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Inferring the basis of binaural
detection with a modified
autoencoder
Samuel S. Smith *, Joseph Sollini and Michael A. Akeroyd *

Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham,
Nottingham, United Kingdom

The binaural system utilizes interaural timing cues to improve the detection of

auditory signals presented in noise. In humans, the binaural mechanisms underlying

this phenomenon cannot be directly measured and hence remain contentious. As

an alternative, we trained modified autoencoder networks to mimic human-like

behavior in a binaural detection task. The autoencoder architecture emphasizes

interpretability and, hence, we “opened it up” to see if it could infer latent

mechanisms underlying binaural detection. We found that the optimal networks

automatically developed artificial neurons with sensitivity to timing cues and with

dynamics consistent with a cross-correlation mechanism. These computations were

similar to neural dynamics reported in animal models. That these computations

emerged to account for human hearing attests to their generality as a solution for

binaural signal detection. This study examines the utility of explanatory-driven neural

network models and how they may be used to infer mechanisms of audition.

KEYWORDS

binaural (two-ear) hearing effect, hearing, cross-correlation (CC), signal detection algorithm,
representational learning

1. Introduction

In everyday listening, it is commonplace for a sound of interest to be masked by
simultaneous background sounds such as noises. If a target sound is in a different direction
to a noise then they will arrive at different times to each of the ears. The auditory system
takes advantage of this difference to improve the target’s detectability. In the laboratory, the
prototypical method to quantify this improvement is to compare detection thresholds when
(1) the signal has a different interaural time difference (ITD) to the noise, versus when (2) the
signal and noise have the same ITD (Figure 1). The amount by which the former threshold is
reduced in comparison to the latter is called the “binaural masking level difference” (BMLD).
The value of the BMLD depends systematically on how the ITDs differ (Durlach, 1972; Durlach
and Colburn, 1978) and can be as large as 15 dB at low frequencies (Hirsh, 1948; Hirsh and
Burgeat, 1958). Yet, it is an open question as to what the neural mechanisms underlying human
binaural detection are.

For example, midbrain and cortical recordings in non-human species lend support to
a cross-correlation mechanism comparing auditory signals across the ears (Palmer and
Shackleton, 2002; Lane and Delgutte, 2005; Gilbert et al., 2015). In contrast, human behavior
appears to be equally well, if not better, described by a noise-cancelation scheme (Durlach, 1963;
Breebaart et al., 2001a; Culling, 2007). Computational models have been built demonstrating
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that the cross-correlation framework and the noise-cancelation
framework are both empirically feasible (Durlach, 1972; Colburn,
1977). Discrepancies between frameworks have not been resolved
with human imaging data (Sasaki et al., 2005; Wack et al., 2012,
2014; Fowler, 2017), for which resolution and response variability are
key limitations. As the neural activity in brain regions underlying
binaural detection cannot be directly recorded in humans, we
considered alternative methods of scrutiny from the field of machine
learning.

The human-like “behavior” achievable with deep neural
networks, combined with their unpremeditated network of
computations, have seen them advocated as a new generation
of model organisms (Scholte, 2018). These models can effectively
approximate any mathematical function (Hornik et al., 1989), are
resource efficient, relatively easy to record from and perturb activity
in, and are not limited by species-specific ecology. In principle,
if a network can be built that corresponds with human behavior,
then knowing how that network works might give insight into the
underlying human mechanisms. Yet, to date, the inner workings
of neural networks configured to handle binaural audition have
received limited consideration (Adavanne et al., 2018; Vecchiotti
et al., 2019; Francl and McDermott, 2022), and almost exclusively
in the context of binaural localization rather than detection. One
potential stumbling block when interrogating the inner workings of
neural network analogs is their black-box nature. However, network
architectures that put mechanistic interpretability at the forefront
(such as modified autoencoders that have shown promise in the
field of physics; Higgins et al., 2017; Iten et al., 2018) could help
overcome this.

Here, we trained neural network models to imitate the
phenomena of binaural signal detection under human-like behavioral
constraints, then interrogated their inner workings to discover how
they operated. In three stages of work, we first sought validation
of our methodology. Second, we developed networks that operated
on waveforms to predict binaural detection performance. Third, we
explored how the waveform-based networks operated, examining
how they internally represented information. We discovered that
not only did networks learn to make predictions similar to human
behavior, but representations were found to have striking similarities
with a cross-correlation mechanism similar to animal models
(McAlpine et al., 1996; Lane and Delgutte, 2005; Asadollahi et al.,
2010; Gilbert et al., 2015). Our key insight–that these computations
emerged to account for human hearing–attests to their generality as
a solution for binaural signal detection and illustrates the benefits of
machine learning methods.

2. Results

2.1. Proof-of-principle: Inferring a latent
binaural variable

Our goal was to use neural network models as a tool to
infer computations underlying binaural detection in humans. Such
an approach has proven successful in the field of physics (Iten
et al., 2018). For example, in the case of predicting the movement
of a pendulum, networks have correctly inferred an influential
role of variables such as spring constant and damping factor.
First, to demonstrate the feasibility of this methodology in the

context of binaural hearing, we trained a network on a reduced
example. We wanted to verify that, in the process of predicting
the dynamics of a fully defined system, the network would infer
the same latent variable as within said system. Accordingly, we
trained networks to mimic a system of equations derived under
the “equalization-cancelation” (EC) framework (Durlach, 1972, part
IV.B; see Eq. 1 in Section “Materials and methods”), which is effective
at reproducing the key phenomena of the detection of a pure tone
signal masked by a broadband noise (Durlach, 1963; Klein and
Hartmann, 1981; Breebaart et al., 2001a; Hartmann and McMillon,
2001; Culling, 2007; Wan et al., 2010). The framework proposes
that the interaural configuration of the masking noise is “equalized”
(=applying an internal time delay to the waveform from one ear
to compensate for, or equalize for, the external temporal disparity
compared to the waveform from the other ear) and “canceled”
(=subtracting the equalized waveforms from one another), resulting
in a more detectable signal. These EC operations give rise to a latent
representation that can be captured by the variable ϕ (Figure 1B,
left, see Eq. 1 in Section “Materials and methods” for details). In
the EC framework, this variable is used to predict the consequent
improvement in signal detection from binaural processing over
monaural processing, i.e., BMLDs. In particular, we were interested
as to whether a neural network would automatically infer the latent
variable ϕ in the process of predicting BMLDs as described under the
EC system of equations.

We trained a neural network, with a modified autoencoder
architecture, to predict the binaural improvement in signal detection
(i.e., BMLDs) based on four parameters describing the monaural
arrival times of a 500 Hz signal and broadband noise at each ear.
The input/output training data were drawn from EC equations fit
to human psychophysics (Figure 1B). Following training, we tested
the network on parametric combinations of BMLDs for which it had
not been trained and discovered that its root-mean-square (RMS)
error was just 0.075 dB. We took this as evidence that the network
was able to successfully generalize its performance. The network
correctly predicted larger BMLDs when the signal had a non-zero
ITD and the masking noise did not, and vice versa (Figure 1C and
Supplementary Figure 1A). Interrogating the computations latent
within the network provided insight into how it operated. Because the
network utilized a modified autoencoder architecture, its inputs were
“encoded” into a simpler representation, the latent representation,
by passing information through a bottleneck at the center of the
network (Figure 1B, right). When we looked at the bottleneck node’s
activation values (its numerical readout), we saw that its activation
almost exactly matched the latent variable in the EC framework, ϕ

(Figure 1D; Pearson’s R= 0.9994, p < 0.001), even though the model
was never directly informed of that variable.

In summary, within this fully defined system, the network was
able to infer the appropriate latent variable in accounting for BMLD
dynamics and therefore reinforced our premise.

2.2. Modified autoencoder accounted for
binaural detection psychophysics

In our first stage, we provided the network with four parameters
quantifying a signal in a noise, whereas in reality the human auditory
system would be presented with waveforms of a signal combined with
masking noise. How these waveforms are processed as to confer a

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1000079
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1000079 January 21, 2023 Time: 15:21 # 3

Smith et al. 10.3389/fnins.2023.1000079

FIGURE 1

Proof-of-principle: Inferring a latent binaural variable. (A) The detection of a signal (sine wave denoted in navy blue) is improved if its interaural disparity
is different from that of the noise (noise waveform denoted in yellow). (B) A neural network was trained to predict binaural masking level differences
(BMLDs), as described by the equalization-cancelation (EC) framework (left). The network had a modified autoencoder architecture, in which the central
layer acted as an information bottleneck. (C) BMLDs were numerically calculated by the EC framework (black) and estimated by the trained neural
network (red-dashed), for a 500 Hz pure tone signal and noise at varying interaural time differences (ITDs). (D) A node central within the network had
activation values entirely consistent with the latent variable as formally defined by the EC framework (ϕ, the signal’s post-EC ITD).

binaural advantage is an open question, nor does the EC framework
make any explicit proposal about how equalization parameters would
be derived from said waveforms (Durlach, 1972; Wan et al., 2010).
Additionally, humans display a graded psychometric performance as
signal level is varied, from an inability to full detection, for which
detection thresholds only offer a single-value snapshot at one chosen
performance level.

Accordingly, in the second part of our work, we advanced our
network/training paradigm to incorporate these aspects of binaural
detection. Namely, input into the networks were vectors describing
waveforms simulated as arriving at the left and right “ears” (see
the top of the schematic in Figure 2B). Further, networks were
constrained to predict detection rates to which a graded psychometric
function could be fit (see Figure 3A). We also generalized the
training data to represent signals coming from random azimuthal
locations in the frontal horizontal plane, restricting the range of
incorporated ITDs to within an approximate human physiological
range (±655 µs; Figure 2A). To generate BMLD estimates, we
retained the set of equations used in Section “2.1. Proof-of-principle:
Inferring a latent binaural variable” (which were fed parameters from
which waveforms were constructed), as they represent good fits to
human binaural psychophysics (Durlach, 1972) and augment the
availability of training data. To account for the increased complexity,
the autoencoder was modified to have two layers of nodes at the
“encoder” and “decoder” stages and allowed for multiple (10) nodes

in the central layer of the network (Figure 2B). We ran 60 separate
networks, each trained on the same data, but with varying constraints
as to how independently each central node represented information.
This was determined by a parameter β that specified whether the
emphasis was given to the predictive accuracy of the network or the
interpretation and simplicity of its latent representations. This was
specified within the network’s cost function, a function that specifies
to what end a network should be optimized during training (see Eq. 4
in Section “5.2. Modified autoencoder network”). Based on the form
of the cost function, we see that a higher value of β prioritizes the
interpretation and simplicity of latent representations over predictive
accuracy. Interestingly, we found that networks with a non-zero, but
intermediate, value of β best accounted for a held-out set of data
(Figure 2C), showing that some constraints on information encoding
were better than none.

The optimal network had a root mean square error of 2.5% for
the validation dataset (these networks predict detection rate, hence
why the unit is % and not dB). We found this network was able to
closely replicate the psychometric functions for the improvement in
signal detection as the presented tone increased in level amongst a
60 dB SPL broadband noise (Figure 3A). From these data, we were
able to regress functions from which to derive detection thresholds
(defined as a performance level d’ of 1) and, in turn, calculate
BMLDs. We found that the network’s BMLDs increased as the
difference between tone ITD and noise ITD increased (Figure 3B
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FIGURE 2

Network training and configuration. (A) Data from a simulated frontal
field binaural detection task were used to train neural networks to
detect a 500 Hz pure tone (sine wave denoted in navy blue) in
broadband noise (yellow noise waveform). Locations of the tone and
noise were chosen at random on each trial and were equally likely to
come from each azimuthal location. (B) The modified autoencoder
network received left/right “ear” waveforms as inputs, and had five
hidden layers, with the central layer containing 10 nodes–constrained
by the parameter β in their information transmission. (C) Error for 60
networks (10 for each value of β, see Section “Materials and methods”)
tested on a held-out validation dataset. The red circles indicate the
errors for the 60 networks. The red cross marks the optimally
performing network, and the red line bounds the networks with
minimum error for each value of β.

and Supplementary Figure 1B). For example, in diotic noise (noise
ITD = 0) with a tone placed at the far left, detection thresholds were
significantly enhanced by 9 dB (two-sided unpaired t-test, p< 0.001),
matching human BMLD behavior (Durlach and Colburn, 1978).

To allow a comparative assessment of the neural network models
and previously published work, we also presented networks with
stimulus configurations typically employed in the laboratory to
study binaural detection. These include tones and noise in popular
laboratory configurations, either in-phase or completely out-of-phase
across the ears. In the literature, these stimuli are denoted as NoSo,
NoSπ, NπSπ, and NπSo, where N refers to the noise, S the pure
tone signal, with the subscripts denoting interaural phase difference
(IPD) in radians (see Figure 3C, left panel). Importantly, none of
these stimuli were used in training, nor can most occur in everyday
listening. These stimuli have ITDs that are frequency dependent and
can be greater than the range permitted by head width. For example, a
500 Hz pure tone with an IPD of π corresponds to an ITD of 1,000 µs,
whereas the typical value for the largest ITD due to a head is 655 µs
(Woodworth et al., 1954). As our networks were trained on ITDs
within the head’s range, this meant networks had no prior exposure to
this magnitude of ITD and so it was unclear how they would function
over this range. We found that when the noise signal had zero IPD,
the BMLD for the corresponding homophasic (NoSo) and antiphasic
(NoSπ) tone conditions was 10.1 dB, an effect that was statistically
significant (two-sided unpaired t-test, p < 0.001). Comparatively,
when instead the noise signal was interaurally out-of-phase, the
predicted BMLD for the corresponding homophasic (NπSπ) and

FIGURE 3

Modified autoencoder accounted for binaural detection
psychophysics. (A) Psychometric functions quantifying tone detection
as a function of tone level masked by a 60 dB SPL Gaussian noise (left,
black). These functions are drawn for tones presented from three
azimuths, relative to a noise presented directly in front. The optimal
neural network model was able to approximate these psychometric
functions (red, right), from which detection thresholds (corresponding
to a d-prime of 1) and binaural masking level differences (BMLDs)
could be calculated. (B) Psychophysical estimates (left, black) of
human BMLDs for a 500 Hz tone presented in noise, each with
interaural time differences (ITDs) mapped from differing azimuths.
Alongside are the optimal network’s predictions (right, red). Markers
representing thresholds as defined in panel (A) are overlaid. (C) (Left
panel) A schematic of the laboratory stimuli configurations denoted as
NoSo, NoSπ, NπSπ, and NπSo. (Right panel) BMLDs were derived for
experimental stimulus configurations: NoSo/NoSπ, NπSπ/NπSo (π,
for a 500 Hz signal, is beyond the range of ITDs used during training).

antiphasic (NπSo) stimuli was 9.5 dB, and again significant (two-
sided unpaired t-test, p < 0.001). These BMLDs are similar to those
typically measured in laboratory research (Durlach and Colburn,
1978) and with estimates from the psychophysical equations (10.7
and 10.3 dB, respectively; Figure 3C).

2.3. Latent representations imitate neural
signature of population-level cortical
activity

In the third stage, we investigated how the model achieved
this behavior. To do this we, first, looked at the network’s latent
representations and considered them relative to known binaural
phenomena. Prior animal neural data have shown that the stimulus
conditions depicted in Figure 3C (NoSo/NoSπ and NπSπ/NπSo)
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hint at a unique signature of binaural detection processing (Gilbert
et al., 2015). In guinea pig cortical recordings, population spike
counts dropped amongst a No signal as a 500 Hz tone went from
So to Sπ (Figure 4A). Conversely, amongst an Nπ signal, as a
pure tone transitioned from Sπ to So, population spike counts
increased. The neural dynamics contrast, yet in both conditions
binaural detection thresholds improved. We would not expect such
opposing dynamics under an EC framework–a signal and a noise that
are interaurally out-of-phase with one another should consistently
give rise to a less “canceled” signal representation than if they
were in phase with one another. Instead, this neural signature is
more in line with the dynamics expected under a cross-correlation
framework (demonstrated in Gilbert et al., 2015; see Section “5.9.
Binaural cross-correlation algorithm” for more details on binaural
cross-correlation).

We, therefore, examined the latent representation of the
NoSo/NoSπ and NπSπ/NπSo stimulus conditions within the central
layer of our network. To do this we needed to determine which
nodes in this layer were operational, in the sense that they had
non-trivial output values. We found that this was true of six nodes,
whereas the remaining four had adapted to produce negligible
outputs to comply with constraints on information transmission
(Figure 4B). We found that the operational nodes exhibited opposing
dynamics in response to the two pairs of homophasic/antiphasic
stimuli (Figure 4C), although the directionality of these opposing
dynamics varied across the six nodes (we believe that this is a
consequence of the nodes being able to take any real number, and
hence this directionality can be ignored). On average, the change
in activation for NoSo/NoSπ was opposite to NπSπ/NπSo for all
six operational nodes (a 2−6

= 0.016 chance). Although mean
differences were significant (two-sided unpaired t-tests for tone-level
of 35 dB SPL, p < 0.001 for all), trial-to-trial values were noisy
and overlapping [two-sample K-S test between NoSo/NoSπ and
NπSπ/NπSo conditions, for a tone level of 35 dB SPL, D ranged
from 0.076 (n4) to 0.43 (n2), p < 0.001 for all (see Section “5.10.
Statistical analysis”)], to be expected given the input waveforms were
dominated by Gaussian noise. Some of this variance was due to
the partial representation of non-binaural stimulus properties (e.g.,
monaural tone phase) that had not been adequately disregarded early
in the network. Some of this variance could be accounted for based on
the activity of other central nodes (Supplementary Figure 2A). With
such co-variation accounted for, we saw a further enhanced contrast
for the NoSo/NoSπ and NπSπ/NπSo stimulus conditions, markedly
at threshold levels (Supplementary Figures 2B, C).

In summary, given that the network predicted similar magnitudes
of BMLDs for NoSo/NoSπ and NπSπ/NπSo, and broadly captured
opposing dynamics for these stimulus conditions, we conclude that
the network imitated this key signature of binaural detection.

2.4. Encoder network dynamics matched
those of a cross-correlator

Finally, in order to further understand the encoder network that
lies between the waveform inputs and the latent representations
described in the network’s central layer, we examined ITD tuning.
To determine this, we computed noise delay functions in nodes
within the encoding network (Figure 5A), i.e., their activation values
in response to noises presented with varying ITDs. Tuning was

quantified by regressing a Gabor function onto the noise-delay
function (Lane and Delgutte, 2005), i.e., the combination of a cosine
windowed by a Gaussian (overlaid in Figure 5A). For nodes in the
encoder’s first layer, we observed significant ITD tuning in 63 out
of 100 nodes (Figure 5B). By the encoder’s second layer, significant
ITD tuning had emerged in all 100 nodes. Estimates of each node’s
best ITD (i.e., the ITD that gives the maximum activation) were
derived from Gabor fits (to account for nodes that were cyclical in
their noise delay responses, the best ITD was attributed to the most
central tuning peak). In both the first and second layers of the encoder
network, we observed a wide distribution of best ITDs, both within
the simulated head range, and beyond it (Figure 5C).

Importantly, one framework that is both commensurate with the
earlier results (Section “2.3. Latent representations imitate neural
signature of population-level cortical activity”) and found in animal
models is that of a binaural cross-correlator mechanism (McAlpine
et al., 1996; Lane and Delgutte, 2005; Asadollahi et al., 2010;
Gilbert et al., 2015). The concept is predicated on the existence
of coincidence detectors that encode temporally offset signals. To
deduce whether our network had automatically learned to operate
like a cross-correlator, we measured nodal activations in responses
to the laboratory tone-in-noise conditions: NoSo, NoSπ, NπSπ, and
NπSo (Figure 5D). When a signal was presented amongst an in-
phase noise (No), responses were largest for nodes with best ITDs
near 0 µs and decreased as best ITDs were increasingly non-zero.
Conversely, amongst an out-of-phase noise (Nπ), responses were
lowest for nodes with best ITDs near 0 µs and increased as best
ITDs deviated away from this. The effects of the tone phase on node
dynamics were more subtle, although these dynamics were also in
accordance with a node’s tuning properties. Nodes tuned to smaller
ITDs responded most to in-phase tones (So) and least to out-of-phase
tones (Sπ), and vice-versa for nodes tuned to larger ITDs. These
dynamics are consistent with a cross-correlation model.

Computationally, a binaural cross-product can be calculated by
summing the point-by-point product of two temporally offset signals.
Comparative outputs from a simple binaural cross-correlation
algorithm (namely for signals in noise passed through narrow-band
filters centered at 500 Hz) are shown in Figure 5E. We saw a
significant correlation between the network and the cross-correlation
calculation (with local averaging: Pearson’s r = 0.91, p � 0.001;
without: Pearson’s r= 0.36, p� 0.001). When looking across all 60 of
the networks that we trained, we found that the more a network made
predictions that matched the psychophysical data, the more similar its
encoder network was to a cross-correlator (Figure 5F).

3. Discussion

Binaural detection of a signal masked by noise is a well-
standardized laboratory measurement that underpins important
theories of auditory processing. However, the underlying
mechanisms involved remain uncertain. Here, we used machine
learning methods to infer potential mechanisms underlying human-
like binaural detection. We found that our neural networks were
able to successfully utilize interaural discrepancies across dichotic
signal-in-noise waveforms to predict human-like binaural detection
behavior. Notably, similarities with animal neural dynamics and
a binaural cross-correlator were emergent within the network.
We emphasize that these dynamics were not hard-coded into the
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FIGURE 4

Latent representations imitated signature of population-level cortical activity. (A) Change in population masked rate-level functions recorded from
guinea pig auditory cortex (Gilbert et al., 2015) in response to changes in experimental binaural stimuli NoSo/NoSπ (dark blue) and NπSπ/NπSo (light
blue). (B) Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) between each individual node and a unit Gaussian. Unlabeled nodes along the
x-axis were deemed to be suppressed during training. (C) Rate-level functions for the operational central nodes in the optimal network, comparable to
panel (A).

FIGURE 5

Encoder network dynamics matched those of a cross-correlator. (A) Interaural time difference (ITD) tuning emerged as a property of nodes within the
early encoder layer of the network. The activation values of an example node are shown to vary as a function of noise ITD (dark green). Tuning was
characterized by Gabor functions (black, dashed) with peaks defined as a node’s best ITD (black circle). The gray box underlays represent the ITD-limit for
our training simulation. (B) The proportion of variance explained (R2) by Gabor fits, although high in Layer 1 (light green) of the encoder, was widespread
by Layer 2 (darker green). (C) Best ITD distribution for nodes in Layer 2, characterized by a kernel density estimate (bandwidth of 200 µs). Again, the gray
box underlay represents the ITD-limit for our training simulation. (D) Activation values of Layer 2 nodes for binaural detection stimuli: NoSo, NoSπ,
NπSπ, NπSo (color-coded). Smoothed with a 600 µs moving average window. (E) The profiles in 5D were similar to a simple cross-correlation (X-corr)
algorithm. (F) The better a network predicted psychophysical data (x-axis), the more similar its encoder network to a cross-correlator (y-axis).

network, they were learned, and highlight their importance in the
context of signal detection, not just the more commonly referenced
function of sound localization (Joris and Yin, 2007). These findings
promote the understanding of how neural network models operate
as an effective tool for investigating the basis of binaural processing.

3.1. The basis of binaural detection

In our study, we utilized a set of equations originally derived
under the assumptions of the EC framework (Durlach, 1972), treating

them as accurate numerical fits to human binaural psychophysical
data (see Section “5.1. Binaural detection rates and thresholds”). This
is the case, and was in part the motivation, for the experimental
parameters investigated in this study [i.e., the EC framework fits
well to human psychophysics for a 500 Hz tone and ITDs, but not
for ILDs (Wan et al., 2010)]. Yet, our findings overall support a
different process for interaural detection, namely, cross-correlation.
The distinction is important because Domnitz and Colburn (1976)
provided statistical evidence that, under certain assumptions, models
based on temporal or phase differences (as the EC framework is)
provide similar predictions of tone-in-noise detection to interaural

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1000079
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1000079 January 21, 2023 Time: 15:21 # 7

Smith et al. 10.3389/fnins.2023.1000079

correlation-based models. They concluded that comparing binaural
detection predictions made by both classes of models is insufficient
to disentangle underlying mechanisms. To circumvent this, we
inverted the conventional forward-approach to modeling, and
instead reverse engineered our models. We discovered that our
models developed a cross-correlation mechanism to reproduce
psychophysical data. We also observed that central nodes broadly
reproduced opposing dynamics to NoSo/NoSπ and NπSπ/NπSo,
consistent with population neural activity in animal models. In
contrast, one would expect that an EC-like noise cancelation scheme
would operate similarly for both NoSo/NoSπ and NπSπ/NπSo
stimulus conditions, and hence would not exhibit these opposing
dynamics. Further, we found that additional mechanisms that utilize
a priori knowledge of the masker, as have been proposed for some
EC models (Hawley et al., 2004), are not required in order to account
for binaural detection behavior. Taken together, one interpretation of
our findings is that, in its analytical form, the EC framework captures
the “computational goal” of the system (Marr and Poggio, 1976),
enacted via means of a binaural cross-correlator. An alternative
interpretation is that, although binaural cross-correlation produced
a sufficient decision variable for the detection of simple stimuli, for
more complex tasks and stimuli (e.g., speech recognition), binaural
cross-correlation could instead be used to derive optimal delay
parameters within a hybrid EC framework (Culling, 2020).

Despite the occurrence of the earlier mentioned network
dynamics, the model exhibited flaws including dynamics that were
less tangible. For example, we observed instances in which central
nodes partially represented seemingly irrelevant stimulus properties,
e.g., monaural phase. As opposed to the encoder network filtering
out these stimulus properties, the network appeared to separately
represent this co-variation and account for it at a later stage. This
is possibly a consequence of the modified autoencoder architecture’s
preference for capturing separate latent variables in separate nodes
(Higgins et al., 2017; Iten et al., 2018), potentially augmented by an
over-resourced “decoder” network. In addition to these divergent
dynamics, for some extreme stimulus configurations, we observed
some slight discrepancies in predicted and ground truth detection
thresholds, although we stress that relative differences (i.e., BMLDs)
were accurately predicted. We trained our models on stimuli with
ITDs limited by a typical head size (i.e., ±655 µs). However, there is
evidence that natural sound statistics can incorporate ITDs beyond
this limit (Młynarski and Jost, 2014). Training networks on such
distributions may improve the predictive performance for extreme
stimulus configurations.

We note that we have modeled only a fraction of the BMLD
conditions that have been experimentally tested (see Breebaart et al.,
2001a,b,c; Bernstein and Trahiotis, 2017). It will be of interest to
learn how far a model like ours can further generalize to other
parametric laboratory stimuli. Potential tests range from confirming
more standard results such as the effect of the interaural correlation
of the noise (Robinson and Jeffress, 1963; van der Heijden and
Trahiotis, 1997; Bernstein and Trahiotis, 2020) to exploring results
that apparently require extensions such as longer delay lines (van
der Heijden and Trahiotis, 1999, but see Encke and Dietz, 2022
and Eurich et al., 2022, for an opposing interpretation). Given that
our model is essentially a “stationary signal” model, at minimum
an extended set of training stimuli would likely be necessary for
detecting dynamically changing signals, such as those demonstrating
“binaural sluggishness” (Kollmeier and Gilkey, 1990).

3.2. Neural network analogs of auditory
processing

Understanding of binaural detection in humans has been
mired due to ambiguity regarding whether animal neurophysiology
data satisfactorily accounts for human psychophysics. Whilst not
a substitution for “ground-truth” neurophysiology, treating deep
neural networks as a model organism (Scholte, 2018) appears to be
a promising approach to bridging together neural and behavioral
data. Recent neural network studies have described correlates with
broad organizational principles in the auditory system (Kell et al.,
2018; Koumura et al., 2019; Khatami and Escabí, 2020) and asked
questions of “why” a neural system operates in a particular way.
Here, we focused on the question of “how” a system operates, for
the well characterized binaural phenomena of improved detection
of a 500-Hz tone in noise. Despite the notable computational
similarities between our trained networks and neural observations,
comparisons between neural network models and neural biology
come accompanied by an asterisk. The network was not constructed
with the goal of accurately mimicking neuronal biophysics or
hierarchical complexity, but instead a trade-off was made in which
a modified autoencoder architecture (Iten et al., 2018) was applied to
facilitate interpretation and optimization. In future work, the limits of
this network architecture could be further examined and improved
by considering how predicted BMLDs are influenced by spectral
and temporal qualities of the masker and target signals (Breebaart
et al., 2001b,c). Further scaling of this modeling approach, for
example, to examine interaural level differences or across-frequency
integration, would also likely be insightful. However, any impact on
interpretability should be weighed (even in this, arguably simplified,
context the network dynamics were non-trivial), and such models
are first contingent on the generation of suitably large psychophysical
datasets.

4. Conclusion

In conclusion, our results newly demonstrate that neural network
models, utilizing a modified autoencoder architecture, can discover
key computations underlying binaural hearing. Latent activity within
the model corroborates observations made in animal physiology and
speaks to their generality as a solution to binaural detection. The
work demonstrates the potential for machine learning methods to
help bridge the gap between neurophysiology and psychophysics.

5. Materials and methods

5.1. Binaural detection rates and
thresholds

The framework of equalization and cancelation (Durlach, 1972)
has human psychophysical support, accurate in predicting binaural
masking level difference (BMLD) data (Durlach, 1972), binaural
pitch phenomena (Durlach, 1972; Klein and Hartmann, 1981;
Hartmann and McMillon, 2001), and underpinning other models of
binaural hearing (Breebaart et al., 2001a). Although psychophysical
predictions made under this framework do not extend to individual
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differences, they are sufficient to consider presumed commonalities
across individuals. Numerical predictions of BMLDs in decibels
were calculated from phenomenological equations derived from this
framework (Durlach, 1972; Wan et al., 2010):

BMLD (τS, τN) = 10 log10max
{

k− cos (ω0ϕ)

k− γ (τN − τ0)
, 1
}

(1)

where τS and τN are the interaural time lags of the signal and
noise, ω0 is the angular frequency of the pure tone signal, k =(
1+ σ2

ε

)
eω

2
0σ

2
δ where σ2

ε and σ2
δ are jitter (internal noise) parameters

with the values proposed by Durlach (σ2
ε = 0.25 and σ2

δ = 105 µs),
γ is the normalized envelope of the autocorrelation of the narrow-
band noise output of a triangular-gain filter centered at the target
tone frequency, and τ0 is an optimal time equalization parameter.
The parameter ϕ = τS − τN represents the difference in interaural
time of the tone and noise signals (in Section “2.1. Proof-of-
principle: Inferring a latent binaural variable” we examined whether
a neural network could discover this parameter). The values of the
other parameters were chosen according to Durlach’s (1972) original
formulation in which the model was fit to human data.

Psychometric functions were derived from BMLDs calculated
in Eq. 1 (Egan et al., 1969), with detection thresholds defined as
equivalent to a d’ of 1 in a yes-no experiment (Green and Swets, 1966):

detection rate = 1008

(
m0100.1(BMLD+a−23)

2

)
(2)

where BMLD is from Eq. 1, a is pure tone pressure amplitude in
decibels, and 8 is the cumulative normal distribution. Assuming a
nominal diotic detection threshold of 31 dB SPL, we can solve for m0:

m0 =
28−1 (0.69)

100.8 ≈ 0.16 (3)

where a is 31 dB SPL, BMLD is 0 dB, and detection rate is 69 %.

5.2. Modified autoencoder network

We ran autoencoder-based, three-part neural network models
(Higgins et al., 2017; Iten et al., 2018).The three parts are the
encoder, central, and decoder layers. Networks took input values
that were passed through exponential linear unit (ELU) layer(s),
referred to as the “encoder” portion of the network. This was followed
by a single central layer with Gaussian node(s) (≥the number of
parameters varied in the generation of training stimuli) with minimal
uncorrelated representations, constrained by a parameter β which
balances network regularization versus network interpretation. This
was followed by further ELU layer(s), referred to as the “decoder”
portion of the network. All layers were fully connected and feed
forward. The Adam optimization algorithm (Kingma and Ba, 2014)
was used to minimize the cost function:

Cβ

(
x̂, x, σ, µ

)
= ||x̂− x||22 −

β

2

∑
i

log
(
σ2
i
)
− µ2

i − σ2
i (4)

where x̂ and x are predicted and ground truth outputs, respectively
(subscript 2 is the L2 norm, superscript 2 is squaring), σ and µ are
the standard deviation and mean of Gaussian nodes, respectively, and
the i subscripts reference separate central nodes. Architecture meta-
parameters were influenced by those described in Iten et al. (2018).
Network weights and biases were randomly initialized. The number

of training instances employed in each iterative update of network
parameters (i.e., the batch size) was set to 256. The learning rate
(training hyperparameter) was set to 5 × 10−4 for 1,000 epochs (i.e.,
total passes of the entire training dataset).

5.3. Parameter-based network

The first “proof-of-principle” network (see Section “2.1. Proof-of-
principle: Inferring a latent binaural variable”) took four parametric
inputs representing the arrival times of each of a 500 Hz pure tone
and broadband noise at each ear. The network was trained to predict
BMLDs as specified in Eq. 1. The network was trained and validated
(95%/5% split, respectively) on 100 000 instances of monaural tone
and noise arrival times, each randomly drawn from between 0 and
2,000 µs. The encoder and decoder portions each had one layer with
100 ELU nodes. The central layer had two nodes (one was suppressed
during training) with β set to 10−5.

5.4. Waveform-based networks

In our second model (Sections “2.2. Modified autoencoder
accounted for binaural detection psychophysics” to “2.4. Encoder
network dynamics matched those of a cross-correlator”) we trained
networks using waveforms of a signal combined with masking noise.
In this way, and in contrast to the “proof-of-principle” network,
individual stimulus characteristics were not initially known by the
system. These networks took 800 input values, representative of
simulated left ear and right ear waveforms, each of 400 samples as
simulated from a pure tone and noise mapped to different angles
in the azimuth. Networks were trained to predict the corresponding
detection rates, as specified in Eq. 2. Training/validation (95%/5%
split, respectively) was performed with 1,000,000 instances of a
random phase tone in randomly generated white noise. Pure tones
had 10 periods, completing one period per 40 samples. Pure tones
were treated as 500 Hz for generating estimates in Eq. 1. Pure tones
were set to levels between 0 and 50 dB SPL. Pure tones were masked
by randomly distributed broadband noise (50–5,000 Hz, limited by
6th order Butterworth bandpass filter) with an overall level of 60 dB
SPL. The tone and noise were gated simultaneously. Tones and noises
were simulated with ITDs mapped from two independent angles
in the azimuth between −90◦ (far left) and 90◦ (far right). ITDs
were derived from Woodworth’s equation (Woodworth et al., 1954),
assuming a head radius of 0.0875 m. Based upon this formula and
waveform sampling, the azimuth had an effective resolution between
5.6◦ and 10.3◦, depending upon the region within it.

The encoder and decoder portions of the network each had
two 100-neuron ELU layers. The central layer of networks had 10
Gaussian nodes. As the optimization of artificial neural networks was
non-deterministic, and we wished to derive a network representative
of a global minimum, ten networks were trained for each value
of β, namely, 0, 10−6, 10−5, 10−4, 10−3, and 10−2 giving 60 in
total. The network with the least root mean square error between
predicted detection rates and ground truth for the validation dataset
was selected for further analysis. Central nodes were considered
operational if the Kullback–Leibler divergence (Kullback and Leibler,
1951) between their individual responses and a unit Gaussian was
larger than 0.1 bits.
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5.5. An example network calculation

We illustrate the computations from input-to-output in the
waveform-based networks described in Section “5.4. Waveform-
based networks” and schematized in Figure 2B. First, a weighted
sum is performed on the input vector (representative of the left/right
ear waveforms) and this is passed through a non-linear function.
Formally, f (x) = a(WTx), where x is the input vector, WT is a
vector of trainable weights (incorporating a bias term), and a() is the
non-linear “activation” function defined as:

a(z) =

{
z, z ≥ 0
ez − 1, z < 0

. (5)

This computation gives us the “activation value” for one artificial
neuron (also referred to as a node). This process is repeated 100
times, once for each of the 100 neurons in the layer–where each
neuron has its own unique set of weights. We effectively have a
multivariate function between the network inputs and the first layer
of neurons. This transform is then repeated where the outputs of the
first layer of neurons become the inputs to the next. Ultimately, we
end up with 100 activation values corresponding to the number of
neurons in the final layer of the “encoder.” Separate weighted sums
of these 100 values are computed to represent mean and standard
deviation parameters describing ten latent Gaussian distributions.
These parameters form the basis of the information bottleneck of
the autoencoder. These parameters are used to generate 10 randomly
sampled values, µi + σiε, where µi and σi are the mean and standard
deviation parameters defining the i-th latent Gaussian distribution,
and ε ∼ N(0, 1) a random normally distributed number. These
randomly drawn values are then used as inputs to the “decoder”
network. The computations of the “decoder” mimic the “encoder,”
but with separately defined weights, and with one final weighted
sum output–the predicted binaural detection performance. For more
thorough details on the modified autoencoder architecture, please see
Iten et al. (2018).

5.6. Network predictions

Binaural masking level difference (BMLD) predictions were
generated by averaging outputs for 10 repeats of a given stimulus
configuration (i.e., stimulus ITDs would be fixed whilst other
parameters were randomized 10 times). For the waveform-based
networks, BMLDs had to be derived based on detection rates. To
determine detection thresholds, the mean of 10 detection rates for
tone levels, set between 0 and 50 dB SPL in 2.5 dB SPL steps, were
regressed with a psychometric curve (Eq. 2; Figure 3A). BMLDs were
predicted for (i) random phase tones amongst randomly generated
broadband noise with ITDs each mapped from fixed azimuthal
locations spaced between ±90◦ (corresponding to the effective
resolution, namely, 0◦,±5.61◦,±11.27◦,±16.97◦,±22.76◦,±28.67◦,
±34.73◦, ±41.01◦, ±47.56◦, ±54.45◦, ±61.80◦, ±69.77◦, ±78.60◦,
and ±88.71◦), and (ii) random phase tones amongst randomly
generated broadband noise each either in- or out-of-phase (i.e., NoSo,
NoSπ, NπSπ, and NπSo).

5.7. Artificial neural representations

Artificial neuron activation values (=a node’s numerical
expression) were measured in response to the stimuli configurations

in Section “5.6. Network predictions.” Activation values were also
measured as a function of ITD for broadband noise only (50–
5,000 Hz, 60 dB SPL). ITDs ranged from −2,000 to 2,000 µs in
steps of 100 µs. For the parametric-based network, central layer
activation values were measured in response to 100 random stimulus
generations. For the waveform-based networks, activations were
measured in response to 5,000 random stimulus generations.

5.8. ITD tuning

Interaural time difference (ITD) tuning was quantified by fitting
a Gabor function (Lane and Delgutte, 2005) to noise delay responses.
The parametric expression for a Gabor function is:

G = Ae−(ITD−bITD)2
/2s2 cos

(
2πF

(
ITD− bITD

))
+ C (6)

in which we characterized a node’s best ITD as the parameter bITD,
F is the tuning curve frequency, A is a scaling factor (constrained
to be positive), C is a constant offset, and s is a decay constant.
These parameters were fit with the non-linear least squares algorithm
curve_fit in SciPy (Virtanen et al., 2020). An F-test was used to assess
whether a Gabor function was a significantly better fit to noise delay
responses than a linear function of ITD.

5.9. Binaural cross-correlation algorithm

For comparative purposes, we ran a standard psychophysical
model of binaural cross-correlation (Akeroyd, 2017). It produced an
output approximating an ensemble of neurons rather than individual
spike trains. The stimuli NoSo, NoSπ, NπSπ, and NπSo were
generated for a 35 dB SPL tone and a 60 dB SPL randomly distributed
broadband noise (the algorithm utilized computer representations
of dB SPL). Stimuli were sampled at 20 kHz and were 1 s in
duration. Signals were passed through gammatone filters centered at
500 Hz and passed through a non-linear model of neural transduction
(Meddis et al., 1990). The outputs were then delayed relative to one
another, and the cross-products were calculated and summated.

5.10. Statistical analysis

We performed Student’s two-tailed t-tests (assuming unequal
variance) to assess differences between BMLDs. Pearson product-
moment correlation was calculated between the average responses
of nodes to NoSo, NoSπ, NπSπ, and NπSo, and the delay matched
outputs of a binaural cross-correlation algorithm (see Section “5.9.
Binaural cross-correlation algorithm”). Correlations were calculated
with, and without, local averaging (within 600 µs). Student’s
two-tailed t-tests (assuming unequal variance) and two-sample
Kolmogorov–Smirnov tests were performed to compare changes in
central node activation values for homophasic/antiphasic stimuli
pairs. The D statistic of the Kolmogorov–Smirnov test is the absolute
maximum distance between the cumulative distribution functions
of the two samples. The p-value returned by the Kolmogorov–
Smirnov test is the probability that the null hypothesis, that two
samples were drawn from the same distribution, is rejected. For the
outlined statistical analyses, the criterion for significance was set to
p= 0.05. Violin plots were used to capture data probability density in
Figure 3C and Supplementary Figure 2. The lightly shaded underlay
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in Figure 5A shows standard errors. In Figure 5F an exponential
curve was robustly fit with the least absolute residual method.
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SUPPLEMENTARY FIGURE 1

(A) The prediction error between the equalization-cancelation (EC)
framework and network predictions in Figure 1C. (B) The prediction error
between the EC framework and network predictions in Figure 3B.

SUPPLEMENTARY FIGURE 2

(A) Some central nodes orthogonally represented stimulus-properties. For
example, n3 sinusoidally varied in activation value as a function of monaural
tone phase. Shown for NoSo with tone level at 20 dB SPL. (B) Near threshold
(tone level of 20 dB SPL), the distribution of values when comparing the
change in n1 activation between NoSo/NoSπ (dark blue, left) and NπSπ/NπSo
(light blue, right) are considerably overlapping. Two-sample KS test statistic, D,
is 0.11, p < 0.001. (C) When the co-variate captured by n3 is controlled for
(e.g., looking at when n3 < 0, i.e., monaural tone phase between 0 and π) the
distinction between the conditions is clearer. Two-sample KS test statistic, D,
is 0.8, p < 0.001.
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