obtain 

from experts [18]. Remote sensing indices (e.g., NDVI), 

which are usually easily obtained from multispectral images, 

have been tested as representative domain knowledge for 

remote sensing image classification with high generalizability 

[17]. However, the use of this domain knowledge has not been 

reported in water body mapping from GE and S2 images.  

In this letter, a novel deep feature and domain knowledge 

fusion network (DFDKFNet) is proposed to map water bodies 

by fusing GE RGB and S2 imagery. The NDWI and NDVI 

images, which help to distinguish water from background 

objects, are extracted from the S2 image as representative 

domain knowledge. Then, the 10 m NDWI and NDVI images 

are downscaled to 1 m using similar GE pixels. Lastly, the 

DFDKFNet, which contains a feature extraction module, a 

deep feature-domain knowledge fusion module, and a 

classifier, is constructed (Fig. 1). The novelty of this letter is 

that, unlike previous studies that fuse RGB and multispectral 

bands from the same satellite sensor with the same or similar 

spatial resolution, DFDKFNet fuses GE with S2 imagery from 

different satellite sensors with a large spatial resolution gap in 

surface water mapping. Moreover, unlike traditional DL 

methods that concatenate multisource images at the input level 

and feed them into the network directly, DFDKFNet extracts 

the domain knowledge from the NDWI and NDVI images to 

increase the accuracy with which water bodies are extracted. 

DFDKFNet was assessed and compared with several 

state-of-the-art DL methods. 

II. METHODOLOGY 

A. Downscaling S2 NDWI and NDVI using similar GE pixels  

The Sentinel-2 and Google Earth images were 

geo-registration [19], and the NDWI and NDVI images were 

extracted from the S2 image at 10 m resolution. A similar GE 

pixel-based downscaling is used to downscale the NDWI and 

NDVI image to 1 m GE resolution to reduce the blocky effects 

compared with the nearest neighbor and bilinear interpolations 

(Fig. 2). First, the NDWI and NDVI images are resampled to 1 

m resolution using the nearest neighbor method. Then, for 

each resampled pixel, the NDWI (or NDVI) value is defined 

as a weighted function based on similar GE pixels, according 

to the assumption that if the pixels have similar RGB values in 

a local window in the GE image, then they would probably 

belong to the same class and thus have similar NDWI (or 

NDVI) values in the local window. For the kth target GE pixel 

(i.e., ak), a local window centered at  ak  is with the window 

size W is defined. The similar GE pixels are selected according 

to the smallest difference in RGB values between the target 

pixel and the pixels within the local window in the GE image. 

 
Fig. 1. Illustration of the DFDKFNet architecture. DFDKFNet has four components: (a) Downscaling of S2 NDWI and NDVI, (b) Deep feature extraction 
module, (c) Deep feature-domain knowledge fusion module, and (d) Classifier.  

 
Fig. 2. Examples of different Sentinel-2 NDWI image downscaling results. 

The nearest neighbor, bilinear, and cubic convolution maps are blurred. 
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The difference in RGB values between ak  and a GE 

pixel  an  within the local window is calculated as: 
3
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target GE pixel ak and the n
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 neighborhood GE pixel an within 

the local window centered at ak, and Dn is the difference in 

RGB value between ak and the n
th

 GE pixel. b is the number of 

bands in GE image. A number of GE pixels with the smallest 

RGB difference are selected as the similar GE neighboring 

pixels for the target GE pixel ak. The window size W is set as 10, 

and the number of similar GE pixels is set as 20 through many 

trials [20]. Finally, the NDWI (or NDVI) value for the target 

GE pixel ak is calculated according to a weighting function of 

all the selected similar neighboring pixels:  
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where In is the index value in the resampled NDWI or NDVI 

images. wn is the weight of the n
th

 similar neighborhood GE 

pixel, which is calculated based on the geographical distance 

between the target pixel ak and the neighborhood pixel an [20].   

B. Feature Extraction Module (FEM)  

The downscaled NDWI and downscaled NDVI images are 

concatenated with the GE RGB images, which were acquired at 

the same or similar date, to extract surface water body features 

using a FEM. The FEM is based on the structure of UNet, 

which has a simple structure and lightweight parameters and is 

efficient in image segmentation (Fig. 1 (b)) [8]. FEM contains 

an encoder and a decoder part. The encoder has the same 

structure as UNet, which contains five repeated blocks of 

convolutional layers, in which each block contains two 

convolutional layers with a 3×3 kernel size, and each layer is 

followed by a batch normalization layer and a rectified linear 

unit (ReLU). A 2×2 max pooling layer with stride 2 is added at 

the end of each block for downsampling except for the first 

block. The last layer of the origin UNet decoder is removed, 

and the number of feature channels after each block of the 

encoder is 32, 64, 128, 256, and 512. The decoder part consists 

of four repeated blocks. Different from the blocks in the 

encoder part, the blocks in the decoder part replace 2×2 max 

pooling layer with a 2×2 upsampling layer. In addition, the skip 

connection is adopted to concatenate the different level feature 

maps in the channel dimension between the encoder and 

decoder. Thus, the number of feature channels at the end of 

each block of the decoder is 256, 128, 64, and 32.  

C. Deep Feature-Domain Knowledge Fusion Module 

(DFDKM)   

In order to reduce the confusion between various semantic 

features and inefficient utilization of image information from 

the feature extraction module, a DFDKM is added to fuse the 

deep features from FEM and domain knowledge from 

downscaled NDWI and NDVI images in Fig. 1 (c). The deep 

features extracted from the FEM module are fed into a 3×3 

convolution with 2 filters (and batch normalization and ReLU 

layer) to capture local context features. Global max-pooling 

(GMP) and global average pooling (GAP) are applied in the 

channel dimension for capturing global context features, 

respectively. The downscaled NDWI and NDVI images are 

then concatenated with the local and global context feature 

maps. The concatenated feature maps are subjected into two 

3×3 convolution layers with 6 and 3 filters (and batch 

normalization and ReLU layer) for fusing various receptive 

fields and spectral information. The concatenated feature maps 

are input into a batch normalization layer before they are fed 

into the next convolution blocks to make different features have 

the same distribution and converge faster. The DFDKM could 

be regarded as a kind of ensemble learning that combines the 

downscaled NDWI and NDVI images with the outputs through 

GAP, GMP, and 1×1 convolution layers by learning the 

weights and bias of convolution kernels automatically.   

D. Classifier 

The classifier is made up of a 1×1 convolution with 1 filter 

and a sigmoid function to produce the binary prediction (Fig. 1 

(d)). The classifier loss function is defined as follows: 

 
1

1 log ( ) (1 ) log(1 ( ))
N

i i i i
i
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N

 

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where pi is the reference label of pixel i, pi = 0 indicates land 

class and pi = 1 indicates water class; qi is the probability of 

the i
th

 pixel belonging to the water class; N is the total number 

of pixels and σ is the sigmoid function.  

III. EXPERIMENTS  

A. Data 

 A surface water body dataset containing both GE and 

corresponding S2 images, which were acquired at the same or 

similar date, was constructed. The GE and S2 images used for 

training, validation, and testing were cloud free. All the images 

were taken from urban and rural areas in China and acquired at 

different seasons. These images contain various types of water 

bodies, including ponds, rivers, paddies, and lakes. The NDWI 

and NDVI images are calculated and downscaled to 1 m 

resolution using the similar GE pixel method. The GE and the 

corresponding downscaled NDWI and NDVI images were 

randomly cropped to patches of 256×256 pixels to get a total of 

11343 GE/S2 patches. Data augmentation operations including 

scaling and rotations were applied to generate a total of 22648 

GE/S2 patches used for training and validation. Besides, 

another three GE/S2 image pairs were selected to test 

DFDKFNet (Fig. 3). Each selected image has an area of larger 

than 100 km
2
. For each GE/S2 image pair, the acquisition times 

between GE and S2 are shorter than 10 days to reduce the 

impact of land cover change. The reference water map was 

produced by visual interpretation of the GE images (Fig. 3).  

B. Comparison Methods and Result Assessment 

The proposed DFDKFNet was compared with several 

state-of-the-art DL methods, including UNet, FCN8s, HRNet, 

and DeepLabV3+. The performance of the comparison 

methods using GE RGB image (namely UNet_GE, 
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FCN8s_GE, HRNet_GE, and DeepLabV3+_GE) and using 

both GE and downscaled S2 NDWI and NDVI images 

(UNet_GE&S2, FCN8s_GE&S2, HRNet_GE&S2, and 

DeepLabV3+_GE&S2) were assessed. While the DFDKFNet 

uses domain information from S2 data, the comparator DL 

methods using both GE and S2 images simply concatenated the 

GE RGB bands with downscaled NDWI and NDVI bands as 

network input. Ablation experiments were also conducted for 

DFDKFNet. The DFDKFNet using S2 and GE image but 

without using the DFDKM model is the same as the 

UNet_GE&S2, and the DFDKFNet using only GE image but 

without using the DFDKM model is the same as UNet_GE. 

Five indexes, including overall accuracy (OA), F1 score (F1), 

Intersection over Union (IoU), Precision, and Recall, were used 

to assess the accuracy of different methods.  

C. Implementation Platform and Parameters 

Python 3.6 and the open-source deep learning framework 

PyTorch was used. The GPU is NVIDIA 2060 which has 6 

GB of RAM and uses cuDNN 10.0 for acceleration. 

Mini-batch stochastic gradient descent (SGD) was used for 

training. The initial learning rate and weight decay were set as 

1e-4 and 1e-5. The binary cross-entropy in PyTorch was used 

as the loss function, and the Adam optimization algorithm was 

used for gradient descent. A five-folds cross-validation was 

used to partition the datasets of 22648 GE/S2 patches and 

evaluate the performance of each method. Each model was 

trained for 200 epochs and the training weights that resulted in 

the highest validation accuracy were saved for that model. We 

averaged the scores of the five cross-validation folds for the 

accuracy assessment of each method.  

IV. RESULTS  

According to the accuracy metrics in Table I, all the DL 

methods using only the GE images are inferior to those 

incorporating the S2 images to exploit additional surface water 

information. In general, the DL methods using both GE and S2 

increased OA, F1, precision, recall, and IoU by about 0.02, 

0.21, 0.28, 0.03, and 0.27, respectively, compared with DL 

using only the GE image. This finding verifies that fusing GE 

RGB images with S2 images can enhance the performance of 

DL in surface water mapping. Among the DL methods using 

both GE and S2 imagery, DFDKFNet typically generated 

higher accuracies than FCN8s_GE&S2, 

DeepLabV3+_GE&S2, and HRNet_GE&S2. This finding 

shows that, in mapping water bodies, the incorporation of 

domain knowledge from the NDWI and NDVI images through 

DFDKM can typically increase the accuracy of the DL models 

which simply concatenate the downscaled NDWI, NDVI, and 

GE images. DFDKFNet generated the highest OA and IoU, 

showing the highest percentage of pixels correctly classified 

and the highest overlap between predictions and the ground 

truth, respectively. DFDKFNet generated the highest F1, 

showing the method well-balanced recall and precision. 

Fig. 3 shows the DFDKFNet water map in three study areas. 

The outlines of water bodies in the DFDKFNet are similar to 

the reference maps in Fig.3. Fig. 4 shows the visualization of 

five zoom areas predicted from different methods. In zoom 

areas Ⅰ and Ⅱ, the ponds highlighted with red ellipses and 

circles resemble dense vegetation in the GE image, but are very 

distinguishable in the S2 NDWI and NDVI images. The DL 

methods using only the GE image, including UNet_GE, 

FCN8s_GE, HRNet_GE, and DeepLabV3+_GE, failed or 

partly mapped these ponds, while the DL methods using both 

GE and S2 imagery better detected these ponds. In zoom area 

Ⅲ, the dark bareland highlighted with a red ellipse resembles 

the pond in the GE image, but it has a low NDWI value and is 

dissimilar to water in the NDWI image. The DL methods using 

only the GE image incorrectly mapped the bareland as water, 

while the DL methods using both GE and S2 imagery correctly 

mapped it as land. These findings show that incorporating the 

S2 image in DL can reduce both the omission and commission 

errors in water mapping. In zoom area Ⅳ, most water maps 

from the comparison methods contain the linear river with a 

disconnected shape, while the DFDKFNet map is more similar 

to the reference. In zoom area Ⅴ, DFDKFNet predicted 

water-land boundaries better than the comparison DL methods 

that combined GE and S2. In all the zoom areas, the 

DFDKFNet maps are more similar to the reference maps than 

the comparison maps, showing the DL using domain 

knowledge from S2 outperforms the DL that simply 

concatenates the GE and S2 bands.  

V. CONCLUSION 

A new DFDKFNet that combines GE and S2 to more fully 

utilize the complementary information of the two datasets was 

proposed for surface water body mapping. While the GE RGB 

imagery is frequently used in mapping surface water at a very 

fine spatial resolution, we show that the fusion of S2 images in 

DL can effectively improve the water body mapping accuracy, 

even if the fused images are from different satellite sensors 

and have a large spatial resolution gap. Experimental results 

show that DL applied to only the GE image resulted in 

omission errors in regions where water bodies resemble dense 

vegetation, and resulted in commission errors in regions where 

dark land objects are present. The DL methods that fuse GE 

with S2 reduced the degree of confusion between water and 

land which are distinguishable in the S2 NDWI and NDVI 

images in water body mapping. The proposed method uses 

DFDKM to incorporate deep semantic features of water 

 
Fig. 3. GE, S2 NDWI and NDVI images, reference map, and the 

DFDKFNet prediction map.  
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bodies with domain knowledge from the S2 NDWI and NDVI 

images, and is superior to the state-of-the-art DL methods that 

simply concatenate different input data in the fusion. Results 

show that DFDKFNet can not only enhance the mapping 

accuracy for water bodies than the comparison DL methods, 

but it can also improve the spatial detail in water mapping. 

Further research can focus on incorporating RGB-based 

indices to enrich the spectral information of the input data, and 

using synthetic aperture radar images and gap-filling methods 

[21] to reduce the impact of clouds that may exist in the S2 

image in water mapping based on DFDKFNet.  
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DeepLabV3+_GE 0.9645 0.7529 0.6238 0.9548 0.6058 0.9558 0.6427 0.4979 0.9159 0.4756 0.9558 0.6374 0.4944 0.9256 0.4766 

DeepLabV3+_GE&S2 0.9811 0.8821 0.8247 0.9529 0.7918 0.9803 0.8672 0.8078 0.9400 0.7671 0.9778 0.8419 0.7639 0.9427 0.7290 

DFDKFNet 0.9849 0.9090 0.8633 0.9607 0.8332 0.9846 0.9004 0.8608 0.9451 0.8189 0.9836 0.8892 0.8396 0.9465 0.8005 

 

 
Fig. 4. Visual comparisons of different methods in five zoom areas. In the water body maps, dark blue indicates water and white indicates land.  
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