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Abstract
It is well known that the conventional couple-stress theory leaves the spherical part of the
couple-stress indeterminate. This indeterminacy problem is recently resolved for fibrous
composites subjected to either small or large deformations and containing a single fam-
ily of fibres resistant in bending (Soldatos in Math. Mech. Solids, 2021, https://doi.org/10.
1177/10812865211061595). However, the problem remains still unsolved in simpler cases
where the implied preference material direction is not related to fibre bending resistance, and
even in the simplest possible case where the polar material of interest is linearly elastic and
isotropic. This communication aims (i) to show that a relevant virtual spin concept employed
(Soldatos in Math. Mech. Solids, 2021, https://doi.org/10.1177/10812865211061595) is fur-
ther applicable in the latter case of polar linear isotropic elasticity, (ii) to demonstrate the
process in which that concept thus leads to determination of the spherical part of the couple-
stress, (iii) to exemplify this process by providing a couple of simple illustrative examples,
(iv) to specify and discuss the reason that the outlined method meets a hurdle in cases of
linear anisotropic elasticity that is due to one or more preferential material directions, and,
hence, (v) to further discuss the manner in which that newly identified difficulty is currently
confronted, and may thus be handled successfully.

Keywords Couple-stress theory · Elasticity · Generalised Cosserat theory · Isotropic
elasticity · Polar elasticity · Spherical part of the couple-stress
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1 Introduction

The conventional couple-stress theory as its origin in the 1909 publication of the Cosserat
brothers [1] (see also [2]). It took, however, a little more than five decades to become openly
understood that the theory leaves the spherical part of the couple-stress indeterminate [3,
4] and may, therefore, be somehow incomplete. By mentioning that the relevant analysis
presented in part I of Reference [4] (pp. 17-29) had been developed between 1949 and 1950,
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Koiter implied that he essentially knew of that drawback of the theory more than a decade
before [3] and [4] were published. Koiter may therefore have been the first who recorded
that drawback, at least privately, and he has certainly been the first who claimed [4] that
only five of the six boundary conditions required for the formulation of a relevant, well-
posed boundary value problem are independent.

On its own, the latter result may now give rise to the feeling that the remaining, sixth
boundary condition may somehow be related to action of the indeterminate spherical part of
the couple-stress (termed, for brevity, spherical couple-stress in what follows). Nevertheless,
Koiter [4] pointed also out, perhaps not unreasonably at the time, that “the reason for this in-
determinacy is that an arbitrary distribution of the first invariant of the couple-stress tensor”
(that is, the spherical couple-stress) “and the associated skew-symmetric force-stress tensor”
(that is, the antisymmetric part of the stress tensor) “do not work in any velocity distribution
over the body”. He thus concluded [4] that, “without any physical loss of generality, we may
henceforward put the invariant” (namely, the spherical couple-stress) “equal to zero.”

It will be seen in what follows that the latter claim is an eventually incomplete conclu-
sion that is reached, not unreasonably, due to apparent lack of complete relevant information.
Still though, the truth of the matter is that the mentioned, now well-known indeterminacy
drawback of the conventional couple-stress theory remains still unresolved, despite that it
has since become an issue of considerable controversy and debate (e.g., [5–12] and refer-
ences therein). Moreover, that drawback has re-emerged, more recently, in the development
of a relevant hyperelasticity theory of fibre-reinforced solids with embedded fibres that re-
sist bending [13]. Like their conventional couple-stress theory counterpart [1–4], both the
linear and the non-linear versions of the polar elasticity theory presented in [13] leave the
spherical couple-stress indeterminate as well.

It is recalled in this context, that Koiter [4] paid exclusive attention to a version of the
conventional couple-stress theory that is adequate for studying the behaviour of linearly elas-
tic isotropic solids subjected to infinitesimally small deformations; Mindlin and Tiersten [3]
had earlier done the same, though not exclusively, to a considerable extent. In contrast, the
theoretical framework developed in [13] was principally interested to model large elastic
deformations of polar fibre-reinforced and, therefore, anisotropic material behaviour. How-
ever, the linearised version of that anisotropic material framework [13] is applicable also
within the small deformation regime only, provided that the implied anisotropic features are
due to the presence of fibres resistant in bending (see also [14]).

It though further happened that, unlike its linearly elastic isotropic counterpart [1–4], the
linear version of the theory developed in [13] revealed that the energy stored in a fibrous
elastic solid with fibre-bending stiffness contains a couple-stress related term that does not
contribute into the couple-stress constitutive equation. A feeling thus emerges that the ap-
pearance of that extra energy term relates to elastic energy contribution that is stored in
the material through action of the indeterminate spherical couple-stress. That feeling has
recently led to a refined formulation of [13] that, finally, does enable determination of the
spherical couple-stress [15].

The present study is driven by the thought that a similar, “hidden” strain energy term
may also be present in the case of the isotropic polar linear elasticity that References [3] and
[4] were principally interested on. If present, such a term must then enter the strain energy
function in a manner that is not directly detectable through the conventional equilibrium con-
siderations. As happens in the case of polar fibre-reinforced materials [15], such an energy
term must instead represent work produced through interaction of the spherical couple-stress
with the gradient of some auxiliary, virtual spin vector that differs from the standard, dis-
placement generated spin vector employed in the conventional theory. The principal purpose
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of the present communication thus is (i) to show that the implied, new virtual spin concept
[15] is indeed applicable to problems of polar linear isotropic elasticity, (ii) to demonstrate
the process that this concept leads to identification of the hidden or missing strain energy
term and, hence, to the determination of the spherical couple-stress, and (iii) to exemplify
the proposed theoretical development by successfully applying it on the relatively simple
boundary value problems considered previously in [4].

In this context, Sect. 2 outlines the basic theoretical background required for the presen-
tation of the implied theoretical development. This background includes the standard kine-
matic and equilibrium considerations met in conventional couple-stress theory, it, further,
introduces an auxiliary spin vector field that replaces its standard, displacement generated
counterpart [1–4] and, thus, leads to the development of a relevant refined theoretical formu-
lation. Section 3 then appropriately refines the energy principles and relevant considerations
employed in the conventional theory and arrives to a necessary additional condition that, as
happens in [15], may lead to the determination of the spherical couple-stress.

Section 4 next proceeds to develop the method that enables the outlined theoretical re-
finement to determine the spherical couple-stress in the case of the constitutional setting
of current interest, namely the material setting of linear isotropic elasticity. Section 5 then
revisits the fundamental problems of polar linear isotropy considered in [4], namely the
torsion of a circular cylindrical bar and the pure bending problem of a rectangular plate
and, in each case, demonstrates the manner that the spherical couple-stress is determined.
Section 6 summarises the main conclusions drawn from the presented analysis and com-
ments on the nature of a newly identified operational difficulty met in the case of material
anisotropy. Moreover, that concluding Section discusses the way that this difficulty is cur-
rently dealt with, and thus highlights directions that would enable more successful handling
of the same.

2 Theoretical Foundation

Most of the principal equations and associated concepts of the refined, linear couple-stress
theory of interest are essentially available in [16, 17] and, for self-consistency of the present
article, are quoted in this section without detailed attention to their derivation. These natu-
rally begin with the standard decomposition,

σij = σ(ij) + σ[ij ], (2.1)

of the components of the non-symmetric stress tensor, σ , into symmetric and antisymmetric
parts, where indices refer to a suitable three-dimensional Cartesian co-ordinate framework,
Oxi , and thus take the values 1, 2 and 3.

By neglecting body forces and body couples for simplicity, the standard equations of
equilibrium are written as follows:

σij,i = 0, εkjiσji + m�k,� = 0, (2.2)

where m and ε denote the couple-stress tensor and the alternating tensor, respectively. Nev-
ertheless, with use of (2.1) and appropriate exploitation of the alternating tensor properties,
(2.2b) converts into the following:

σ[ij ] = 1

2
εkjim�k,�, (2.3)
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and may thus be perceived as a constitutive equation for the antisymmetric part of the stress.
Provided that the couple-stresses are continuous and at least twice differentiable func-

tions, further use of (2.1) enables the reduced pair of equilibrium equations (2.2a) and (2.3)
to contract into the single equation

σ(ij),i + 1

2
εkjim̄�k,�i = 0, (2.4)

where the appearance of the deviatoric couple-stress tensor

m̄�k = m�k − 1

3
mrrδ�k, (2.5)

reveals that standard equilibrium considerations are not influenced by the spherical couple-
stress, mrr ; the appearing Kronecker’s delta represents the components of the unit matrix.

In the usual manner, the components of the traction and the couple-traction vectors acting
on any internal or bounding surface of the material are respectively given as follows:

T
(n)
i = σjinj , L

(n)
i = mjinj , (2.6)

where n denotes the outward unit normal of that surface. It is recalled in passing that Koiter
[4] have shown that, in dealing with the bounding surface of a polar material, only two of
the three boundary conditions (2.6b) can be set independently of the deformation.

The total energy stored within an arbitrary volume, V , of such a polar elastic material is

E = 1

2

∫
S

(
T

(n)
i ui + L

(n)
i Φi

)
dS ≥ 0, (2.7)

where S denotes the surface that surrounds V , dS stands for the corresponding surface
element, and the equality sign holds only in the absence of deformation. Moreover, u is
the displacement vector and Φ represents some unspecified, auxiliary spin-type vector. Al-
though unspecified, that vector is considered dependent on the deformation field and relates
to a corresponding, antisymmetric, auxiliary rotation tensor, ϕ, through the standard rela-
tionships

Φi = 1

2
εijkϕkj , ϕkj = εijkΦi. (2.8)

The conventional couple-stress theory [1–4] may thus be obtained as a special case of
this consideration, by setting

ϕkj ≡ ωkj = 1

2

(
uk,j − uj,k

)
, Φi ≡ Ωi = 1

2
εijkωkj , (2.9)

where the implied antisymmetric part, ω, of the displacement gradient represents the stan-
dard, actual rotation field of the deformation. In the usual manner, the symmetric part of the
displacement gradient, namely

eij = 1

2

(
ui,j + uj,i

)
, (2.10)

represents the corresponding infinitesimal strain field.
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It can readily be verified that

Ωi,i = 0, (2.11)

and, for reasons explained in what follows, this identity makes the choice (2.9) a special
case of secondary interest. In this context, it is generally considered that

Φi �= αQijΩj =⇒ Φi,i �= αQijΩj,i = αΩi,i = 0, (2.12)

where α is a non-zero real constant, and Q is a constant orthogonal matrix that represents
an arbitrary rotation/reflection of the co-ordinate system.

It is reemphasised that Φ or, equivalently, ϕ is considered related with the displacement
field and its gradient, but the implied relevance is unknown and, therefore, unspecified. In
this context, Φ and ϕ are essentially regarded as virtual spin and rotation fields. In contrast,
ω and Ω are actual relevant fields that may be identified uniquely, through the solution of
the outlined governing equations as soon as the constitutive equations of the material are
specified.

3 Elastic Energy Considerations

3.1 Conventional Couple-Stress Theory

It is now recalled that, in the conventional couple-stress theory, the energy stored internally
in a polar, linearly elastic material attains the form (e.g., [3, 4])

W
(
eij ,Ωi,j

) = We
(
eij

) + WΩ
(
Ωi,j

)
, (3.1)

where the positive semidefinite quantities

We
(
eij

) = 1

2
σ(ji)eij ≥ 0,

WΩ
(
Ωi,j

) = 1

2
m�iΩi,� = 1

2
m̄�iΩi,� ≥ 0,

(3.2)

are quadratic in their arguments and represent, respectively, the strain energy function met
in non-polar linear elasticity and its spin-gradient counterpart that is here due to the assumed
polar material response.

It is emphasised that, in the derivation of (3.2b), use is also made of (2.5). The spher-
ical couple-stress, mrr , thus fails to record its contribution into the polar part, WΩ , of the
total strain energy function, due to its subsequent reciprocation with the divergence (2.11)
of the actual, displacement generated spin vector, Ωi,i . As a result, mrr emerges as an in-
determinate quantity, because it fails to record a contribution not only in the equilibrium
equations (2.4), but also in the strain energy function (3.1); and subsequently in the consti-
tutive equations,

σ(ij) = ∂We

∂eij

, m̄ji = ∂WΩ

∂Ωi,j

, (3.3)

employed in the conventional theory.
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It may be claimed at this point that a third energy term that potentially involves mixed
products of displacement and spin gradients may appear in the right-hand side of (3.1). Such
an energy term had indeed initially been included in, and subsequently dropped from either
version of conventional polar linear elasticity presented in [3] and [4]. Details that justify
rejection of that energy term are provided in both [3, 4], and the provided reasoning is here
considered still valid.

Under these considerations, a revisit now becomes necessary of the concept of the
displacement-gradient energy function introduced in [16]. Namely,

U
(
eij ,ωij

) = 1

2
σjiui,j = 1

2

(
σ(ji) + σ[j i]

) (
eij + ωij

) = 1

2

(
σ(ij)eij + σ[j i]ωij

)

= We
(
eij

) + Wω
(
ωij

)
, (3.4)

where the appearing rotation energy that is apparently stored in the material is

Wω
(
ωij

) = 1

2
σ[j i]ωij = 1

4
εkijm�k,�ωij = −1

2
Ωkm�k,� = 1

2
Ωk,�m�k − 1

2
(Ωkm�k),� . (3.5)

It is initially observed that, like its strain energy counterpart (3.1), the displacement-
gradient energy (3.4) splits, naturally, into two quadratic terms. The first term still coincides
with the strain energy function met in non-polar linear elasticity while, within the afore-
mentioned reasoning detailed in [3, 4], the rotation generated part (3.5) is regarded relevant
to purely polar material response.

It is further observed that the displacement gradient energy (3.4) and the strain energy
(3.1) naturally coincide in the case of non-polar linear elasticity, where WΩ = Wω = 0.
However, these expressions now differ to each other, due to the different positive values
attained by the appearing spin- and rotation-generated energies. Indeed, a comparison of
(3.2b) and (3.5) yields the energy difference

Wm = WΩ
(
Ωi,j

) − Wω
(
ωij

) = 1

2
(m�kΩk),� . (3.6)

Moreover, (3.5) suggests that Wω is an amount of stored energy that takes into consider-
ation the action of the full couple-stress tensor, m, while (3.2b) indicates that WΩ accounts
only for the deviatoric part, m̄, of the same. The latter observation makes it understood that
the difference (3.6) of those polar-response parts of the stored energy relates to spherical
couple-stress action.

It is finally observed that integration of (3.6) over an arbitrary volume, V , of the material,
followed by application of the divergence theorem and a subsequent use of (2.6b), yields

∫
V

WmdV = 1

2

∫
V

(m�kΩk),� dV = 1

2

∫
S

m�kΩkn�dS = 1

2

∫
S

L
(n)
k ΩkdS. (3.7)

This result reveals that the contribution of Wm into the total elastic energy stored in an arbi-
trary volume of the material equals one half of the total work done through the interaction
of the set of couple-tractions, L

(n)
i , acting on the bounding surface of V with the actual spin

vector, Ωi .
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3.2 Refined Couple-Stress Theory

Validity of (2.12) enables the proposed, refined couple-stress theory to employ a generalised
polar part of the strain energy function,

WΦ
(
Φi,j

) = 1

2
m�iΦi,� = 1

2

(
1

3
miiΦ�,� + m̄�iΦi,�

)
, (3.8)

that can explicitly record the stored energy contribution of the spherical couple-stress, mii .
The relevant constitutive equation,

mji = ∂WΦ

∂Φi,j

, (3.9)

then implies that the expression

mrr = ∂WΦ

∂Φr,r

(3.10)

now acquires mathematical sense and, by thus enabling the spherical couple-stress to be
treated as a potentially measurable quantity, paves a route to its determination.

On the other hand, introduction of (2.6) into (2.7), followed by application of the diver-
gence theorem and a relevant process detailed in [16, 17], reveals that the total elastic energy
stored in the material attains the form

E =
∫

V

(
We + WΦ

)
dV =

∫
V

WdV, (3.11)

where the polar part (3.8) of the appearing strain energy necessarily satisfies the condition

WΦ = 1

2

[
m�i,� (Φi − Ωi) + m�iΦi,�

] = 1

2

{
[m�i (Φi − Ωi)],� + m�iΩi,�

} ≥ 0. (3.12)

A comparison of the right-hand sides of (3.12) with (3.2b) thus yields

WΦ − WΩ = 1

2
[m�i (Φi − Ωi)],� , (3.13)

which holds for any suitable auxiliary spin vector Φ . Evidently, by ignoring (2.12), one may
select Φ to coincide with Ω in the sense implied by (2.9b), and, hence, enable (3.13) to
trivially yield

WΦ = WΩ. (3.14)

It is already mentioned though, that (2.9b) represents a case of secondary interest, in
which the conventional couple-stress theory essentially forces the strain energy expressions
(3.2) and (3.8) to become identical. Nevertheless, alternative vector values of Φ that (i) are
consistent with (2.9b) and (ii) may lead to forms of WΦ that still satisfy (3.14) may become
available through satisfaction of the condition

(m�iΦi),� = (m�iΩi),� = 2Wm, (3.15)

where (3.6) is also accounted for.
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As a matter of fact, (3.15) is essentially an extra equation that emerges at this point as
an enhanced form of (3.6). It is noted with profound interest that (3.15) is practically iden-
tical with the corresponding condition noted as Eq. (23) in [15], namely with the condition
that made compatible and therefore complementary the non-linear hyperelasticity analyses
detailed in [13] and [14].

Hence, as is also pointed out in [13], the middle side of (3.15) represents energy per unit
volume due to interaction of the couple-stress tensor with the actual, displacement generated
spin vector, while the left-hand side is an equal amount of energy that is due to interaction of
the couple-stress with an auxiliary spin vector. Integration of (3.15) over an arbitrary volume,
V , of the material, followed by application of the divergence theorem and a subsequent use
of (2.6), thus yields

∫
S

L
(n)
i ΦidS =

∫
S

L
(n)
i ΩidS = 2

∫
V

WmdV, (3.16)

which is naturally in agreement with (3.7).
It is now recalled that the actual spin vector, Ω , as well as the deviatoric part of couple-

stress, m̄, can become known from the solution of the conventional theory equations. Hence,
in the light of the outlined analysis and relevant observations detailed in [15], a combination
of (3.15) with (2.5) yields

Ω�mrr,� = 6Wm − 3 (m̄�iΩi),� . (3.17)

This is then regarded as a partial differential equation (PDE), which may be solved for the
spherical couple-stress as soon as the energy term Wm is specified. Potential determination
of Wm will thus become a main issue of priority in the subsequent Section.

It is also pointed out that the remaining, unused part of the equation (3.15) is insuffi-
cient for unique determination of all three components of the spin vector Φi . Hence, since
there exists an infinite number of such auxiliary vectors, Φ remains unspecified and thus is
essentially recognised as a virtual spin vector.

It is further emphasised that, validity of (3.15) and, therefore, (3.14) implies that the
alteration of the principal spin vector employed in the refined couple-stress theory, from Ω
to Φ , leaves unaltered the value of the spin-gradient part of the elastic energy stored in the
material. Hence, (3.1) may be re-rewritten in the following augmented form:

W
(
eij ,Ωi,j

) = We
(
eij

) + WΩ
(
Ωi,j

) = We
(
eij

) + WΦ
(
Φi,j

)
. (3.18)

As is detailed in the subsequent Section, explicit expressions of WΦ and WΩ may be
sought and, thus, be associated with the outlined analysis only after the material symmetries
of the linearly elastic polar solid of interest are specified. Nevertheless, (3.14) or, equiva-
lently, (3.18) will still hold for the implied vector values of Φ , but expressions (3.8) and
(3.2b) of the corresponding polar parts of the strain energy function will remain different. It
follows that (3.8) will still contain the additional piece of information that (3.10) associates
with the value of the spherical couple-stress.

A more comprehensive view of (3.12) suggests that, while the extra energy contribution
Wm enters the expression of the virtual strain energy function through its association with
the virtual spin field, Φ , that contribution remains ultimately unrecorded in the value of
WΦ because it is essentially counteracted by an equal amount of energy that is taken off
through equivalent association with the actual spin field, Ω . The effect of this observation
passes naturally undetectable in the special case of the conventional theory, where validity
of (2.9b) thus leads to the controversial impression [4] that the strain energy function is
completely uninfluenced by the action of the spherical couple-stress.
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4 Constitution – Material Symmetry Considerations

Since the first term, We, in the right-hand side of (3.18) is identical with its non-polar mate-
rial counterpart, no further direct attention will be paid to either that term or to the symmetric
part of the stress. It will instead be assumed that We naturally conforms with whichever ma-
terial symmetries are assumed in the material of interest and, hence, that the symmetric part
of the stress also does so through subsequent use of (3.3a).

Since (3.9) represents the couple-stress part of the refined constitutive equations, it is
initially observed that, unlike its small strain counterpart employed in (3.3a), the appearing
spin gradient Φi,j is a nonsymmetric tensorial quantity. The search for corresponding forms
of WΦ that remain invariant under rigid body rotation thus requires the split of Φi,j into
symmetric and antisymmetric parts

Φ(i,j) = 1

2

(
Φi,j + Φj,i

)
, Φ[i,j ] = 1

2

(
Φi,j − Φj,i

)
, (4.1)

respectively.
WΦ is then required to be an isotropic invariant function of these quantities and, there-

fore, must be a function of a corresponding complete set of relevant invariants that represent
the material symmetry group of the polar elastic solid of interest. In the context of linear
elasticity though, WΦ is also required to be quadratic in its arguments. Hence, relevant in-
variants of order higher than two need not be listed in that set.

4.1 Polar Isotropic Materials

The class of linearly elastic polar isotropic materials received exclusive attention in Refer-
ence [4], as well as substantial attention in Reference [3], and, thus, has naturally dominated
research interest in subsequent relevant investigations. Within this material class, the re-
quired list of first- and second-order invariants of the tensor quantities defined in (4.1) is as
follows (e.g., [18]):

I1 = Φ(i,i) ≡ Φi,i, I2 = Φ(i,j)Φ(j,i), I3 = Φ[i,j ]Φ[j,i]. (4.2)

The most general, quadratic form of the relevant polar part of the strain energy function
thus is

WΦ
(
Φm,n

) = 1

2

(
η0I

2
1 + η1I2 + η2I3

) = 1

2

[
η0

(
Φm,m

)2 + η1Φ(m,n)Φ(n,m) + η2Φ[m,n]Φ[n,m]

]
,

(4.3)
where η0, η1 and η2 are appropriate material moduli having dimensions of force. The in-
equality noted in (3.12) is then satisfied regardless of the deformation only for positive
values of these moduli.

With use of (4.3), (3.9) yields the couple-stress constitutive equation as follows:

mji = ∂WΦ

∂Φi,j

= η0Φm,mδij + 2η1Φ(i,j) + 2η2Φ[j,i]

= η0Φm,mδij + (η1 + η2)Φj,i + (η1 − η2)Φi,j . (4.4)

Hence, by contracting the appearing free indices, one obtains

mrr = ∂WΦ

∂Φr,r

= (3η0 + 2η1)Φr,r �= 0, (4.5)
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where (2.12) is also taken into consideration.
In the special case of conventional polar elasticity, where (2.12) is dismissed and (2.9)

thus holds, (4.3) reduces to

WΩ
(
Ωi,j

) = 1

2

(
η1Ω(i,j)Ω(j,i) + η2Ω[i,j ]Ω[j,i]

)
, (4.6)

where the definition of the appearing symmetric and antisymmetric parts of the actual spin
vector, Ω , are analogous to their (4.1) counterparts. It is noted in this regard that the pair of
elastic moduli η1 and η2, is equivalent to either of its counterpart pair employed in [3] and
[4].

These considerations make it understood that η0

(
Φm,m

)2
/2 emerges in (4.3) as an extra

energy term or, more precisely, as an energy term that necessarily escapes the attention
of and, therefore, becomes unaccountable by the conventional couple-stress theory. This is
because validity of the identity (2.11) prevents (4.6) from explicitly recording the existence
of such an energy contribution in this special case.

The additional modulus appearing in (4.3), namely η0, is here associated with energy
contribution that is clearly due to interaction of the virtual spin divergence with the spherical
couple-stress. In this context, (4.4) and (4.5) dispute Koiter’s early conclusion [4] (see also
Introduction), which suggests that the spherical couple-stress does not produce work and,
without loss of generality, may thus be put equal to zero.

It is worth further noting that upon dismissing (2.12) and, hence, directing attention to
the special case of the conventional couple-stress theory, (4.4) reduces to

mji = ∂WΩ

∂Ωi,j

= 2η1Ω(i,j) + 2η2Ω[j,i] = (η1 + η2)Ωj,i + (η1 − η2)Ωi,j . (4.7)

In a hypothetical situation that (2.11) was invalid, and a contraction of the appearing free
indices thus was allowed, this expression would lead to

mrr = 0, (4.8)

which, to a certain extent, would justify Koiter’s early, essentially incomplete relevant con-
clusion. Most interestingly, a combination of (4.8) with (2.5) would then enable (4.7) to
reduce to

m̄ji = ∂WΩ

∂Ωi,j

= 2η1Ω(i,j) + 2η2Ω[j,i] = (η1 + η2)Ωj,i + (η1 − η2)Ωi,j , (4.9)

which is clearly in agreement with the constitutive equation (3.3b) employed in the conven-
tional theory. In this manner, as soon as the condition (2.12) would be removed, the conven-
tional couple-stress theory might emerge, along with Koiter’s conclusion, as a special case
of the presented, more general theoretical formulation.

However, validity of the identity (2.11) suggests that the free indices contraction that
might have led to led from (4.4) to (4.8) is mathematically incompatible with the middle
term of (4.7). In this regard, the conventional couple-stress theory or, equivalently, (2.9)
represents an exceptional, essentially singular case. In that case, (3.10) becomes invalid and,
for the well-known reasons adopted in the conventional theory [3, 4], (3.9) is considered
directly reducible to (3.3b).
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Under these considerations, it is revealing to further note that a combination of (4.4) with
(2.5) yields the deviatoric part of the couple-stress as follows:

m̄ji = 2η1

(
Φ(i,j) − 1

3
Φr,rδij

)
+2η2Φ[j,i] = −2η1

3
Φm,mδij +(η1 + η2)Φj,i +(η1 − η2)Φi,j .

(4.10)
While the divergence, Φm,m, of the virtual spin vector does mark its contribution into this
expression, the additional elastic modulus that is relevant to the energy contribution of the
spherical couple- stress, namely η0, does not do so. Expression (4.10) then naturally reduces
to its conventional theory counterpart (4.9) as soon as the actual spin vector (2.9b) is allowed
to replace its appearing virtual spin counterpart.

While the conventional rotation/spin choice (2.9) thus represents an exceptional, essen-
tially singular case, all the information that the conventional couple-stress theory makes
available through the solution of a relevant, well-posed boundary value problem is still valid.
As is already mentioned, this information includes the ultimate forms of the displacement
vector, the small strain tensor, and the actual spin vector, Ω , as well as the relevant stress
and the deviatoric couple-stress fields.

Hence, by further requiring from the unaccounted energy part, η0
(
Φm,m

)2
/2, to balance

the unrecorded energy contribution (3.15), the present analysis enables the additional equa-
tion (3.17) to obtain the more specific form

Ω�mrr,� = 3η0

(
Φm,m

)2 − 3 (m̄�iΩi),� , (4.11)

which evidently holds outside the conventional equilibrium framework. A combination with
(4.5) then eliminates the appearing, unknown, virtual spin divergence and leads to the fol-
lowing, first-order, non-linear PDE:

Ω�mrr,� = ηm2
rr − 3 (m̄�iΩi),� , η = 3η0

(3η0 + 2η1)
2 > 0, (4.12)

for the unknown spherical couple-stress, mrr .
The spherical couple-stress can then be determined as a solutions of this PDE, which

may generally be pursued analytically or computationally, subject to some appropriate set
of boundary conditions. It is recalled in this context, that, as is shown by Koiter [4], only five
of the six couple-traction boundary conditions (2.6) are formally independent in the case of
the conventional couple-stress theory. Those independent conditions are necessarily used
earlier, for the determination of the deviatoric couple-stress tensor and the actual spin vector
appearing in (4.12). Hence, a sixth, unused boundary condition will still remain available to
be associated with the solution of the first-order PDE (4.12).

After mrr thus is determined, (4.5) may be reemployed to provide the value of the ap-
pearing virtual spin divergence, Φm,m. Moreover, some alternative form of the couple-stress
constitutive equation might be felt desirable or even sought using (4.4) and (4.10). Still
though, not enough information appears to be available for unique determination of all three
components of the unknown spin vector Φi , which thus remains an auxiliary, virtual spin
vector that needs not be determined.

Solution of the PDE (4.12) thus generally depends on the boundary value problem of
interest and the characteristics of its conventional couple-stress theory solution, including
the relevant forms attained by the appearing actual spin vector, Ω , and the deviatoric couple-
stress tensor (4.9). Moreover, the non-linear character of this PDE implies that its anticipated
solution may be non-unique, while the superposition principle of particular solutions is not
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applicable. Under these considerations, a search for a general or any particular solution of
(4.12) needs not be pursued at this point. However, a couple of simple relevant applications
are presented later, in Sect. 5 below.

Finally, a remarkable similarity is noted between (4.12) and its counterpart that is noted
as Eq. (4.16) in [15]. The only difference between these two PDEs is confined into the form
of the first term appearing in their right-hand sides. In the hyperelasticity analysis detailed in
[15], that energy representing term attains a general form that depends on the influence that
a fibre stretching type of invariant, termed there as I20, exerts on the strain energy density.
In (4.12) though, the present, linear elasticity formulation naturally requires from such an
energy generated term to be quadratic on the unknown spherical couple-stress, mrr .

4.2 Polar Material Anisotropy Due to Presence of Preferential Material Directions

Consider next the class of polar transverse isotropic solids, and denote the unit vector that
defines the single relevant direction of material preference with a. For this material class, the
complete list of invariants required for an adequately general description of WΦ is formed
by complementing (4.2) with the following:

I4 = aiΦ(i,j)aj = aiΦi,j aj , I5 = aiΦ(i,j)Φ(j,k)ak,

I6 = aiΦ[i,j ]Φ[j,k]ak, I7 = aiΦ(i,j)Φ[j,k]ak.

(4.13)

The quadratic form (4.3) of the polar part of the strain energy function thus is augmented
accordingly, and takes the form

WΦ
(
Φi,j

) = 1

2

[
η0I1

(
I1 + 2η̂0I4

) + η1I2 + η2I3 + η3I
2
4 + η4I5 + η5I6 + 2η6I7

]
, (4.14)

where η3 to η6 and the product η0η̂0 represent five additional material moduli having dimen-
sions of force. It is noted in this regard that the nondimensional parameter η̂0 is essentially
associated with strain energy contribution that may be due to interaction of the spherical
couple-stress with the invariant I4.

It is further noted with interest that I4 represents a stretching type of deformation along
the direction of transverse isotropy. In this context, this invariant is completely analogous
with its fibre-stretching type of invariant termed as I20 in the hyperelasticity analysis detailed
in [15].

It is then fitting to also note that, in the case of conventional polar elasticity, (4.14) re-
duces into the following:

WΩ
(
Ωi,j

) = 1

2

[
η1Ω(i,j)Ω(j,i) + η2Ω[i,j ]Ω[j,i] + η3

(
aiΩ(i,j)aj

)2

+η4Ω(i,j)Ω(j,k)ak + η5aiΩ[i,j ]Ω[j,k]ak + 2η6aiΩ(i,j)Ω[j,k]ak

]
, (4.15)

which, like its isotropic material counterpart (4.6), naturally fails to explicitly record any
kind of strain energy contributions that may be due to spherical couple-stress action.

In contrast, (4.14) states explicitly that η0I1
(
I1 + 2η̂0I4

)
/2 does represent such an

amount of energy contribution. By thus requiring from the latter, essentially unaccounted
energy part to balance the extra energy contribution captured in (3.15), one finds that (4.11)
is now replaced by the following:

Ω�mrr,� = 3η0Φr,r

(
δmn + 2η̂0aman

)
Φ(m,n) − 3 (m̄�iΩi),� . (4.16)
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On the other hand, the transverse isotropic counterpart of the constitutive equation (4.4)
is found to be

mji = ∂WΦ

∂Φi,j

= η0

(
δij + η̂0aiaj

)
Φm,m + 2η1Φ(i,j) + 2η2Φ[j,i] + 2η3Φ(m,n)amanaiaj

+ 2η4Φ(j,k)aiak + 2η5Φ[j,k]aiak + 2η6

(
aiΦ[j,k] + Φ(k,i)aj

)
ak, (4.17)

and a contraction of the appearing free indices yields now the relationship

mrr = ∂WΦ

∂Φr,r

= [(
3 + η̂0

)
η0 + 2η1

]
Φr,r + 2 (η3 + η4 + η6) amanΦ(m,n). (4.18)

However, the pair of equations (4.16) and (4.18) is algebraically complicated and, unlike
their isotropic material counterparts (4.11) and (4.5), does not seem to make feasible a con-
version of (4.16) into a single PDE for the unknown spherical couple stress. It follows that,
in this case, mrr cannot be determined in the manner already detailed for the case of polar
material isotropy.

The analysis becomes even more cumbersome in cases involving advance anisotropy
that is due to presence of two or more preferential material directions. As is demonstrated in
Appendix A, this is because, in such cases, a considerable number of additional deformation
invariants enter and complement their counterparts listed in (4.2) and (4.13). It then becomes
understood that determination of the spherical couple-stress in the case of polar material
anisotropy requires accessibility to additional information regarding the nature of the virtual
spin vector, Φ , or its relationship with the observed elastic deformation.

In this context, References [15] and [17] are referred to as relevant examples in which
such a kind of additional information has indeed been made available, though only in prob-
lems that polar transverse isotropy is due to the presence of a single family of fibres resistant
in bending. For that class of polar fibre-reinforced materials, Reference [17] has accordingly
specified Φ as a spin vector that is relevant to the fibre deformation. Alternatively, Refer-
ence [15] employs the concept of fibre bending resistance in a manner that enables the extra
energy term, Wm, to be expressed in terms of the second gradient of the displacement vector.

These observations make it evident that further relevant developments are certainly fea-
sible and will continue to appear in the case of polar material anisotropy. The additional
illustrating examples presented in the next Section thus refer only to the subclass of po-
lar material isotropy, which has also been the principal subject of interest in [3, 4] and in
subsequent, more recent relevant publications.

5 Illustrating Examples

This Section revisits the pair of relatively simple isotropic elasticity problems employed in
Koiter’s polar elasticity analysis [4] and demonstrates the manner that the presented refined
theoretical formulation enables determination of the spherical couple-stress. These are the
classical problems of the torsion of a circular cylindrical bar and the pure bending of a rect-
angular plate, which are of fundamental importance in non-polar linear isotropic elasticity
(e.g., [19, 20]).

Since the material is considered isotropic, the symmetric stress constitutive equa-
tion (3.3a) attains the standard form of the nonpolar material Hooke’s law,

σ(ij) = λekkδij + 2μeij , λ = νE

(1 + ν) (1 − 2ν)
, μ = E

2 (1 + ν)
, (5.1)
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where λ and μ is the pair of the Lamé elastic moduli, while E and ν represent the equivalent
such pair of the Young’s modulus and the Poisson’s ratio, respectively.

5.1 Torsion of a Cylindrical Bar with Circular Cross-Section

By considering that the axis of the circular cylindrical bar coincides with the x1-axis of the
co-ordinate system, description of the solution of the non-polar version of this problem may
begin with the following displacement field,

u1 = 0, u2 = −τx1x3, u3 = τx1x2, (5.2)

where τ is a torsion parameter and, as is seen in (5.4) below, τx1 represents the cross-
sectional angle of rotation at a distance x1 from the origin.

It follows that the only nonzero strain components are

e12 = −1

2
τx3, e13 = 1

2
τx2, (5.3)

the components of the corresponding spin vector are

Ω1 = τx1, Ω2 = −1

2
τx2, Ω3 = −1

2
τx3, (5.4)

and, hence, only three spin gradients are nonzero, namely

Ω1,1 = τ, Ω2,2 = Ω3,3 = −τ

2
. (5.5)

The constitutive equations (5.1) and (4.9) then reveal that

σ(12) = −μτx3, σ(13) = μτx2, (5.6)

and

m̄11 = 2τη1, m̄22 = m̄33 = −τη1, (5.7)

are the only nonzero stress and deviatoric couple-stress components, respectively. Since
these are all constant, the equilibrium equations (2.4) are satisfied identically.

The last remaining unknown is the spherical couple-stress, mrr , which must be deter-
mined by solving (4.12) independently of the equilibrium equations. Use of the outlined
results thus enables (4.12) to attain the form of the following PDE for the unknown spheri-
cal couple-stress:

2τx1mrr,1 − τx2mrr,2 − τx3mrr,3 = 2ηm2
rr − 18η1τ

2. (5.8)

The simplest solution of (5.8) is evidently the constant solution

mrr = ±3τ

√
η1

η
= ±3τ (3η0 + 2η1)

√
η1

3η0
, (5.9)

which, when combined with (2.5) and (5.7), yields

m11 = τ

(
±

√
η1

η
+ 2η1

)
, m22 = m33 = τ

(
±

√
η1

η
− η1

)
, (5.10)
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Fig. 1 Schematic representation of a rectangular plate in a suitably selected Cartesian co-ordinate system,
Oxi (−L1 ≤ x1 ≤ L1, −h/2 ≤ x2 ≤ h/2, −L3 ≤ x3 ≤ L3)

throughout the body of the circular cylindrical bar.
Such a constant couple-stress field can be maintained by the bar only if the normal

couple-traction (5.10a) is applied externally on the outer cross-sections and, similarly, the
normal couple-stress field (5.10b) is also applied in the radial direction, throughout the bar
later surface. Implementation of these boundary conditions thus enable the outlined deriva-
tions to extent validity of the well-known non-polar elasticity solution of the bar torsion
problem into the polar elasticity regime. Nevertheless, non-constant solutions of the PDE
(5.8) may also exist but are not pursued further.

5.2 Pure Bending of a Rectangular Plate

This polar linear elasticity problem is identical to that referred in Ref. [4] as “pure bending
of a bar with rectangular cross-section”. The problem and its solution are here presented
in slightly different, though equivalent forms that resemble their counterparts detailed and
solved in [17] for a corresponding transverse isotropic plate containing fibres resistant in
bending

Accordingly, Fig. 1 places the isotropic rectangular plate of interest into to the Cartesian
co-ordinate system Oxi , where the plate dimensions are such that |x1| ≤ L1, |x2| ≤ h/2 and
|x3| ≤ L3. At the edges x1 = ±L1, the plate is subjected to the externally applied normal
stress distribution

σ11 = σ̂1x2, (5.11)

where σ̂1 is a known positive constant (see Fig. 2).
No other traction is applied externally on any of the six boundary planes. In the non-

polar elasticity case, the plate then bends under the action of a pair of terminal couples with
magnitude

M3 =
∫ h/2

−h/2
σ11

∣∣
x1=±L1 x2dx2 = h3

12
σ̂1, (5.12)

per unit plate width.
By considering that (5.11) and

σ22 = σ33 = 0, σ12 ≡ σ(12) = 0, σ13 ≡ σ(13) = 0,

σ23 ≡ σ(23) = 0, σ[ij ] ≡ 0,
(5.13)
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Fig. 2 Schematic representation of a plate cross-section that is normal to the x3-axis, featuring the bound-
ary traction distributions (5.11) that create pure bending in the case of non-polar linearly elastic material
behaviour

represent the stress distribution throughout the body of the plate, the implied all-around
traction boundary conditions, and the equilibrium equations (2.2a), are satisfied exactly.
Hence, this stress distribution and the corresponding displacement field, namely

u1 = σ̂1

E
x1x2, u2 = σ̂1

2E

[
ν

(
x2

3 − x2
2

) − x2
1

]
, u3 = −νσ̂1

E
x3x2, (5.14)

form the unique, exact solution of the non-polar version of this boundary value problem
(m ≡ 0).

The quadratic form of the displacement field (5.14) gives rise to the linear spin field

Ω1 = −νσ̂1

E
x3, Ω2 = 0, Ω3 = − σ̂1

E
x1, (5.15)

and since

Ω1,3 = Ω3,1 = −νσ̂1

E
(5.16)

are the only non-zero spin gradients, the constitutive equation (4.9) reveals that, in the cor-
responding polar elasticity problem, there exist only two nonzero deviatoric couple-stresses,

m̄13 = − σ̂1

E
[η1 (1 + ν) + η2 (ν − 1)] = −m̂3,

m̄31 = − σ̂1

E
[η1 (1 + ν) + η2 (1 − ν)] = −m̂1,

(5.17)

and these are also constant. It follows that the equilibrium equations (2.4) are still satisfied
identically in the non-polar elasticity case.

Equations (5.11), (5.13), (5.14) and (5.17) thus represent the solution of the described
pure bending boundary value problem within the framework of the conventional couple-
stress theory, provided that the problem description is augmented to further require from
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Fig. 3 Schematic representation of the constant couple-traction distributions (5.17a) that must accompany the
boundary traction depicted in Fig. 2, for a corresponding polar linearly elastic isotropic plate to maintain the
pure bending deformation (5.14). The corresponding effect of the boundary couple-traction (5.17b), which
must also accompany (5.11) and (5.17a), is similarly depicted in this Figure, by interchanging everywhere
the appearing suffices 1 and 3

the boundary normal traction (5.11) to be accompanied by the constant in-plane boundary
couple-tractions (5.17a) and (5.17b). These must be applied externally on the boundaries
x1 = ±L1 and x3 = ±L3, respectively and Fig. 3 depicts their effect on these boundaries in
the case that the value of m̂3 or m̂1 is positive.

The spherical couple-stress is then determined by inserting the outlined results into the
PDE (4.12), which thus reduces to

νx3mrr,1 + x1mrr,3 + ηE

σ̂1
m2

rr = 6
η1σ̂1

E
(1 + ν) . (5.18)

If the Poisson ratio attains its exceptional, rather uninteresting, limiting negative value ν =
−1, this PDE admits the trivial solution mrr = 0. Nevertheless, the non-zero, and more
interesting constant solution

mrr = ± σ̂1

E

√
6 (1 + ν)

η1

η
(5.19)

is consistent with any other value of the Poisson ratio (−1 < ν ≤ 1/2).
A combination of (5.19) with (2.5) then reveals that the normal couple-stresses attain one

of the alternative constant values

m11 = m22 = m33 = ± σ̂1

3E

√
6 (1 + ν)

η1

η
, (5.20)

throughout the body of the plate. The physical meaning of this result is, in fact, that the pure
bending deformation (5.14) can be maintained by the polar isotropic plate if, along with the
boundary tractions (5.11) and their associated couple-traction counterparts (5.17), either of
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the alternative sets (5.20) of normal couple-tractions is externally applied on the appropriate
plate boundaries.

Non-constant, spatially variable solution of the PDE (5.18) may also be possible, and one
of them is determined in Appendix B with use of the method of characteristics. This, as well
as other potential solutions that may be pursued and found analytically or computationally,
can be handled in a manner analogous to that described in this Section for the constant
solutions (5.9) and (5.19).

6 Further Discussion and Conclusions

When combined with the polar, linearly elastic isotropic analysis detailed in Sect. 4.1, the
refined couple-stress theory formulation presented earlier in Sects. 2 and 3 forms a useful
and proper extension of its conventional counterpart, which had essentially commenced in
[3] and continued in [4]. This is because by reinforcing, rather than dismissing the validity
of the conventional couple-stress theory [1–4], the implied theoretical combination succeeds
to determine the spherical part of the couple-stress and, thus, resolves the relevant, long-
standing indeterminacy problem.

Still though, the search for this refined couple-stress theory formulation, which is based
on a virtual than on the actual rotation/spin vector of the deformation, might have not
come up without an earlier crucial observation. Namely, the fact that, as is also detailed
in the Introduction, a relevant, conventional couple-stress theory formulation that refers to
anisotropic composites with embedded fibres resistant in bending [13, 14] revealed the unex-
pected existence of an extra energy term. This is a couple-stress generated energy term that,
like the spherical couple-stress, affects neither the constitutive equations nor the equilibrium
of the polar material of interest.

That observation, followed by further relevant studies (e.g., [16] and references therein)
led gradually to the search for a refined/generalised couple-stress theory formulation that
is analogous to its counterpart detailed in Sects. 2 and 3. That new development embraced
the contribution of the implied extra energy term, and thus succeeded initially to resolve the
spherical couple-stress indeterminacy issue for anisotropic fibrous composites with fibres
resistant in bending [15, 17]. Through the thus gained experience, the present analysis has
now succeeded to do the same for the apparently simpler material configuration of polar
linearly elastic isotropy.

This rather strange, at least chronologically development is attributed to the physical
complexity and subsequent difficulty of the problem in hand. Retrospectively, for instance,
it now seems easier for one to accept that energy contributions due to a fibre rotation/spin
vector may be more influential in modelling polar material behaviour than relevant contri-
butions due to the general, displacement generated spin vector. It may then feel more natural
for one to search for an alternative couple-stress theory formulation starting from the ma-
terial configuration of a transverse isotropic fibrous composite, rather than from a simpler
isotropic material configuration that does not seem to possess an alternative to the standard,
deformation generated spin/rotation field.

It though happens that, regardless of whether the polar material of interest is a fibrous
composite or just a simple isotropic such, the implied alternative rotation/spin vector is and
remains virtual, and, as such, it does not need to be determined. Whether its potential de-
termination is necessary, or at all needed, is currently perceived as an issue of secondary
importance that might be faced in the future. It is though necessary for the present com-
munication to end the presented analysis by (i) summarising the progress made so far in
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the search for a mechanism that leads to the spherical couple-stress determination, and (ii)
placing that progress in a chronologically proper, or more reasonable order.

Accordingly, as is mentioned at the beginning of this Section, the linearly elastic isotropic
analysis detailed in Sect. 4.1 is regarded as a direct extension of its conversional counterpart,
presented about six decades ago [3, 4], towards the successful determination of the spheri-
cal couple-stress. A key point of the observed success is the fact that, through inversion of
equation (4.5), the simple material configuration of polar isotropy enables elimination of the
appearing virtual spin divergence and, thus, conversion of the extra energy balance equa-
tion (4.11) into a PDE, namely (4.12), for the unknown spherical couple-stress. Examples of
the manner that this equation can then be solved, when connected with the extra boundary
condition mentioned by Koiter [4], are further detailed in Sect. 5.

However, this approach meets an operative difficulty and apparently fails in cases of po-
lar material anisotropy that is due to the presence of one of more material directions of
preference. Regardless of whether such a preferential material direction relates to fibre pres-
ence, or signifies something different, the observed failure is due to algebraic hurdles which,
due to the complicated form of equation (4.18), do not anymore enable direct reduction of
equation (4.16) into a suitable PDE for the unknown spherical couple-stress.

The implied equation reduction may though still become possible if sufficient additional
information becomes available, in some essentially technical or intuitive manner, regarding
the unspecified nature of the involved virtual spin field. For instance, this route is already
followed in [17] where, for the special case of unidirectional fibre reinforced materials, the
spherical couple-stress is determined by considering that the virtual spin field coincides with
the rotation/spin field of the fibre direction.

Moreover, for the same class of unidirectional fibre-reinforced materials, Reference
[13] employed a slightly different consideration, according to which the observed mate-
rial anisotropy is due to the presence of fibres that resist bending (see also [13, 14]), and
thus obtained a slightly different result. In that case, the employed concept of fibre bending
resistance (i) enabled determination of the spherical couple-stress by directly incorporating
the influence of the deformed fibre curvature into the strain energy function of the material,
and thus (ii) led to calculations that avoid excessive use of the gradient of either the actual
or the virtual spin vector.

Evidently, lack of fibre-reinforcement makes the theoretical analysis presented in [13, 14]
unsuitable for the principal subject of the present investigation, which has direct application
only within the bounds of polar material isotropy. Nevertheless, by examining the nature
and, thus, underpinning a solution of the long-standing problem of the spherical couple-
stress indeterminacy, this communication provides, along with recent relevant developments
[15–17], new insights of the still developing subject of polar material elasticity.

Appendix A: Polar Material Anisotropy Due to Two Distinct Directions
of Material Preference

As is mentioned in Sect. 4.2, the presented analysis becomes more cumbersome in cases
involving advanced anisotropy that is due to presence of two or more preferred material di-
rections. Consider, for instance, a material class of polar anisotropic solids characterised by
the unit vectors, a(1) and a(2), of two different preference material directions. By assuming
that these directions are not mutually orthogonal, so that

a
(1)
i a

(2)
i = cos θ �= 0, (A.1)
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one essentially considers symmetry features of monoclinic material response, which is suf-
ficiently general in studying structural material behaviour.

For that material class, the complete list of at most quadratic deformation invariants re-
quired for adequate description of WΦ begins with the invariants listed in (4.2) and is com-
plemented by the following:

I4 = a
(1)
i Φ(i,j)a

(1)
j , I5 = a

(1)
i Φ(i,j)Φ(j,k)a

(1)
k , I6 = a

(1)
i Φ[i,j ]Φ[j,k]a

(1)
k ,

I7 = a
(1)
i Φ(i,j)Φ[j,k]a

(1)
k , I8 = a

(2)
i Φ(i,j)a

(2)
j , I9 = a

(2)
i Φ(i,j)Φ(j,k)a

(2)
k ,

I10 = a
(2)
i Φ[i,j ]Φ[j,k]a

(2)
k , I11 = a

(2)
i Φ(i,j)Φ[j,k]a

(2)
k , I12 = a

(1)
i Φ(i,j)a

(2)
j ,

I13 = a
(1)
i Φ(i,j)Φ(j,k)a

(2)
k , I14 = a

(1)
i Φ[i,j ]Φ[j,k]a

(2)
k , I15 = a

(1)
i Φ(i,j)Φ[j,k]a

(2)
k ,

I16 = a
(1)
i

(
Φ(i,j)Φ[j,k] + Φ[i,j ]Φ(j,k)

)
a

(2)
k , I17 = a

(1)
i a

(2)
i = cos θ.

(A.2)

Such an augmented list of invariants produces a similarly augmented form of WΦ ,
that is more cumbersome than (4.14) even in the special case of polar material orthotropy
(cos θ = 0). The corresponding forms of both the couple-stress constitutive equation (4.17)
and the spherical couple-stress (4.18) thus become also more cumbersome. Unless some
further, additional information is provided regarding either the nature of the spin vector, Φ ,
or its relationship with the observed deformation, this result aggravates the algebraic hurdles
described already in Sect. 4.2.

Appendix B: A Spatially Variable Solution of the Partial Differential
equation (5.18)

Solution of the PDE (5.18) with the method of characteristic lines, requires initially the
search for plane curves whose tangent satisfies the equation

dx3

dx1
= x1

νx3
(B.1)

on the x1x3-plane. Integration of this separable differential equation yields

x2
3 − x2

1

ν
= c2 (x2) , (B.2)

where c is either an arbitrary constant or, at most, an arbitrary function of x2. It follows that
the characteristic lines sought are either hyperbolas (0 < ν ≤ 1/2) or ellipses (−1 < ν < 0).

With use of (B.1), the PDE (5.18) is next transformed into the following first-order ordi-
nary differential equation

dmrr

m2
rr − b (1 + ν) /a

= − a

νx3
dx1, (B.3)

where the constants

a = ηE/σ̂1, b = 6η1σ̂1/E, (B.4)
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depend on the material moduli and on loading features, and thus are assumed known.
Direct integration of (B.3) then yields

1

2a
ln

∣∣∣∣mrr + b (1 + ν) /a

mrr − b (1 + ν) /a

∣∣∣∣ = ax1

νx3
+ ĉ, (B.5)

or, after some necessary algebraic simplification,

mrr = b (1 + ν)

a

⎡
⎣ c̄ exp

(
2 a2x1

νx3

)
+ 1

c̄ exp
(

2 a2x1
νx3

)
− 1

⎤
⎦ , (B.6)

where either of ĉ and c̄ represents the involved arbitrary constant of integration
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