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Abstract
Electrodermal activity (EDA) recordings are widely used in experimental
psychology to measure skin conductance responses (SCRs) that reflect
sympathetic nervous system arousal. However, irregular respiration patterns
and deep breaths can cause EDA fluctuations that are difficult to distinguish
from genuine arousal-related SCRs, presenting a methodological challenge
that increases the likelihood of false positives in SCR analyses. Thus, it is
crucial to identify respiration-related artifacts in EDA data. Here we developed a
novel and freely distributed MATLAB toolbox, Breathe Easy EDA (BEEDA).
BEEDA is a flexible toolbox that facilitates EDA visual inspection, allowing
users to identify and eliminate respiration artifacts. BEEDA further includes
functionality for EDA data analyses (measuring tonic and phasic EDA
components) and reliability analyses for artifact identification. The toolbox is
suitable for any experiment recording both EDA and respiration data, and
flexibly adjusts to experiment-specific parameters (e.g., trial structure and
analysis parameters).
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Introduction
Electrodermal activity (EDA) methods evaluate fluctuations in 
skin electrical conductance caused by changes in sweat gland  
production. The sympathetic nervous system innervates palmar 
and plantar eccrine sweat glands, and changes in skin conduct-
ance are thought to measure sympathetic nervous system arousal  
(Bach et al., 2010). Importantly, EDA recordings are a valuable  
and popular psychophysiological measurement in studies of  
affect and cognition (Boucsein et al., 2012).

It is well known that respiration and EDA influence each other 
(Schneider et al., 2003). In laboratory settings, researchers  
often leverage this relationship to check the integrity of a psy-
chophysiology set-up. Asking participants to take a deep breath  
should produce concurrent deflections in both waveforms, and  
properly configured recording equipment should detect that 
response. EDA is typically recorded using electrodes placed on 
the palmar or plantar surfaces where eccrine sweat glands are  
densely located. Respiration, typically recorded using a belt  
secured around the diaphragm, is an oscillatory event that  
approximates a sine wave with regular breathing. However,  
irregular respiration, or abnormalities in the respiration wave-
form (frequency or amplitude), are associated with non-specific  
changes in the EDA waveform. These physiological respiration-
related artifacts can lead researchers to overestimate the presence 
or magnitude of skin conductance responses (SCRs) in experiments 
(Schneider et al., 2003).

Despite the strong relationship observed between EDA and  
respiration traces, prior work has shown that EDA and respiratory 
signals are not strictly coupled (Rittweger et al., 1996), which 
may relate to differences in their physiological origin. Physi-
ologically, the emotion-reactive palmar and plantar eccrine sweat  
glands are maximally innervated by cholinergic (Sato & Sato, 
1981) sudomotor fibers leaving the ventral root of the spinal 
cord (Boucsein, 2012, p. 20). While eccrine sweat glands are 
modulated by the sympathetic nervous system, the transmission  

related to EDA is mainly cholinergic, not noradrenalergic (Sato 
& Sato, 1981; Stern et al., 2001). However, deep breathing has  
been associated with sudden increases in free-circulating  
adrenaline, producing sweat responses (Boucsein, 2012, p. 32), 
which mimic SCRs on EDA recordings. As mentioned above, 
this relationship is useful for checking psychophysiological  
signal integrity, but can also bias SCR analyses.

While movement-induced EDA artifacts are fairly straightforward  
to identify (e.g., presence of an unusually steep rise in the  
waveform), physiologically derived artifacts appear similar 
to arousal-related waveforms (Boucsein, 2012). Developing  
methods for identifying respiration-related artifacts has been 
a challenge for the field of psychophysiological research due 
to high intersubject and intrasubject variability in respiration  
activity, yielding a wide range of waveform characteristics  
(Schneider et al., 2003). A lack of analytical solutions has  
motivated software development within this field since the early 
1990’s, with the goal of improving how researchers inspect and 
manipulate respiration data (Wilhelm & Roth, 1993).

Researchers are strongly encouraged to account for such  
respiration-induced EDA artifacts, and subsequently outline those 
artifact elimination procedures in their manuscripts (Boucsein 
et al., 2012). This can be challenging, since common artifact- 
control practices involve researchers visually inspecting their  
respiration data, which is unfortunately both time-consuming 
and subjective. Schneider et al. (2003) has provided a useful  
decision tree for discarding artifact EDA responses based on a  
set of criteria. However, an easy-to-use and freely available  
software that expedites visual inspection of respiration data, and  
allows researchers to quantify their artifact-control procedures 
is not available. This toolbox might be particularly helpful for  
researchers identifying respiration artifacts in experiments with 
longer trial durations, such as viewing video clips or recalling  
autobiographical memories. In these experiments, the standard 
stimulus-response latency window for identifying event-related 
SCRs (e.g., 1–4 seconds) may no longer be suitable, and longer  
trials almost certainly have a higher probability of respiration-
related SCR artifact contamination.

Currently, there is a need for easy-to-use, flexible, and interop-
erable software that facilitates EDA artifact elimination via the  
widely employed and accepted method of visual inspection. 
We have developed a novel MATLAB toolbox for efficiently  
eliminating EDA respiration artifacts and analyzing EDA data,  
which we freely distribute as Breathe Easy EDA or ‘BEEDA’. 
BEEDA’s streamlined artifact removal interface allows users to 
quickly identify and clean EDA data, expediting EDA analysis 
without compromising analysis integrity. Additionally, BEEDA’s  
integrated EDA analysis functionality allows users to seamlessly 
analyze cleaned EDA data within the toolbox. Furthermore,  
the toolbox includes inter-rater reliability (IRR) analyses so that 
researchers may evaluate the reliability of their artifact-control  
procedures.

The BEEDA toolbox is controllable through a graphical user  
interface (GUI), and requires no programming skill to use. This  
toolbox may be used either for simple artifact detection, EDA 

            Amendments from Version 1

We would like to thank the reviewers for their time and expertise. 
We have addressed their concerns and changes are noted in the 
article.

The first reviewer noted that our article would benefit from 
describing the signal processing and analysis calculations 
in greater detail. We agree with the reviewer, and we added 
a new section clarifying these points. This section explicitly 
details the relevant calculations and algorithms. Additionally, 
we added equations to the “EDA analysis statistics” section 
with corresponding notation, so those statistics may be easily 
referenced with the relevant underlying algorithms.

The first reviewer also noted that hypothesis testing functionality 
would benefit users, particularly when users are more comfortable 
with GUI tools. We agree this functionality would be useful, 
although we believe users would benefit most from easily using 
statistical software they are already comfortable and familiar with. 
We have added text describing how BEEDA’s output is formatted 
precisely for ease-of-use with common software packages (e.g. 
SPSS, for those who prefer GUI tools).
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This allows researchers to use the toolbox for their specific goals, 
without the toolbox adding unnecessary work in the process.  
As illustrated in Figure 1, the BEEDA workflow begins with  
loading a dataset and setting a few critical parameters. After that 
initialization, the GUI main menu (Figure 2) lets researchers  
tailor their own workflow to their specific needs. This workflow is  
flexible to include any combination of data visualization, artifact 
inspection/cleaning, calculating EDA statistics, or performing  
interrater reliability (IRR) analyses. The degree of overhead 
imposed by the workflow (e.g., in specifying parameters or  
manipulating the data) at this stage should only match the  
requirements of the user. The following sections describe these 
abilities and their implementation in detail.

A. Loading an experiment into BEEDA
Initializing the BEEDA toolbox (executing BreatheEasyEDA.m)  
immediately launches the data loading GUI. This interface  
allows users to either load data files for a new session, or load 
data from a previously saved session. If a new session is started,  
BEEDA copies and reformats raw data files into a MATLAB 
structure variable (BEEDAdata). The BEEDAdata variable is 
the toolbox’s primary data structure; all user defined parameters  
(e.g. analysis settings) and analysis actions (e.g. artifact removal) 
are written to this BEEDAdata structure. Resuming a previous 
session reads information from a saved BEEDAdata structure  
and launches into the main menu.

For new sessions, basic analysis parameters are also specified in 
the data loading GUI. These basic settings are: downsampling 
and Skin Conductance Response (SCR) parameters. Importantly,  
once downsampling and SCR options are chosen, these settings 
are permanently fixed for the current BEEDA session (even if 
the session is saved and resumed). If a downsampling factor is  
specified, both the EDA and respiration data are immediately  
downsampled within BEEDAdata. This downsampling func-
tionality is provided because the sampling rate capabilities of  
modern EDA systems (e.g. >1000 Hz) far exceed the resolution 
necessary for EDA analyses. Downsampling datasets to lower  
temporal resolutions can dramatically reduce a dataset’s size,  
consequently improving BEEDA’s memory and hard disk  
requirements, computation time, and GUI responsiveness.

B. Main menu
The main menu provides a visual summary of your experi-
ment, trial information, analysis settings, and display settings  
(Figure 2A). The main menu also allows users to save the current 
BEEDA session, start the artifact removal interface, run IRR  
analyses, and export final analysis results.

Before displaying the experiment summary panel, the EDA  
data is first smoothed via convolution with a Gaussian kernel  
(as in Benedek & Kaernbach (2010)). Smoothing removes  
minor signal noise, which may originate from a variety of sources 
(e.g. recording equipment or downsampling). Next, valid SCRs  
are identified based on previously specified threshold and  
rejection-rate parameters. The experiment summary panel plots the  
entire experiment’s EDA timecourse, marking onset times for  
trials, and valid SCRs (Figure 2A). This window provides users 

Figure 1. Illustration of the Breathe Easy EDA (BEEDA) 
workflow.

analyses, or for both artifact elimination and subsequent EDA 
analyses—as illustrated in Figure 1. This flexibility allows users 
to take advantage of BEEDA’s functionality without restricting 
the use of complementary software such as Mindware (Mind-
Ware Technologies Ltd., Gahanna, OH), Ledalab (Benedek 
& Kaernbach, 2010), ANSLAB (Wilhelm & Peyk, 2005), or 
AcqKnowledge (Braithwaite et al., 2013). For instance, one 
could use BEEDA only for marking artifacts in a dataset, and 
then use the artifact information file BEEDA produces with an  
alternative EDA analysis program. Furthermore, BEEDA is  
suitable for any experiment where both EDA and respira-
tion data were collected, and parameters specific to individual 
experiments can easily be modified through the GUI (e.g., trial 
structure and analysis options). This permits a great deal of  
functional flexibility, without encumbering the toolbox’s usability. 
Here we describe the toolbox design, workflow, and functionality.

Toolbox design and workflow
Overview
BEEDA’s workflow was designed to offer users situationally- 
specific functionality within the simplest framework possible.  
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with an overview of the experiment’s EDA data, allowing users  
to easily confirm the indented dataset has loaded correctly.

All unique trial-types are displayed in the trial-type information 
window, and the current BEEDA session’s settings are displayed 
in the setting information window (Figure 2B and 2C). From the  
main menu, users can easily set a number of session settings:  
SCR latency tolerances, valid trials for analysis, and display  
settings (see Interface display options). SCR latency tolerances  
establish the stimulus time-locked window when SCRs may 
be appropriately attributed to the preceding stimulus (see Main  
EDA analysis parameters), typically a 3-second window between 
1–4 seconds post-stimulus onset (Boucsein, 2012), but shorter  
windows have been proposed (e.g., 2 seconds or less; Barry, 1990; 
Levinson & Edelberg, 1985). Additionally, if end-of-trial events 
were omitted during an experiment’s data collection, specify-
ing a maximum SCR latency parameter effectively creates these  
events. Specifying the valid trials for analysis determines which 
trial-types are available for artifact cleaning and EDA analysis.  
All unique events recorded during data collection may be  
declared as valid trial-types; this allows users to disregard  
inter-trial events, baseline events, or events not corresponding to 
trials of interest.

C. Interface display options
The “Display settings” main menu button (Figure 2) allows users 
to customize the Artifact Removal Interface. The Expanded trial  
window parameter controls the additional timecourse data dis-
played before and after each trial in the artifact removal interface. 

For instance, setting expanded trial window to 5 (seconds) will 
display the 5 seconds before every trial and the 5 seconds after  
every trial. This option may help users evaluate how respiration 
immediately preceding or following a trial relates to respiration 
during a trial. More specifically, we found that being presented  
with the activity surrounding the trial provided a useful context  
for identifying potential respiration artifacts.

The Number of trial windows to display parameter controls 
the number of trials simultaneously displayed in the artifact  
removal interface. This option may be particularly useful when  
running the BEEDA toolbox on computers with lower resolu-
tion computer monitors, as users can adjust the number of trials  
in each ARI page to best fit their display configuration.

D. Artifact removal interface
Selecting “Remove artifacts” from the main menu will launch 
the Artifact Removal Interface (ARI). The ARI allows users to  
efficiently clean EDA data via streamlined data presentation and 
easy to use controls. Users can easily scroll through ‘pages’ of tri-
als, examining each trial for irregular respiration waves, as shown 
in Figure 3. If problematic respiration waves are identified, users 
can clean the data with either ‘SCR delete mode’ or ‘drag-delete 
mode’. Drag-delete mode removes entire time segments of EDA 
data, whereas SCR delete mode only removes SCRs from analy-
sis consideration. Consequently, drag delete mode is recom-
mended for Skin Conductance Level (SCL) analyses and thorough  
artifact elimination, whereas SCR delete mode is only recom-
mended for SCR analyses (see EDA analysis functionality). 

Figure 2. Main menu after data has been loaded into BEEDA. (A) Visual experiment summary; the EDA timecourse is plotted in blue, red 
points mark valid SCR onsets, and vertical green lines mark recording events (e.g. trial onsets). (B) Trial-type window displays each type of 
recording event imported with the dataset. (C) Current settings.
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Figure 3. Artifact removal interface displays a page of four trials. (A) Event navigation controls. (B) Data manipulation controls and hotkey 
guide. (C) Respiration timecourse is plotted in blue, red points mark valid SCR onsets, and vertical green lines mark an event’s start and 
end.
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Figure 4. Two examples of artifact SCRs displayed in the artifact removal interface. The presentation simplifies inspecting data for a 
sudden deep breath (Panel A) or highly irregular breathing pattern (Panel B) preceding an SCR onset.
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In the ARI, user defined trials of interest are individually  
displayed by plotting SCR onset timepoints directly onto the  
trial’s respiration data (Figure 3C). This presentation simplifies 
the manual identification of problematic breathing (e.g. Figure 4),  
and the recommended procedures for EDA respiration artifact 
scrubbing can be found in Schneider et al. (2003). All user actions 
(e.g., data cleaning) are immediately applied to BEEDAdata and 
can be saved through the main menu.

E. Exporting results and artifact information
Selecting “Export final results” in the main menu will analyze  
the user-defined trials-of-interest and export the analysis results 
to a Comma Separated Values formatted spreadsheet (.CSV  
file). This spreadsheet will show trial-wise EDA statistics, in  
addition to whether or not the trial was flagged for artifacts. A trial 
will show “flagged for artifacts” if any SCR or data segment was 
deleted from the trial. In this way, one may simply use BEEDA’s 
GUI to mark artifacts within an EDA dataset, then use the artifact 
information output with another EDA analysis software. Similarly, 
the artifact information output provides an easy means for assessing 
overall data quality. Experimenters may also directly analyze this 
output with BEEDA, in order to evaluate how reliably artifacts were 
identified within a dataset.

Artifact inter-rater reliability
To facilitate the reporting and validity of respiration artifact  
rejection methods, BEEDA includes inter-rater reliability (IRR) 
analysis functionality for respiration artifact rejection. Select-
ing “Inter-rater reliability” in the main menu will perform an  
artifact IRR analysis directly on exported BEEDA result files. This 
requires that researchers have cleaned a dataset multiple times, 
under the same relevant parameters (verified by built-in sanity 

checks). After specifying these files, users can set the IRR  
analysis’ scope to match their analysis goals. Specifically, users 
can limit their analysis to only trials containing SCRs (as defined 
by SCR threshold parameters) or analyze all trials of interest.  
This is a critical distinction, as the IRR for SCR-negative trials 
may give unrepresentative reliability statistics for SCR oriented  
analyses (i.e. trials without SCRs may not have been inspected).  
On the other hand, these trials would certainly be considered 
for SCL analyses. This choice determines T in the subsequent  
equations.

After setting the IRR scope, the pair-wise Cohen’s κ between 
all raters is calculated and exported to a CSV spreadsheet as a  
labeled matrix. We used Cohen’s κ implementation (Cohen, 1960) 
in this context: 

1

−κ =
−

o e

e

p p
p

For the set of all trials T we defined two trial classes C as: the 
absence of any artifact marking, or the presence of any SCR/data-
segment deletion. The expected chance agreement, p

e
, between 

each pair of raters i and j was: 

                           

2

2
1

1

| |
| || |k kC C

e i j
k

p T T
T =

= ∑
where | |kC

iT  would be the number of trials in class C
k
 for rater i.  

The observed rater agreement, p
o
, was: 

                            
2

1

1

| |
| |k kC C

o i j
k

p T T
T =

= ∩∑
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The user-guide documentation describes how this analysis and  
its output (i.e. the labeled Cohen’s κ matrix) are configured in 
greater detail.

EDA analysis functionality
The BEEDA toolbox features integrated EDA analysis func-
tionality, which may be used with or without prior artifact 
removal. Selecting the Export final results main menu button will  
initialize EDA analyses and export the subsequent results as a  
spreadsheet. These analyses measure tonic and phasic EDA using 
standard methodology (Boucsein, 2012). Tonic EDA is defined  
as the slow change in SCLs over a timecourse of interest.  
BEEDA determines the mean and standard deviation of each  
trial’s EDA levels, and these statistics are included in the results 
output. Data segments marked as artifacts using the Drag delete 
mode are not included in SCL analyses.

Phasic EDA measurements are determined via the trough-to-peak  
detection of SCRs (Boucsein, 2012). SCRs are quickly changing  
EDA levels that exceed an amplitude threshold and occur 
within a response window time-locked to a stimulus. The SCR 
amplitude is defined as the SCR’s peak EDA level minus the 
SCR’s initial trough EDA level. Users can explicitly specify 
an SCR amplitude threshold, and this practice is typical for  
trough-to-peak SCR detection. Alternately, the amplitude thresh-
old can be flexible and data driven via setting an SCR rejection 
rate (Kim et al., 2004). In BEEDA, specifying an explicit SCR  
threshold of 0μS and a rejection rate of 10% emulates the  
algorithmic SCR thresholding procedure described in Kim  
et al. (2004). While this thresholding procedure is not typically  
employed, BEEDA includes this functionality to mirror pro-
prietary EDA analysis software packages which offer similar  
analysis options (Braithwaite et al., 2013).

For phasic EDA analyses, BEEDA detects valid SCRs and  
exports the following statistics for each trial: number of SCRs, 
average SCR magnitude, cumulative SCR magnitude, and  
maximum SCR magnitude. SCRs in data segments removed with 
Drag delete mode, in addition to SCRs marked as artifacts with 
SCR delete mode, are not included in SCR analyses.

BEEDA’s does not include functionality for hypothesis testing with 
EDA statistics. Instead, the analysis results are written to a long- 
format .CSV spreadsheet with comprehensive labeling. The 
common data and file formatting allow users to easily run their  
hypothesis testing with any commonly used software package  
(e.g. SPSS, R, etc), without arduous file-conversions or  
reformatting. 

Implementation details for signal processing and 
analyses 
The imported raw data is first smoothed according to the follow-
ing procedure (as also implemented in Benedek & Kaernbach  
(2010)). The EDA signal is iteratively smoothed with a Guassian  
kernel, increasing the standard deviation on each iteration until 
there is negligible reduction in the signals’ root mean square  
of successive differences (RMSSD), or until a maximum stand-
ard deviation of 125 ms. More explicitly, for an EDA recording  
X with t timepoints sampled at f Hz, and a Gaussian kernel G  

specified with μ = 0 and σ = .125h, the algorithm follows this  
pseudocode: 

Initialize h = 0

Initialize RMSSD as ε
old

 = 2
12

1
( – )

N
X Xt ttN −=∑

Initialize ε
th 

= 10-5, ε
new

 = 0, and Δε = ε
old

While ε
th

 > Δε and f > h :

              h = h+4

              σ = .125h

              The Gaussian kernel is specified with this new σ

             
2

2
( )
2

1

2

x
G e

µ
σσ π

− −
=

              X = X * G

              ε
new

 = 2
12

1
( – )

N
X Xt ttN −=∑

              Δε = ε
new

 – ε
old

 

              ε
old

 = ε
new

Following this initial smoothing, any requested downsampling  
is performed via decimation. The data is then resmoothed with  
the previously described algorithm, and this concludes the  
smoothing procedures. 

BEEDA implements trough-to-peak SCR detection for the EDA 
recording X with the first derivative dx

dt
 for each timepoint (ΔXt). 

SCR trough indices O are defined by a positive rate following  
negative rates:

                             1 1{ | }O t X X Xtt t∆− −= Δ + Δ >

SCR peak indices P are defined by a negative rate following  
positive rates: 

                             1 1{ | }P t X X Xtt t∆− −= Δ − Δ >

This implementation was constrained such that the first trough 
index must precede the first peak index, and the last trough  
index must precede the last peak index (i.e. elements of O and  
P must form trough-to-peak pairings). The SCR amplitudes were 
then simply calculated as R

i
 = XPi

 – XOi
. In the following section 

describing BEEDA’s EDA analysis statistics, the equations will  
follow the notation in this section. Additionally, T will describe 
the set of all experimental trials, with specific trails indexed as Tj.  
The set of responses belonging to a given trial will be indexed  
as jT

iR , and likewise a set of timepoints in given trial will be  
indexed as Tj

tX . 

EDA analysis statistics
•    �Number of SCRs: the number of valid SCRs in a  

trial: ( )Tj
in R

•    �Average SCR magnitude: average trial SCR  
amplitude: 1

1

( )

n Tj
Tj ii
i

R
n R

=∑
•    �Max SCR magnitude: the largest SCR amplitude within a 

trial: max ( )
TjRi
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•    �Cumulative SCR magnitude: the sum of all trial SCR  

amplitudes: 1

n TjRi i=∑

•    �SCL(average): mean EDA signal within a  

trial: 1

1

( )

n Tj
Tj
t

tt X
n X

=∑

•    �SCL(standard deviation): the standard deviation of a trial’s 
EDA signal: ( )Tj

tVar X

Main EDA analysis parameters
•    �SCR threshold: Only EDA responses above this amplitude 

threshold are considered valid SCRs. Typically an ampli-
tude threshold of .05μS is used, although some researchers  
advocate for thresholds as low as .01μS (Braithwaite  
et al., 2013). Schmidt & Walach (2000) recommend that 
sampling resolution should be taken into account when  
considering low thresholds, and thresholds lower than  
.01μS should not be used.

•    �Rejection rate: If a rejection rate greater than 0 is  
specified, trial-wise thresholding is applied according to:  
R

th
 = max(R) a where R

th
 is the trial-specific response  

threshold, R is the trial’s set of responses and a is the  
rejection rate. For example, if the rejection rate is 10% 
and a trial’s largest SCR amplitude is 4μS, SCRs with  
amplitudes below .4 μS are rejected in that trial.

•    �Min SCR latency: The minimum time after a trial’s start 
when EDA data can be considered for analyses (i.e. the 
stimulus response window). Valid SCRs onsets must begin 
after the specified minimum latency time, and EDA lev-
els before minimum latency time will be excluded from 
SCL analyses. Benedek & Kaernbach (2010) report that a  
minimum latency of 1 second post-stimulus is typical.

•    �Max SCR latency: The time after a trial’s start when EDA 
data cannot be considered for analyses. Valid SCRs must 
begin before the specified maximum latency, and EDA 
signal after the maximum latency is excluded from SCL  
analyses. Benedek & Kaernbach (2010) report that a  
maximum latency of 3 or 5 seconds post-stimulus is  
typical.

Operation
BEEDA’s system requirements are: Matlab R2014b or newer, and 
the Matlab Signal Processing Toolbox. Any computer with that 
prerequisite Matlab software can run BEEDA (e.g. regardless  
of operating system). However, users are recommended to run 
BEEDA with Matlab R2015a, since the toolbox was developed  
and extensively tested with R2015a. 

BEEDA was designed for input datasets containing both EDA 
and respiration recordings. However, suitable input files may 
also contain placeholder values for either data channel (i.e. for  
datasets without either respiration or EDA recordings). The  
toolbox was designed to accept raw data files from Biopac  

(Biopac Systems Inc., USA) recording systems. The BEEDA 
user-guide describes how these files are obtained from Biopac  
systems, and how these files are formatted. Although BEEDA was 
designed to easily accept files from these widely-used systems, 
any comparably formatted files are also suitable (i.e. from other  
recording systems). The acceptable formatting is very basic, 
and therefore recordings from other systems should not present  
major issues.

Use case
We have provided a sample dataset1. This data was collected dur-
ing an emotional-image viewing experiment, and is provided for 
toolbox demonstration purposes. Documentation for this sam-
ple dataset is included with the distribution, and provides further  
background about the experiment and the data’s structure. We 
have also provided example analysis output using this dataset as  
Supplementary File 1. This output shows artifact information from 
data cleaning, along with the analyses described in the sections 
on EDA analysis functionality and statistics. The output file is  
formatted as a .CSV spreadsheet, with easily interpretable column 
headers.

Conclusion
Breathe Easy EDA is a novel MATLAB toolbox developed for  
easy and reliable identification of respiration-related artifacts 
in EDA data. This software was specifically built to facilitate 
the methodical considerations of psychophysiology researchers  
through a simple, flexible, interoperable, and tolerant design. 
BEEDA’s simplified data presentation allows efficient data  
inspection and cleaning, without sacrificing functionality in the 
GUI. In fact, the intuitive interface includes features that are  
absent from widely used contemporary EDA software, but still 
essential to researchers (e.g., an “undo” function). The artifact 
cleaning functionality extends to integrated reliability analy-
ses, providing a simplified means for researchers to establish the 
consistency of their artifact-control procedures across independ-
ent raters. BEEDA’s common output-file format and range of  
analysis capabilities also allows users to integrate this toolbox 
in their analysis pipelines without precluding alternate software  
packages. Furthermore, BEEDA was built to flexibility handle 
any experiment where both respiration and EDA data were  
collected, regardless of trial duration or experimental design. In 
these ways, this software provides researchers with optimized  
tools for psychophysiology analysis. The toolbox is freely  
available from http://github.com/johnksander/BreatheEasyEDA, 
and the user-guide documentation for BEEDA is included  
with this distribution.

Software availability
Software/source code available from: http://github.com/johnk-
sander/BreatheEasyEDA

1Figure 2–Figure 4 were produced with this data.
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cleaning, and analysis”

The presented manuscript describes a newly developed Matlab toolbox named BEEDA, which was
mainly designed to improve the way that researchers deal with artifacts due to respiration when working
with EDA data. This is relevant as EDA is a widely used physiological measure, often in conjunction with
other methods such as neuroimaging or pain stimuli, and because respiration has been shown to alter
EDA-derived data in a way that can lead to false interpretations.

The authors describe the relationship between respiratory artifacts and genuine EDA signal, including the
fact the two have a non-linear interrelationship and that due to their nature, respiratory artifacts are harder
to identify than, for example, artifacts caused by movement. They then describe the procedure and
workflow of the toolbox that they have developed to address respiration-related issues with the analysis of
EDA signals.
Examples are given for how the toolbox will display respiration that is unusual in its frequency or intensity
(irregular breathing and sudden deep breath, respectively) and how the system allows to judge the
temporal instance of these events in comparison to EDA responses of interest. The user can then run
trial-by-trial analysis and flag or delete suspicious events.

The described toolbox was clearly designed to integrate all necessary parts of an EDA analysis into one
package: apart from artifact identification and correction, it includes all standard EDA analysis
procedures, so that the normal user should be able to rely on this toolbox alone. Further, it includes
algorithms to calculate inter-rater reliability.

While these additions are not strictly required for artifact cleaning software (as there are other software
packages available that can be used to perform these tasks), I would expect them to increase
convenience for the user, as this integrated system reduces the clutter caused by combining different
toolboxes to work on the same data set. Further, the fact that the software package is free and includes a
graphical user interface will facilitate its use by researchers within the scientific community.

In summary, the described toolbox provides a convenient way to run a data quality assessment and
subsequent data analysis for EDA studies, with a special focus on correcting for respiratory effects.
The manuscript is written clearly and succinctly and provides all necessary information for a user to
understand and use the toolbox. After a thorough review of the text, I have no recommended edits.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes
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presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 05 April 2018Referee Report

https://doi.org/10.5256/f1000research.15053.r32730

   Edwin S.  Dalmaijer
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK

The authors present a Matlab toolbox to assess skin-conductance measurements.Their toolbox sets itself
apart from existing analysis options in particular by allowing users to filter out artifacts related to
movement and (partially) unrelated physiological signals that arise through e.g. breathing. The authors
outline what task-related signal researchers tend to be interested in, and how artifacts can distort these.
The authors also highlight a current lack of user-friendly analysis solutions, and therefore present a
toolbox that should offer Matlab users a platform to do skin conductance analyses.

I particularly enjoyed the brief and to-the-point introduction, which manages to clearly introduce the need
for the presented software without unnecessary excursions. In addition, I appreciate that the authors took
the time to produce this software package and to open it up to fellow researchers. The authors would
benefit from a citable publication on their efforts, as unfortunately scientific software is currently
under-appreciated in reward frameworks for scientists (i.e. it's hard to cite, and direct citations to software
tend to be disregarded).

The article is well-written, but summarises the algorithms included in the toolbox rather coarsely. I think
the manuscript would benefit from a higher level of detail on the statistical analysis. Specifically, I think the
authors should include equations that describe how parameters are computed from the signal.

An additional feature that would benefit the software is the option to do statistical comparisons between
experimental conditions, which currently does not seem to be possible. Artifact identification and
correction is
important, but also just the first step of an analysis. The target audience for this toolbox includes,
according to the manuscript, people with no programming experience. These will profit from additional
analysis options
that could be built into the GUI.

The code is made publicly available via GitHub, which is a very suitable platform. The chosen license
(GNU GPL v3) allows for any kind of re-use. Unlike some open-source software, the documentation that
the authors provide with their toolbox is extensive, and should (in my opinion) suffice to help even the
most inexperienced of users.

DISCLAIMER: This reviewer is not an expert in skin conductance signals, but has published open
software, including toolboxes for Python and Matlab. This means I am not in a position to sufficiently
review the actual software, and will thus limit my review to the manuscript.

Is the rationale for developing the new software tool clearly explained?

Page 13 of 14

F1000Research 2018, 7:216 Last updated: 27 DEC 2018

https://doi.org/10.5256/f1000research.15053.r32730
http://orcid.org/0000-0003-3241-0760


 

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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