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ABSTRACT
Glaciers in the Tibetan Plateau are melting at an unprecedented recently rate in the context of
global warming. Time-sequenced landform mapping for the Hailuogou Glacier, a partly debris-
covered glacier in the southeastern Tibetan Plateau, shows the detailed evolution of glacier
changes as the ice recedes. This study presents four maps of the Hailuogou Glacier tongue,
a partly debris-covered glacier in the southeastern Tibetan Plateau, documenting the spatial
evolution of glaciological, hydrological, and geomorphological features from 2018 to 2021.
Structure from Motion with Multiview Stereo software was applied to images captured by
from uncrewed aerial vehicles were used to produce digital surface models and orthophoto
mosaics. These datasets were used, and then to identify and map the features based on pre-
defined mapping criteria. From 2018 to 2021, the glacier underwent continuous recession,
with the terminus retreating, intense crevassing in the lower part of the ablation zone, and
continuous expansion of the terminal disintegration area. The recent evolution of the glacier
implies that the gradual disintegration of the lower glacier tongue is likely to be
exacerbated over the next decades by the continuous climate warming.
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1. Introduction

Mountain glaciers all over the world have been reced-
ing at an unprecedented rate during the last decade
(2010–2020) interpreted by the satellite and in-situ
observations (Zemp et al., 2015), and they will con-
tinue to lose mass for further decades with predicted
climate warming (IPCC, 2021). Many studies associ-
ated with mountain glacier changes have reported a
substantial shrinkage of the glaciers in the southeast-
ern Tibetan Plateau since the 1980s (Li et al., 2010;
Liu et al., 2010). The sustained ice loss of glaciers in
southeastern Tibetan Plateau has a clear impact on
regional water supply and eco-environmental systems
(Jouberton et al., 2022; Yang et al., 2013).

Persistently accelerated glacier mass loss may
induce rapid changes in glacier dynamics, such that
stresses and strain within the glaciers are redistributed
in response to the mass perturbations, which then
further alters the glacier structure (Azzoni et al.,
2017). Rapid evolution in glacier dynamics forms a
series of distinctive features on the glacier surface,
and in the proglacial zones (e.g. crevasses, ice cliffs,
proglacial rivers and vegetations). The analysis of the
formation and development of these features can pro-
vide insights for improving the short- and long-term

projection of glacier evolution in the context of global
climate change (Benn et al., 2017).

Hailuogou Glacier is a rapidly retreating temper-
ate valley glacier in southeastern Tibetan Plateau
with a disintegrating terminus. Several studies have
investigated the recent changes of Hailuogou Glacier
from the perspective of changes in the glacier geo-
metry, glacier ice temperature, mass balance and
glacial hydrology (Li et al., 2010; Liao et al., 2020;
Liu et al., 2010; Zhang et al., 2010, 2011; Zhong
et al., 2022). However, there are few detailed studies
that characterize the evolution of the surface fea-
tures. In this study, we provide detailed mapping
results for the Hailuogou Glacier tongue using
uncrewed aerial vehicle (UAV) photogrammetry.
The aims are to (1) map the glaciological, hydrologi-
cal and geomorphological features of the lower part
of the Hailuogou Glacier valley (i.e. lower part of the
glacier tongue, proglacial/paraglacial zones) through
the high-resolution ortho-mosaics derived from
UAV images collected in 2018, 2019, 2020 and
2021; and (2) discuss the spatiotemporal evolutions
of the Hailuogou Glacier from 2018 to 2021 based
on the changes in particular features (e.g. ice cre-
vasses and ice cliffs).
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2. Study Area

Hailuogou Glacier (Figure 1) is a partly debris-covered
temperate glacier in the southeastern Tibetan Plateau
(Liu et al., 2010). It is an east-flowing glacier

originating from the summit of Mt. Gongga (7556 m
a.s.l.) with a length of ca.11.97 km and an area of ca.
24.7 km2 in 2021 (Wang et al., 2021; Zhong et al.,
2022). The glacier has a steep icefall with an elevation
difference of ca. 1080 m (Figure 2(A)), connecting the

Figure 1. A: The study area is located in the southeastern Tibetan Plateau and the distribution of glaciers of Tibetan Plateau. The
elevation data is extracted from GTOPO30 (USGS, 1997) B: The Hailuogou Glacier, southeastern Tibetan Plateau and the monitored
sector of the glacier tongue. The background image is the false color composite of Sentinel 2A on the 10th November 2020. The
Hailuogou Glacier outline and the distribution of glaciers in the Tibetan Plateau is from the Second Glacier Inventory Dataset of
China version 1 (Guo et al., 2015).
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firn basin (4980–7556 m a.s.l.) and the lower glacier
tongue (2900–3900 m a.s.l.) (Li et al., 2010).

Due to rapid ablation being experienced across the
glacier tongue, coupled with a reduction in ice flux
from the up-glacier accumulation zone, the icefall
has thinned and narrowed, and bedrock has become
increasingly exposed since the appearance of the first
glacier-hole at the icefall in 1993 (Li et al., 2010).
The bottom of the icefall (i.e. the upper section of
the glacier tongue) has a gradient of ∼10° and is partly
covered by an fan-shaped structure formed by ice ava-
lanching from the icefall (Zhong et al., 2022). The part
below the icefall is about 5 km in length and 300-500
m in width, and is overlain by supraglacial debris (i.e.
the thickness of debris-covers varies from several
millimeters below the icefall to more than 1 m at the
glacier terminus area) due to the processes of frost
weathering and rock avalanches (Zhang et al., 2011,
2012). Glacier flow gradually transitions from south-
east-orientated to northeast-orientated, forming a gla-
cier arch with intense crevassing in the middle part of
the glacier tongue. Several seasonal streams flow from

higher cliffs into the hydrological system of the glacier,
draining out from the subglacial channel outlet in the
highly crevassed terminus (Figure 2).

Previous works have addressed the rapid changes in
theHailuogouGlacier, in terms of changes in the surface
geomorphology, glaciological landscapes, glacier mass
balance and the glacial hydrological system (e.g. Heim,
1936; Huang et al., 1996; Liu et al., 2010; Liu & Liu,
2010; Lu & Gao, 1992; Zhang et al., 2012). Accelerated
warming since the 1980s has exerted profound effects
on glacier dynamics. Recent studies have demonstrated
that theHailuogouGlacier underwent severe recessions,
particularly in terms of ice collapse events at the glacier
terminus (Xu et al., 2022; Zhong et al., 2022).

3. Data and Methods

3.1. Data sources

3.1.1. UAV and flight mission
Four field trips to Hailuogou Glacier were conducted
during the ablation seasons from 2018 to 2021 (S-

Figure 2. A: The icefall with elevation differences of ∼1080 m (image date: July 2021). Areas marked with red boxes are the
exposed bedrocks due to the intense ablations. B: The viewing in the middle section of the glacier (∼3250 m a.s.l.). The glacier
surface is covered by debris-mantle and intensively crevassed (image date: July 2021). C: The scene from the old viewing platform
(∼ 3180 m a.s.l.). The glacier surface is highly debris-covered. Several long ice cliffs were exposed, and a highly crevassed lateral
margin induced by external stream can be seen (image date: July 2021). D: The highly crevassed glacier terminus with frontal ice
collapsing, and the proglacial river flows from the subglacial channel outlet (image date: July 2021). Blue arrows indicate the exter-
nal streams flow into the glacier lateral margin from higher elevation (e.g. fed by tributary small glaciers).
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Table 1). The first three surveys (June 2018, October
2019 and September 2020) used a DJI Mavic Pro
(12.71 megapixels for the camera sensor), and the
fourth survey (July 2021) used aDJIMavic Pro 2 Enter-
prise Advanced (48 megapixels for the camera sensor).

Flight missions differed with launch sites and flying
heights as the surface elevation of the glacier tongue ran-
ged from 2920 m a.s.l. (i.e. the glacier terminus of 2021)
to 3900m a.s.l. (i.e. the bottom of the glacier icefall) with
consistent ground sample resolution. The glacier tongue
wasmapped separately with four gridded blocks and the
UAVwas launched fromthree sites as shown inFigure 3.
The onboard camera was maintained in a nadir viewing
angle for ortho-photogrammetricmappingwith a lateral
overlap and longitudinal overlap of 70% and 80%,
respectively. The flight missions were pre-programmed
and conducted in automatic mode. Each UAV survey
has a total length of 60 km flight path, taking around
1.5 hours in flight duration to cover the entire glacier
tongue in each case. The mapping area was divided
into four gridded flight paths and covered separately
with variable flying elevation in order to keep constant
ground sample resolutions. Specifically, the glacier ton-
guewas divided into four elevation bands forUAVmap-
ping and further analysis of feature changes: < 3100

m.a.s.l (Sector 1), 3100–3300 m.a.s.l (Sector 2), 3300 -
3500 m.a.s.l (Sector 3), > 3500 m.a.s.l (Sector 4) (Figure
3). Nearly 8900 images were acquired in the four flight
missions. Additional images captured by manual oper-
ation were needed depending on the unsteady weather
and lighting conditions in the glacier valley.

3.1.2. Tie points
Limited by the scale and the rugged surface of the gla-
cier tongue, it is impractical to set ground control
points byduring UAV missions. The primary
embedded GNSS sensors of the UAV enable meter-
scale accuracy in location. For the most recent
(2021) survey, we benefited from an external real-
time kinematic plug-in, and therefore achieving high
accuracy photogrammetric mapping without external
ground control points from GNSS equipment. The
real-time kinematic plug-in records the coordinates
with a mean root mean square error of 1 cm + 1
ppm (i.e. 1 ppm means the error has a 1 mm increase
for every 1 km of movement from the drone) horizon-
tally and 1.5 cm + 1 ppm vertically (Zhong et al.,
2022). Accordingly, we considered the most recent
dataset as the benchmark and extracted 33 points

Figure 3. The spatial coverage of four UAV mapping areas and their elevation ranges, the distribution of the tie-points, the flight
pathways, and the locations of three launch sites. The background image is the same as in Figure 1.
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that are easily identifiable and stable surface features
from it as the tie-points (Figure 3).

3.2. Methods for map production

3.2.1. Digital surface models (DSMs) and
orthophoto mosaics
Multitemporal ortho-mosaics and digital surface
models (DSMs) were produced based on Structure
from Motion with Multi-View Stereo (hereon, SfM-
MVS) in Agisoft Metashape Pro v1.5.3 (Agisoft LLC,
2020). We followed the standard SfM-MVS workflow
(Figure 4) as illustrated by other papers in detail (e.g.
Bash et al., 2018; Chudley et al., 2019; Mallalieu et al.,
2017; Rossini et al., 2018; Smith et al., 2016). Tie-
points were extracted from the 2021 dataset for co-
registration with the earlier three datasets (i.e. all
root mean square errors < 0.94 m; refers to S-Table.1).

3.2.2. Features mapping
Identification and mapping of the landform features
depend on the premise that the landform features
have distinctive traits that can be used to extract and
categorize them (Chandler et al., 2018; Fu et al.,
2013). A variety of factors affect how the criteria of fea-
ture identification and extraction are defined, includ-
ing means of data acquisition, the methodology of
mapping, and the life cycle of targeted features.

From the DSMs and ortho-mosaics, the primary
features were visually interpreted and manually
mapped within ArcGIS 10.3 (Figure 5). To ensure
the precise interpretation of the features, the three-
dimensional scene of the dense point clouds and
DSMs were consulted in cases of ambiguity, such as
where the boundary between marginal ice cliffs and
the valley walls was unclear, or where the orientation
of ice cliffs was vertically variable. The use of multiple
viewing perspectives in this way is important because
three-dimensional viewing can provide information

on the structure and morphology of the features,
which is not always immediately apparent from the
two-dimensional perspective.

4. Mapped feature and identification criteria

The evolution and spatial distribution of features in
the glacier valley result from the varying controls on
glacier motion, glacier hydrology, erosion, deposition,
surrounding topography and ice thermal regime.
Representative features need to be predefined to
characterize the changes in the glacier valley. To
achieve this, we classified the features into four cat-
egories: (i) Glaciological features related to structural
deformation of glacier ice and surface motion; (ii)
hydrological features associated with the transport of
meltwater and external water; (iii) geomorphological
features in relation to effects of past glaciations; (iv)
other landforms in the valley.

4.1. Glaciological features

4.1.1. Crevasses
Crevasses are open cracks in the glacier ice formed by
changing stress as the glacier flows (Colgan et al., 2016;
Jennings et al., 2016). The spatial distribution of cre-
vasses provides information on the adjustment of
stress and strain within the glacier (Goodsell et al.,
2005; Jones et al., 2018). Once the stress exceeds the
critical threshold (i.e. the strength of ice body), the
ice fractures to form ice crevasses with different
widths, lengths, and orientations, marking significant
evidence of glacier changes (Benn & Evans, 2013;
Vaughan, 1993).

Crevasses dominate the Hailuogou Glacier tongue.
Crevasse lengths range from less than a meter to more
than 130 m, and the widths are consistently less than
10 m. We identified them by the generally curved
dark cracks and mapped as polylines. Although

Figure 4.Workflow of UAV image processing was applied to datasets of 2018, 2019, 2020 and 2021 to derive the DSMs and ortho-
photo mosaics. Tie-points were extracted from the datasets of 2021 and then used for co-registering with 2018, 2019 and 2020
datasets.
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crevasses have different widths and depths, we only
mapped them along their long axes (Figure 5(A)).
Their morphology changes along with the glacier
longitude profile. For instance, crevasses in the
upper section of the glacier tongue appear as relatively
long and splaying, aligned with low spatial density.
The uppermost crevasses were orientated parallel

with the direction of glacier flow. Conversely, in the
middle section of the glacier tongue, the orientation
of the crevasses was transverse to the direction of
the glacier flow. In the lateral margin of the glacier,
the crevassed surface may be formed by rotational
strain within the ice along the edges. The morphology
of ice crevassing is affected by the existence of water to

Figure 5. Visual identification of features in the Hailuogou Glacier valley.
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some extent (Sakai et al., 2009), particularly for the
regions of the inlets of streams from the higher
elevation of the valley walls. The ice here becomes
more fractured, resulting in more crevassed areas sur-
rounding the inlets.

4.1.2. Ice cliffs
Ice cliffs are commonly described as (sub-) vertical ice
walls, usually found around the margins of supragla-
cial ponds (Watson et al., 2017). For debris-covered
glaciers, ice cliffs may be formed in two processes
(Kirkbride, 1993; Kirkbride & Warren, 1999; Sakai
et al., 2002), specifically, the first process is resulted
from the sliding of supraglacial debris due to a stee-
pening slope; the second is associated with surface
depressions caused by roof collapse of a subglacial or
englacial channel.

Here, we delineate ice cliffs as exposed ice faces
with either clean ice or dirty ice (i.e. slightly thin debris
on the surface) (Watson et al., 2017) (Figure 5(B)). Ice
cliffs are apparent and the majority of them are
observed as linear banded, crescent-shaped, and half
arch-shaped bare glacier ice surrounded by relatively
thin debris mantle. There are two patterns of ice
cliffs on the Hailuogou Glacier tongue by the philos-
ophy of ice cliff formation (Sakai et al., 2002). A
large amount of linear banded and crescent-shaped
ice cliffs was identified on the lower section of the gla-
cier tongue. The ice cliffs in this region might be
formed by the exposure of the subglacial channels or
voids due to the intensified glacier surface lowering
(Li et al., 2010). The remaining ice cliffs were distrib-
uted across the upper section and lateral sides of the
glacier tongue; most of them were exposed by debris
sliding as a consequence of a steepening surface or
ice crevassing.

4.1.3. Inter-crevasse blocks
Inter-crevassed blocks (Figure 5(C)) refer to a cluster
of highly fractured ice bodies where seracs develop
between crevasses (Jennings & Hambrey, 2021). The
inter-crevassed blocks of the Hailuogou Glacier are
found at the north lateral margin (i.e. 3250 m a.s.l.).
Here, there is a lateral stream flowing from the higher
elevation into the lateral margin of the Hailuogou Gla-
cier. The continuous effect of external water on the
glacier ice gradually erodes the surface. The inter-cre-
vassed blocks on Hailuogou Glacier were most likely
formed by spatially variable glacier dynamics as well
as the effects of frequent and persistent water activity.

4.1.4. Features associated with icefall
The icefall (i.e. 3650-4980 m a.s.l.) transports the ice
mass down-valley, controlled by the rapid extrusion
of ice flow and disorganized ice crevassing (Zhang
et al., 2010). In the zone between the base of ice fall
and the upper part of the middle section of the glacier

tongue, which is also the transition zone of extending
and compressional ice flow, there are particular fea-
tures mainly associated with avalanches of the icefall,
namely fresh ice, an ice fan and thinly debris-covered
ice (Su et al., 1996) (Figure 5(D)).

These three features show a clear spatial pattern
(see example in Figure 5(D)). Specifically, the upper-
most portion is fresh ice, most of which is composed
of ice chunks with a long axis of 1-2 m. Fresh ice
can be identified by its white color, and the avalanche
trace can be roughly identified consequently. Exterior
to the fresh ice is a fan structure formed by successive
avalanches (and subsequent melting) of ice. This fan-
shaped structure is distributed in a tongue-like pat-
tern, with a length of ∼1000 m and a width that tra-
verses the entire glacier. It is primarily composed of
the varied size of firn and ice, with a mixture of ice
and rock, yielding them gray and yellow-white in
color. Below the fan-shaped structure is the ice surface
with a thin debris cover, which can be considered as
the transition zone between clean ice and the debris-
covered surface.

4.2. Hydrological features

4.2.1. Supraglacial pond
Supraglacial ponds (Figure 5(E)) store the majority of
meltwater on glacier surfaces. Ponds generally form in
natural depressions and are fed by meltwater from the
glacier surface drainage system or local melting (Wat-
son et al., 2016; Yang & Liu, 2016). Ablation is highly
spatially variable according to the varied thickness of
the debris mantle. This difference in ablation between
debris-covered ice and debris-free ice often creates an
undulating topography with natural pits in which
meltwater can collect (Lardeux et al., 2016). After
the formation of supraglacial ponds, the meltwater
stored by these ponds promote ablation to facilitate
the edges becoming steeper, such that the debris
cover thins, and ablation is further enhanced in a
mechanism of positive feedback (Miles et al., 2017).
Some supraglacial ponds might drain out following
hydrofracture (Liu et al., 2018). Their life cycle is
short due to the rapid thinning of the glacier tongue
and frequent collapse of subglacial channels, so their
existence may not persist between sequential surveys.
The supraglacial ponds mainly distributed in the
lower patch of the glacier tongue (i.e. areas lower
than 3500 m a.s.l.), with some outward ice cliffs and
some lateral crevasses.

4.2.2. Stream
The Hailuogou Glacier has a well-developed hydrolo-
gical system in its lower ablation region (Liu & Liu,
2010). External waters from higher elevations flow
into the drainage system within the glacier and dis-
charge through the subglacial channel outlet along

JOURNAL OF MAPS 7



with the meltwater, forming the proglacial river. The
majority of streams (Figure 5(F)) on the study site
were defined as the streamflow at the lateral side of
the glacier valley from the higher elevation and some
of them were additionally fed by the nearby small
glaciers.

4.2.3. Proglacial waterbody
Proglacial waterbodies of the Hailuogou Glacier
(Figure 5(G)) include the proglacial river and progla-
cial ponds. The proglacial river is not only the main
force eroding the proglacial zone and periglacial
zone, but also the sources of sediments. The proglacial
zone is shaped by the evolution of the proglacial river,
which forms highly active braided stream networks
(Jones et al., 2018). Proglacial ponds usually occur
near the south and north side of the proglacial river.
They are commonly seen as single water features or
a series of circular intersecting ponds.

4.3. Geomorphological features

4.3.1. Lateral moraine
Moraine is the accumulation of till material that is laid
down by glaciers or ice shelves (Benn & Evans, 2013).
Glacial till refers to all loose sediments produced,
transported, and deposited by the glacier. Glacial till
is ubiquitous across the glacier system, and it includes
every size of glacial sediment, from silt-sized glacial
flour to large boulders. They mound to form a ridge
of unsorted sediments called the end moraine, and
the farthest end moraine is the terminal moraine for
a glaciation. Lateral moraines (Figure 5(H)) refer to
ridge-shaped marginal features commonly found
along the lateral sides of the glacier valley (Fu et al.,
2012). For Hailuogou Glacier, the lateral moraine is
distinctive, but it also needs to be carefully cross-com-
pared with the orthophotos and DSMs to identify the
glacier margin. The terminal moraine is absent, so,
this area is therefore mapped as proglacial till.

4.3.2. Glacial polished rock wall
Polished rock walls (Figure 5(I)) are referred to as the
glacial eroded lateral cliffs in the glacier valley. Polished
rock walls in the Hailuogou Glacier valley can be found
on both lateral cliffs. On these walls, various glacial ero-
sion trails can be identified, such as striae, grooves and
fissures. Over the study period, the polished rock walls
were mapped with varying-sized polygons due to the
vegetation cover on the walls.

4.3.3. Trimline
The trimline (Figure 5(J)) is an almost horizontal lin-
ear landform feature usually found along the sidewalls
of a glacial valley. It marks the higher elevation of the
erosion by the former glaciation and serves as an indi-
cator of the thickness of the previous glacier (Li & Fu,

2019). During previous glaciations, the glacier
advanced downstream and removed the vegetation
on the surface by erosion. With the glacier retreating
and the surface lowering, a series of distinct edges
on the hillsides can be identified to separate the
well-vegetated terrain from the poorly vegetated
region (i.e. glacier-eroded area). Based on the sharp
contrast of the color and textures on the slope, the
trimlines in the Hailuogou Glacier valley are particu-
larly clear. Some parts of the trim-line were inter-
rupted by lateral landslides due to the unsteady
paraglacial slope.

4.4. Other features

Three other features (Figure 5(K)) in the glacier valley
were also mapped, categorized simply as artificial lake,
road, and vegetation.

5. Results

The spatiotemporal changes of the mapped features
were compared year by year. It should be noted that
the two most recent maps (2020 and 2021) have lim-
ited data for Sector 4 (i.e. 3576 and 3521 m a.s.l. for
their upmost elevation, respectively). Therefore, only
three Sectors (1-3) were used for the 2021 datasets,
and elevations ranging from 3500 to 3576 m a.s.l.
were taken as the extent of section 4 for the 2020 data-
set. To illustrate ice crevasse orientation and ice cliff
aspect, the eight cardinal and intercardinal points of
the compass were used (Figure 6 and S-Table 2).
Areal and surface elevation data for the four sectors
of the glacier are illustrated in Figure 7(A,B), respect-
ively. The statistical analysis for crevasses, and ice
cliffs, is summarized in Figure 6, Figure 7(C,D).
Changes in supraglacial pond characteristics are listed
in S-Table 5.

Hailuogou Glacier has been in rapid recession
during the observation period, as demonstrated by
the areal decline of the lower part of the glacier tongue
(Figure 7(A) and S-Table-6). A decrease in surface
elevation has been observed along the glacier center
flowline (Figure 7(B)). Figure 7(B) demonstrates
clearly that the glacier terminus retreated more than
300 m and the elevation of the terminus climbed
from 2916 to 2930 m a.s.l. over the observation period.

5.1. 2018 surface features

On the 2018 map, ice crevasses mainly present a NE-
SW orientation for Sectors1 and 2, while those in Sec-
tors 3 and 4 are orientated NW-SE instead (refer to S-
Table 2). Sector 4 has the highest crevasse density (i.e.
41.27 km/km2), which was about twice as high as Sec-
tors 2 and 3, and five-times higher than Sector 1 (see
Figure 7(C)).
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The density of ice cliffs reaches 17.74% in Sector 3,
whereas ice cliff density in lower sectors do not exceed
13% (see Figure 7(D) and S-Table 3). NW and N are

the dominant aspects for Sectors 1 and 2 (i.e. 36.96%
and 27.21%; Figure 6 and S-Table 3), respectively,
while W and SW are dominant in Sector 3 and 4

Figure 7. A: The annual area changes for each elevation sectors. B: Ice surface elevation along the glacier center flow line. C:
Crevasse densities for four elevation sectors. D: Ice cliff densities for four elevation sectors.

Figure 6. The ratio of each aspect (eight directions) of the ice cliffs in each sector. The center map shows the spatial distribution of
the four elevation sectors. Please refer to S-Table 7 for detailed statistics of ice cliff orientations.
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respectively, with neither less than 23%. For the whole
mapped region, NW and W are dominant in deter-
mining ice cliff orientation, adding up to more than
43% of the total.

5.2. 2019 surface features

Crevasse directions exhibited in 2019 were largely
consistent with those mapped in 2018. However, the
total length of the crevasses declined by more than
10 km during the intervening period (S-Table 4). Cre-
vasse density in 2019 reached the highest value in Sec-
tor 4, similar to that evident in 2018 (21.98 km/km2)
(Figure 7(C)). The overall density of crevasses for
the entire glacier tongue during 2019 was lower by
about 5 km/km2 compared to the previous year (S-
Table 4). The density of cliffs this year retained a simi-
lar pattern as to the 2018 map (Figure 7(D)), that is,
Sector 3 had a maximum density of around 16%, fol-
lowed by Sectors 2, 1, and 4 (all in excess of 7%).

For ice cliff aspect, the primary orientation was
NW- and W-facing, with a range from 20 to 26% of
all cliffs in these categories for Sectors 1–3 (Figure 6
and S-Table 3). However, SE-facing cliffs occupied
about 26% of the total for Sector 4, exceeding all
other orientations. As per the 2018 map, the dominant
orientation overall was NW andW, occupying around
20% of all cases (S-Table 3).

5.3. 2020 surface features

Here, elevations from the glacier terminus up to 3576m
a.s.l. were considered within Sector 4. The crevasse
orientations of Sectors 1–3 are dominated by both
NW-SE and NE-SE, and Sector 4 is also occupied pri-
marily by NW-SE orientated crevasses (S-Table 1).
Although the mapped region is less extensive than in
2019, the total length of mapped crevasses is about 35
km, more than 4 km longer than in 2019 (S-Table 4).
Crevasse densities are largely consistent, ranging
from 24.53 to 28.69 km/km2 (Figure 7(C)). In contrast
to the two previous maps, the highest density occurs in
Sector 1, where the crevasses are concentrated at the
glacier terminus and produce large ice cliffs.

According to Figure 6, cliff aspects of Sectors 1–3
are dominated by SW, N, and W-faced cliffs with
about a ratio of 22%, while the minimum aspects are
SE, E, and NE with a ratio of less than 6.53%. For Sec-
tor 4, the primary direction is similar to 2019 maps,
that is SE. As a whole, the dominant orientation of
2020 is W (i.e. 20.65%) and NW (17.06%), whereas
the fewest cliffs face NE and E.

5.4. 2021 surface features

As there are no data for Sector 4 in 2021, we concen-
trate here on Sectors 1–3. The primary direction of ice

crevasses is consistent with the 2020 map (S-Table 2).
The total length of crevasses is 16.74 km, which is
around 12, 7, and 10 km less than in 2020, 2019, and
2018, respectively (S-Table 4). The crevasse density
of Sector 1 is high (38.59 km per square kilometer),
which is comparable only to the value calculated for
Sector 4 of 2018 (see Figure 7(C)). This illustrates
the highly crevassed glacier surface near the glacier
terminus. Further, the density of ice cliffs in section
1 is noticeably higher than in other sections, at around
24% (Figure 7(D)). The first and second primary
directions for the ice cliffs are a combination of N
and NW or NW and W. The cliffs with SE, E, and
NE orientation are least common within the three
sectors.

6. Discussion

6.1. Uncertainty analysis

6.1.1. Uncertainty from UAV-derived datasets
Acquiring high-quality aerial images in highly rugged
mountainous regions (e.g. Hailuogou Glacier valley,
southeastern Tibtetan Plateau) by UAV is challenging.
The highly variable microclimate within the Hailuo-
gou Glacier valley may induce rapid changes in
regional weather, such as mist/fog and clouds, which
further causes uneven lighting and unexpected sha-
dows during conducting UAV surveys (Xu et al.,
2022). However, visual checking of the sparse and
dense point cloud shows that the images with severe
shadows were not aligned and were not further pro-
cessed, and therefore the impacts on the DSM and
orthophotos are minimal.

The rigorous ground control points obtained from
external GNSS equipment are necessary for conven-
tional photogrammetry (Gindraux et al., 2017). The
quality of the absolute georeferencing of the generated
DSMs and orthophotos relies on the number of
ground control points and their spatial distributions
across the study area (Villanueva & Blanco, 2019).
However, it is impractical to collect the coordinates
of ground control points on the highly crevassed
surface of the Hailuogou Glacier. Therefore, our
approach is utilizing the orthophoto of July 2021 as
the benchmark (i.e. georeferenced by network-RTK)
and then co-align the remaining three surveys to this
benchmark with 33 tie-points extracted from the
2021 orthophoto (Forlani et al., 2018). Based on
that, four DSMs with a spatial resolution of no more
than 0.36 m/pixel and orthophotos with a spatial res-
olution of no more than 0.09 m/pixel were produced
from the SfM-MVS workflow (refer to S-Table 1).
The final root mean square errors from co-aligning
with the benchmark dataset are all less than 0.94
m. Although some minor errors might occur in
relation to the setting of tie-points for each dataset
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(2018, 2019, and 2020), their impacts are assumed
minimal.

6.1.2. Uncertainty from mapping results
Due to the fact that all mapping works were done
manually, it is not possible to calculate the range of
uncertainty, therefore, we mainly focus on the sources
of uncertainty in the mapping work. The arguments
are mainly from two aspects: (1) the changes in the
density of ice crevasses, and (2) the statistics of the
area of each glacier sector (i.e. the delineation of gla-
cier margins).

It can be referred from the Main maps A and B that
there is a clear reduction in crevasse density, which
can also be interpreted by comparing the orthophoto
between 2018 and 2019 (S-Figure 1). As stated in the
mapping criteria, we mapped the long axis of the cre-
vasses with polylines, which means we only mapped
the length of the crevasses, but the width is ignored.
However, the width of crevasses in 2018-Sector 4 is
much less than that in 2019-Sector 4. In the context
of continued glacier ablation, although the ice crevasse
density decreased significantly in 2019 (when count-
ing crevasses length only), the reason for the decrease
may be attributed to the fact that the width of ice cre-
vasses is gradually becoming larger. In other words,
many long and slender ice crevasses are integrated
into massive crevasses with wider widths due to dee-
pening and intense ablation.

The reliability of calculating the change in glacier
area can be interpreted as the reliability of outlining
glacier margins. It is difficult to distinguish the lateral

margin of the glacier, even with very careful cross-
referencing of orthophotos, DSM, and 3D point
clouds, For instance, the middle part of the Hailuogou
Glacier tongue (i.e. Sector 3) is covered by thick debris
cover, especially for the lateral margins (S-Figure 2)
(Zhang et al., 2019). Therefore, it may bring slight
errors when outlining the glacier lateral edge of Sector
3. For Sectors 1, 2 and 3, lateral crevasses or some veg-
etation can indicate the possible lateral glacier margins
so that the extent for these three sectors is relatively
confident.

6.2. Overall tendency of changes

The Hailuogou Glacier was in rapid recession during
the study period. The glacier surface elevation lowered
consistently between 2018 and 2021, and the glacier
terminus retreated more than 350 m (Figure 7(B)).
The overall area of the glacier tongue also reduced
year on year (Figure 7(C)). Except for the lower part
of the ice tongue, the spatial distribution of both cre-
vasses and ice cliffs did not change significantly in Sec-
tors 2, 3 and 4, with all three showing a slight decline
in their key statistics (Figure 7(C,D)). The main
changes in crevasse and ice cliff characteristics are
mainly observed near the end of the glacier terminus.
The changes observed around the glacier terminus
were mainly controlled by the combination of melting
and ice collapsing (Xu et al., 2022). As evident by the
statistical analysis of crevasses density (Figure 7(C)),
the glacier terminus (Sector 1) has become more cre-
vassed. Due to intensified ablation and subsequent

Figure 8. A comparison of Hailuogou Glacier icefall between 2018 and 2022.
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ice collapse events around the outlet of the subglacial
river, the frontal ice margin is now arcuate, and ice
debris and fresh ice were frequently found around
the collapsed frontal cliffs at the glacier terminus.

6.3. Mechanism of interannual glacier changes
and implications

Interannual comparisons have revealed similar behav-
ior through time relating to glacier dynamics and its
rapid evolution. The most significant evidence for sup-
porting that the glacier was in a heavy recession is the
remarkable increase we record in crevasse density and
cliff density for Sector 1, as well as the areal shrinkage
and the systematic lowering of the ice surface profiles.
Specifically, the increase in crevasse density for Sector
1 (i.e. 8.43–38.59 km/km2) verified that the lower
glacier tongue is in the process of progressive disinte-
gration, with frequent frontal ice collapse particularly
focusing around the subglacial portal (Xu et al., 2022).

By the end of 2021, the ice fall of Hailuogou Glacier
had become nearly disconnected with the accumulation
area (Figure 8). Continuous thinning and narrowing of
the ice fall reduces the mass flux transferred down-gla-
cier, impacting heavily on the lower part of the glacier
(Zhang et al., 2010; Zhong et al., 2022). Coincident
with this reduction in mass from higher elevation is
the onset of rapid terminus recession through ice col-
lapse and its broader disintegration. The lower tongue
is therefore being simultaneously starved of mass at its
upper end, and eroded by hydrological processes at its
lower end, a scenario which is not common for ablation
of valley glaciers. The ring-shape cracks on the glacier
surface have a strong relationship with the roof collapse
of the englacial or subglacial conduits (Egli et al., 2021).
Considerable areas of ice debris falling from the glacier
terminus also indicate the unstable condition of the gla-
cier snout. The number of glaciological features evident
on the 2021 map is far fewer than in the earlier three
years, suggesting that the glacier is becoming increas-
ingly stagnant, and tending towards becoming dead
ice due to its disconnection with the accumulation zone.

7. Conclusions

We mapped a variety of features for the Hailuogou
Glacier tongue based on clearly defined mapping cri-
teria. The key features included glaciological, glacial
geomorphological and hydrological features. Based
on the mapping results and analyzes, we assessed the
evolution of the Hailuogou Glacier tongue during
2018–2021. We interpret these features to illustrate
that the glacier is in rapid recession, and even possibly
disintegration. The disconnection between the glacier
tongue and the accumulation zone has set the lower
part of the glacier on a course to becoming stagnant,
and ultimately existing only as a block of dead ice.

Therefore, it can be hypothesized that the glacier will
only recede more rapidly over the next decades, with
the exact rate being determined largely by the magni-
tude-frequency of future terminus ice collapse events.

Software

All aerial images were imported into Agisoft Meta-
shape Pro v1.5.3 for processing. All mapping and digi-
tizing works were conducted by ESRI ArcGIS 10.3.
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