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Supplementary Note 

Supplementary Methods 

Cohort descriptions and cohort-specific methods 
ARIC: Atherosclerosis Risk in Communities (ARIC)1,2 (NCT00005131), is a population based study of risk 
factors for atherosclerosis and its sequelae in adults from four U.S. centers.  Subjects were aged 45-64 at 
recruitment in 1987-1989. Institutional Review Board (IRB) approval was obtained at all associated study 
centers and informed consent was obtained for all participants. ARIC spirometry measurements were 
performed with a Collins Survey II water-seal spirometer (Collins Medical, Inc.) and Pulmo-Screen II 
software (PDS Healthcare Products, Inc.). Genotyping was performed using the AffymetrixGeneChip SNP 
Array 6.0. The current analysis includes 7,224 Caucasian subjects with genotyping data, pulmonary 
function measures and complete covariate information. Imputation was performed using the 1000 
Genomes3 Integrated Phase 1 v3 reference panel (March 2012) in IMPUTE24. Logistic regression was 
performed using FAST (https://bitbucket.org/baderlab/fast/wiki/Home) adjusting for age, sex, pack-
years, current and ever smoking, and ancestry. 
Cardiovascular Health Study (CHS): The Cardiovascular Health Study (CHS) is a population-based cohort 
study of risk factors for coronary heart disease and stroke in adults ≥65 years conducted across four 
centers5 (NCT00005133 and NCT00149435). IRB approval was obtained at participating centers and 
written informed consent was obtained for all participants. 5,201 predominantly European ancestry 
persons were recruited in 1989-1990 from random samples of Medicare eligibility lists.  An additional 
predominantly African-American cohort of 687 persons was subsequently enrolled in 1992-1993 for a 
total sample of 5,888.  European ancestry participants were excluded from the GWAS study sample due 
to the presence at study baseline of coronary heart disease, congestive heart failure, peripheral vascular 
disease, valvular heart disease, stroke or transient ischemic attack. Genotyping was performed at the 
General Clinical Research Center’s Phenotyping/Genotyping Laboratory at Cedars-Sinai among CHS 
participants who consented to genetic testing and had DNA available using the Illumina 370CNV 
BeadChip system (for European ancestry participants, in 2007) or the Illumina HumanOmni1-Quad_v1 
BeadChip system (for African-American participants, in 2010). Additional genotypes were provided from 
the ITMAT-Broad-CARe (IBC) Illumina iSELECT chip (for European ancestry participants). Imputation was 
performed using 1000 Genomes3 Phase 1 v3 haplotypes and minimac4 (for European ancestry 
participants, 2012-11-16) or IMPUTE version 2.2.2 (for African-American participants).  Logistic 
regression was performed in R, adjusting for age, sex, pack-years, current and ever smoking, CHS clinic 
(4 sites) and PCs 1-5. 
COPDGene: Eligible subjects in COPDGene Study (NCT00608764, www.copdgene.org) were of non-
Hispanic white (NHW) or African-American (AA) ancestry, aged 45-80 years old, with at least 10 pack-
years of smoking and no diagnosed lung disease other than COPD or asthma6,7 21,22. IRB approval was 
obtained at all study centers, and all study participants provided written informed consent. Illumina (San 
Diego, CA) performed genotyping on the HumanOmniExpress array. Genotyping at the Z and S alleles 
was performed in all subjects. Subjects known or found to have severe alpha-1 antitrypsin deficiency 
were excluded. We performed imputation using MaCH8,9 10,11 and minimac4 4 (version 2012-10-09) and 
1000 Genomes3 Phase I v3 European (EUR) and cosmopolitan reference panels, for whites and African-
Americans, respectively. We removed variants with an r2 value of ≤ 0.3.  We performed logistic 
regression on cases and controls defined based on pre-bronchodilator spirometry, adjusting for age, sex, 
pack-years, current smoking, and principal components of genetic ancestry, separately in non-Hispanic 
whites and African-Americans, using PLINK1.910 . 
Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE; SCO104960, 
NCT00292552, www.eclipse-copd.com): Details of the ECLIPSE study and genome-wide association 
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analysis have been described previously12. The ECLIPSE study was approved by the relevant ethics and 
review boards at the participating clinical centers. All participants provided written informed consent. 
Cases and controls were aged 40-75 with at least a 10 pack-year smoking history without other 
respiratory diseases.  Genotyping was performed using the Illumina HumanHap 550 V3 (Illumina, San 
Diego, CA). Subjects and markers with a call rate of < 95% were excluded.  Imputation was performed 
using MaCH8,9 and minimac4 (version 2012-10-09) and the 1000 Genomes3 Phase I v3 European (EUR) 
reference panel.  Logistic regression was performed on cases and controls defined by pre-bronchodilator 
spirometry, adjusting for age, sex, pack-years, current smoking, and principal components of genetic 
ancestry using PLINK1.910. 
Expression Quantitative Trait Loci – Lung (eQTL): The lung eQTL study has been described previously13. 
Briefly, patients who underwent thoracic surgery were recruited at three academic sites: Laval 
University, University of British Columbia (UBC), and University of Groningen, henceforth referred to as 
Laval, UBC, and Groningen, respectively. Patients from Laval were those undergoing lung cancer surgery, 
the majority of the UBC patients had lung resection for small peripheral lung lesions with some samples 
derived from autopsy or at the time of lung transplantation. At Groningen, patients were recruited from 
those having surgery for various lung diseases, including patients that underwent therapeutic resection 
for lung tumors and lung transplantation. All patients provided written informed consent, and the study 
was approved by the ethics committees of the Institut universitaire de cardiologie et de pneumologie de 
Québec and the UBC-Providence Health Care Research Institute Ethics Board for Laval and UBC, 
respectively. The study protocol was consistent with the Research Code of the University Medical Center 
Groningen and Dutch national ethical and professional guidelines. Patients whose lung function could 
have been influenced by lung diseases other than COPD and lung cancer were excluded. This includes 
patients with severe alpha-1 antitrypsin deficiency (n=11), amyloidosis (n=1), bronchiectasis (n=3), 
bronchiolitis obliterans (n=2), bronchopulmonary dysplasia (n=2), cystic fibrosis (n=14), idiopathic 
pulmonary fibrosis (n=13), langerhans cell histiocytosis (n=1), lymphangioleiomyomatosis (n=1), primary 
pulmonary hypertension (n=4), sarcoidosis (n=3) and vascular malformation (n=1).  
Genotyping was carried out using the Illumina Human1M-Duo BeadChip. Standard genotyping quality 
controls were performed independently in the Laval, UBC and Groningen cohorts. Genotypes were then 
imputed with the Michigan Imputation Server14 using the Haplotype Reference Consortium version 1 
(HRC.r1-1) data as reference set. Variants with an r2 value of ≤ 0.3 were removed from further analysis. 
Single-marker association tests were performed with PLINK v1.9010,11 adjusting for age, sex, smoking 
status, pack-years, ever smoking status, clinical center and genetic ancestry PC1 to PC10.  
Framingham Heart Study (FHS; NCT00005121): Details on pulmonary function in the FHS have been 
previously published15,16. FHS was IRB-approved at the relevant institutions, and all participants provided 
written informed consent. We analyzed data from the most recent exam for each of the three 
generations of families participating in the FHS were analyzed. Genotypes were from the Affymetrix 
500K array supplemented by the Affymetrix MIPS 50K.  From a total number of 549,781 genotyped 
SNPs, 412,053 were used with MaCH8,9 for haplotype phasing, of which of 137,728 genotyped SNPs were 
removed by quality control.  MaCH/minimac4,8,9 were used in this genotype imputation process to 
impute the FHS sample using the November 2010 release of the 1000 Genomes3 multi-ethnic panel. We 
used GEE implemented in the R package geepack with independent correlation matrix and clustering 
based on family, adjusted for sex, age, smoking status, pack years and genetic ancestry principal 
component 1 (to adjust for population stratification). 
KARE: Details on the Korean Association Resource project (KARE) have been previously published17,18. 
KARE was initiated in 2007 to undertake genome-wide analyses among 10,038 participants in the rural-
based Ansung and city-based Ansan South Korean cohorts. The study was approved at appropriate IRBs 
from participating institutions, and participants provided informed consent. KARE3 data were obtained 
from the third phenotype collection in 2008; lung function was collecting using the Vmax-2130 (Sensor 
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Medics, Yorba Linda, CA, USA). Genotyping was performed using the Affymetrix Genome-Wide Human 
array 5.0 (Affymetrix, Inc., Santa Clara, CA, USA). We performed genotype imputation using IMPUTE2 
and the 1000 Genomes3 Phase 3 cosmopolitan panel.  Markers were converted to genotype from 
dosage with call rate ≥ 95%, minor allele frequency ≥ 1%, p for HWE ≥ 1.0x10-5, imputation quality score 
≥ 0.9.  Logistic regression, adjusting for age, sex, pack-years, principal components, current and ever 
smoking, was performed using PLINK19. 
LifeLines: The LifeLines Cohort Study is a population-based cohort study established as a resource for 
research on complex interactions between environmental, phenotypic and genomic factors in the 
development of chronic diseases and healthy aging20–22. Between 2006 and 2013, inhabitants of the 
northern part of The Netherlands and their families were invited to participate, thereby contributing to 
a three-generation design. Participants visited one of the LifeLines research sites for pre-bronchodilator 
spirometry following ATS guidelines. All participants signed an informed consent form before they 
received an invitation for the physical examination. The LifeLines Cohort Study is conducted according to 
the principles of the Declaration of Helsinki and in accordance with research code University Medical 
Center Groningen (UMCG), The Netherlands. The LifeLines study is approved by the medical ethical 
committee of the UMCG.  Blood samples for a subset of individuals were genotyped using the Illumina 
CytoSNP-12v2 array. Independent Caucasian-ancestry samples (n = 13,436) have been imputed using the 
1000 Genomes3 phase1 v3 reference panels. Genotypes were pre-phased using SHAPEIT223 and aligned 
to the reference panels using Genotype Harmonizer (www.molgenis.org/systemsgenetics) in order to 
resolve strand issues. The samples were imputed using minimac4 (version 2012-10-09), yielding 
28,681,763 SNPs.   Associations between genomic dosages with moderate/severe COPD were assessed 
with logistic regression models adjusted for age, smoking status (never/ever), current smoking (no/yes), 
pack years smoked and sex. All analysis were performed in software package PLINK version 1.0719,24. 
Lovelace: The Lovelace Smokers Cohort (LSC) has been actively enrolling smokers from the 
Albuquerque, NM metropolitan area since 200125. All participants provided written informed consent, 
and the study was approved by the relevant IRB. Enrollment was restricted to current and former 
smokers age 40 to 74 years old with a minimum of 10 pack-years of smoking and no personal history of 
lung cancer. A detailed questionnaire written in English was used to collect information on 
demographics; medical, cigarette smoking, and exposure history; socioeconomic status; diet; and quality 
of life. Pulmonary function testing was performed at each visit. All participants signed a consent form, 
and the Western Institutional Review Board approved this project. The GWAS discovery set was 
comprised of 1200 Caucasian (self-reported) smokers. The HumanOmni2.5-4v1-H BeadChip (Illumina, 
San Diego, CA) was used to genotype 2,450,000 SNPs in 1200 Caucasian smokers from the LSC. After 
quality assessment, 1163 subjects with 1,599,980 SNPs remained in the genetic association analysis.  
Logistic regression was performed using PLINK on white subjects, adjusting for age, sex, pack-years, 
current and ever smoking, and ancestry. 
Multi-Ethnic Study of Atherosclerosis (MESA): MESA is a longitudinal study of subclinical cardiovascular 
disease and risk factors that predict progression to clinically overt cardiovascular disease or progression 
of the subclinical disease26. Between 2000 and 2002, MESA recruited 6,814 men and women 45 to 84 
years of age. Exclusion criteria were clinical cardiovascular disease, weight exceeding 136 kg (300 lb.), 
pregnancy, and impediment to long-term participation. The MESA Family Study recruited 1,595 African 
American and Hispanic participants, generally siblings of MESA participants, using the same inclusion 
and exclusion criteria as MESA except that clinical cardiovascular disease was permitted. The MESA Air 
Pollution Study recruited an additional 257 participants from Los Angeles and Riverside County, CA, and 
Rockland County, NY, using the same criteria as MESA, except that participants were ages 50 to 89 who 
lived in the area more than 50% of the year and had no plans to move in the next five years27. The MESA 
Lung Study performed spirometry following the 2005 ATS/ERS guidelines in a subset of the MESA and 
MESA Family Studies and all of the new recruits in the MESA Air Pollution Study28. All participants 
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provided informed consent and the protocols of MESA were approved by the IRBs of collaborating 
institutions and the National Heart, Lung and Blood Institute. 

Participants who consented to genetic analyses were genotyped in 2009 using the Affymetrix Human 
SNP array 6.0 29. The cleaned genotypic data was deposited with MESA phenotypic data into dbGaP as 
the MESA SHARe project (study accession phs000209); 8,224 consenting individuals (2,685 White, 2,588 
non-Hispanic African-American, 2,174 Hispanic, 777 Chinese) were included, with 897,981 SNPs passing 
study specific quality control (QC). For GWAS, IMPUTE version 2.2.2 was used to perform imputation for 
the MESA SHARe participants using the cosmopolitan 1,000 Genomes3 Phase 1 v3 March 2012 reference 
set.  Logistic regression was performed using SNPTEST v2.4.030, adjusting for age, sex, pack-years, 
current and ever smoking, and ancestry. 
National Emphysema Treatment Trial (NETT; NCT00000606, 
www.nhlbi.nih.gov/health/prof/lung/nett/) and Normative Aging Study (NAS): 31. NETT was a 
multicenter clinical trial to evaluate lung volume reduction surgery. All participants provided written 
informed consent, and the study was approved by the IRB at all participating institutions. Enrolled 
subjects had severe airflow obstruction by post-bronchodilator spirometry (FEV1 < 45% predicted) and 
evidence of emphysema on computed tomography (CT) chest imaging; exclusion criteria included, but 
not limited to, history of recurrent infections with significant sputum production or bronchiectasis. A 
subset of 382 self-reported white subjects without severe alpha-1 antitrypsin deficiency were enrolled in 
the NETT Genetics Ancillary Study. The Normative Aging Study is a longitudinal study of healthy men 
established in 1963 aged 21 to 80 years from the greater Boston area, free of known chronic medical 
conditions.  The study was conducted by the Veterans Administration (VA)32, and the local Institutional 
Review Board approved the study. Controls were of self-reported white ancestry and at least 10 pack-
years of cigarette smoking with no evidence of airflow limitaiton on spirometry on their most recent 
visit. Genotyping for NETT-NAS was performed using the Illumina Quad 610 array (Illumina, San Diego, 
CA)33,34. Imputation was performed using MaCH8,9 and minimac4 (version 2012-10-09) and the 1000 
Genomes Phase I v3 European (EUR) reference panel. Logistic regression was performed on cases and 
controls based on pre-bronchodilator spirometry, adjusting for age, sex, pack-years, current smoking, 
and principal components of ancestry using PLINK1.910,11. 
GenKOLS (Norway): The Norwegian GenKOLS (Genetics of Chronic Obstructive Lung Disease, GSK code 
RES11080)35 recruited  subjects with > 2.5 pack years of smoking history from Bergen, Norway. Subjects 
with severe alpha-1 antitrypsin deficiency and other lung diseases (aside from asthma) were excluded. 
The Regional Committee for Medical Research Ethics (REK Vest), the Norwegian Data Inspectorate and 
the Norwegian Department of Health approved the case–control study. Written informed consent was 
obtained from all participants. Genotyping was performed using Illumina HumanHap 550 arrays 
(Illumina, San Diego, CA).  Genotype imputation was performed using MaCH8,9 and minimac4 (version 
2012-10-09) and the 1000 Genomes3 Phase I v3 European (EUR) reference panel.  Logistic regression 
was performed on cases and controls defined by pre-bronchodilator spirometry, adjusting for age, sex, 
pack-years, current smoking, and principal components of genetic ancestry using PLINK1.910,11. 
The Rotterdam Study: The Rotterdam Study is a prospective population-based cohort study founded in 
1990 in a suburb of Rotterdam, the Netherlands36,37. The first cohort (RS-I) consists of 7,983 participants, 
aged 55 years and over. The second cohort (RS-II) was recruited in 2000 with the same inclusion criteria. 
The third cohort (RS-III) consists of 3,932 participants, aged 45 years and over and was recruited in 2006. 
The Rotterdam Study was approved by the institutional review board (Medical Ethics Committee) of the 
Erasmus Medical Center and by the review board of The Netherlands Ministry of Health, Welfare and 
Sports. All participants provided written informed consent. Spirometry was performed using the Master 
Screen® PFT Pro (CareFusion, San Diego, CA).  A total of 6,291 subjects for RS I, 2,157 for RS II and 3,048 
for RS III passed genotyping quality control. Regression coefficients and their standard errors were 
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determined using the ProbABEL38 program according to an additive model, adjusting for age, sex, pack-
years, smoking status, and ancestry. 
Subpopulations and intermediate outcome measures in COPD study (SPIROMICS; NCT01969344): 
Participants of the NHLBI SPIROMICS study were 40-80 years of age at baseline with a smoking history 
≥20 pack-years. Recruitment included non-smokers, smokers without COPD, mild-moderate COPD, and 
severe COPD39. All participants provided written informed consent and the Institutional Review 
Boards/Ethics Committees of all the cooperating institutions approved the study protocols. Genome-
wide genotyping was performed using the Illumina OmniExpress HumanExome BeadChip using standard 
techniques in the first 571 subjects with COPD and 175 smoking controls.  Imputation was performed 
against 1000 Genomes reference panels using Impute-v2.30 using a quality cutoff of 0.9, and association 
analysis performed using PLINK adjusting for age, sex, pack-years, smoking status, and ancestry. 
 
Studies with Custom Genotyping: 
Boston Early-Onset COPD Study (BEOCOPD; ClinicalTrials.gov: NCT01177618). BEOCOPD is an extended 
pedigree study constructed based on probands under 53 years of age with severe COPD (defined as pre-
bronchodilator forced expiratory volume in one second (FEV1) < 40% predicted) and without severe 
alpha-1 antitrypsin deficiency40,41. IRB approval was obtained for the study, and all participants provided 
written informed consent.   
International COPD Genetics Network (ICGN): ICGN recruited subjects (FEV1 < 60% predicted and 
FEV1/FVC < 90% predicted between ages 45-65) as probands and then enrolled available siblings and 
parents of the proband42,43. The study was IRB approved at all relevant institutions and participants 
provided written informed consent.  
Transcontinental COPD Genetics Study (TCGS) – Korea and Poland: TCGS44 and comprised of two case-
control studies, based in Poland and in Korea. The study was approved by the appropriate IRBs, and all 
participants provided written informed consent. Both studies recruited individuals between 40 and 80 
years of age, with at least 10 pack-years of cigarette smoking; where cases had severe COPD (FEV1 < 
50% predicted) and controls had normal spirometry. Subjects with other lung diseases were excluded. 
TCGS-Poland enrolled white individuals, and TCGS-Korea enrolled Korean individuals.   
Genotyping in BECOPD, ICGN, and TCGS:  
We genotyped subjects using the Illumina HumanExome v1.2 array with custom content, including top 
results from prior genome-wide association studies, as previously described45. We performed single-
variant association analysis adjusting for age, pack-years, sex, and current and ever smoking, together 
using a covariate additionally indicating study, via a logistic mixed model as implemented in GMMAT 
version 0.5 in R (version 3.2.0, http://www.R-project.org/)46 in whites in our family-based studies, and 
using standard logistic regressions in each of the two TCGS studies. 

Ethical statements for ICGC studies 
ICGC studies obtained IRB or other relevant ethical body approval as follows: 

ARIC: IRB approval obtained from: Wake Forest Baptist Medical Center, Winston-Salem, NC; University 

of Mississippi Medical Center, Jackson, MS; University of Minnesota, Minneapolis, MN; Johns Hopkins 

University, Baltimore, MD 

CHS: IRB approval obtained from: Sacramento County, Sacramento, CA - University of California, Davis; 

Washington County, Hagerstown, MD - Johns Hopkins University; Forsyth County, Winston-Salem, NC - 

Wake Forest University School of Medicine; Pittsburgh, PA - University of Pittsburgh 

COPDGene: IRB approval obtained from: Ann Arbor VA; Baylor College of Medicine, Houston, TX; 

Brigham and Women’s Hospital, Boston, MA; Columbia University, New York, NY; Duke University 

http://www.r-project.org/
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Medical Center, Durham, NC; Fallon Clinic, Worcester, MA; Health Partners Research Foundation, 

Minneapolis, MN; Johns Hopkins University, Baltimore, MD; Los Angeles Biomedical Research Institute 

at Harbor UCLA Medical Center, Los Angeles, CA; Michael E. DeBakey VAMC, Houston, TX; Minneapolis 

VA; Morehouse School of Medicine, Atlanta, GA; National Jewish Health, Denver; Temple University, 

Philadelphia, PA; University of Alabama, Birmingham, AL; University of California, San Diego, CA; 

University of Iowa, Iowa City; University of Michigan, Ann Arbor, MI; University of Minnesota, 

Minneapolis, MN; University of Pittsburgh, Pittsburgh, PA; University of Texas Health Science Center at 

San Antonio, San Antonio, TX 

ECLIPSE: The ECLIPSE study was conducted in accordance with the Declaration of Helsinki and good 

clinical practice guidelines, and was approved by the relevant ethics and review boards at the 

participating centers. All participants provided written informed consent. 

eQTL: All patients provided written informed consent and the study was approved by the ethics 

committees of the Institut universitaire de cardiologie et de pneumologie de Québec and the UBC-

Providence Health Care Research Institute Ethics Board for Laval and UBC, respectively. The study 

protocol was consistent with the Research Code of the University Medical Center Groningen and Dutch 

national ethical and professional guidelines. 

FHS: IRB approval obtained from: Winston-Salem, NC--University of North Carolina; Minneapolis MN—

University of Minnesota; Framingham, MA—Boston University; Salt Lake City, UT—University of Utah 

KARE: The study was approved at appropriate IRBs from participating institutions and participants 

provided informed consent. 

LifeLines: All participants signed an informed consent form before they received an invitation for the 

physical examination. The LifeLines Cohort Study is conducted according to the principles of the 

Declaration of Helsinki and in accordance with research code University Medical Center Groningen 

(UMCG), The Netherlands. The LifeLines study is approved by the medical ethical committee of the 

UMCG. 

Lovelace: All participants signed a consent form, and the Western Institutional Review Board (Olympia, 

WA) approved this project. 

MESA: IRB approval obtained from: National Heart, Lung and Blood Institute and Forsyth County, North 

Carolina: Wake Forest University School of Medicine; St. Paul, Minnesota: University of Minnesota; 

Chicago, Illinois: Northwestern University, University of Illinois, Loyola University; New York, New York: 

Columbia University, St. Francis Hospital; Baltimore, Maryland: Johns Hopkins University; Los Angeles, 

California: University of California, Los Angeles. 

NETT/NAS: IRB approval obtained from: Baylor College of Medicine, Houston, TX; Brigham and Women's 

Hospital, Boston, MA; Cedars-Sinai Medical Center, Los Angeles, CA; Cleveland Clinic Foundation, 

Cleveland, OH; Columbia University, New York, NY; Duke University Medical Center, Durham, NC; Mayo 

Foundation, Rochester, MN; National Jewish Medical and Research Center, Denver, CO; Ohio State 

University, Columbus, OH; Saint Louis University, Saint Louis, MO; Temple University, Philadelphia, PA; 

University of California, San Diego, San Diego, CA; University of Maryland at Baltimore, Baltimore, MD; 

University of Michigan, Ann Arbor, MI; University of Pennsylvania, Philadelphia, PA; University of 
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Pittsburgh, Pittsburgh, PA; University of Washington, Seattle, WA; the Human Studies Subcommittee of 

the Department of Veterans Affairs Medical Center 

GenKOLS: The study was performed in accordance with the ethical standards laid down in the Helsinki 

Declaration. The Regional Committee for Medical Research Ethics (REK Vest), the Norwegian Data 

Inspectorate and the Norwegian Department of Health approved the case–control study. 

The Rotterdam Study: The Rotterdam Study was approved by the institutional review board (Medical 

Ethics Committee) of the Erasmus Medical Center and by the review board of The Netherlands Ministry 

of Health, Welfare and Sports. All participants provided written informed consent. 

SPIROMICS: IRB approval obtained from: Columbia University; the University of California at Los 

Angeles; the University of California at San Francisco; the University of Michigan; the University of Utah; 

Wake Forest University 

BEOCOPD: IRB approval obtained from: The Human Research Committees of Partners Health Care 

(Brigham and Women's Hospital and Massachusetts General Hospital) and the Brockton/West Roxbury 

VA Hospital 

ICGN: The study was IRB approved at all relevant institutions and participants provided written informed 

consent.  

TCGS: IRB approval obtained from: Institute of Tuberculosis and Lung Diseases in Warsaw; Brigham and 

Women's Hospital in Boston 

UK Biobank 

Derivation and quality control of FEV1 and FVC, COPD status, and smoking 

The UK Biobank is a resource with approximately 500,000 persons age 40-69 for whom extensive 

baseline questionnaire data, physiologic measures, and biologic specimens (urine and blood samples) 

have been obtained47. The UK Biobank participants provided informed consent. The UK Biobank’s Ethics 

and Governance Framework guides research ethics principles and polices, the adherence to which is 

overseen by the independent Ethics and Governance Council. Details of the derivation and quality 

control of spirometry, smoking, and case-control status were performed as described48.  Briefly, of 

502,682 individuals in UK Biobank, 445,754 individuals had at least two measures of FEV1 and FVC and 

spirometry metrics, age, sex, height, and smoking. We used blow quality metrics from the Vitalograph 

spirometer and compared pre-defined measurements with the blow curve time series.  We considered 

blows as ‘acceptable’ if their blow quality metrics were blank, ACCEPT, BELOW6SEC ACCEPT, or 

BELOW6SEC. We assessed back-extrapolated volumes derived from blow curve time series 

measurements as previously described49 and excluded blows which their back-extrapolated volumes 

were greater than the larger of either 5% of FVC or 150 mL, leaving 776,927 blows from 387,277 

participants. To confirm pre-defined FEV1 and FVC, we independently derived FEV1 and FVC from blow 

curve time series measurements. We further excluded blows which differences between pre-defined 

and newly derived FEV1 and FVC were greater than 5%. Following above exclusion, 776,318 blows from 

387,052 participants remained in the analysis.  Additionally, we assessed if individuals’ measures of FEV1 

and FVC were reproducible, allowing differences between the highest measure and others to be up to 

250 mL. We defined COPD using modified GOLD criteria (as stated previously) based on highest values of 

reproducible measures of FEV1 and FVC available in 324,299 individuals. 



10 

We assigned smoking status to individuals in UK Biobank based on their responses on questionnaires.  

Never-smokers were non-current smokers or smoked occasionally allowing up to 100 life-time 

cigarettes; ever-smokers were defined as either current, most days (current or all days in the past), or 

smoked occasionally with > 100 cigarettes.  We defined pack-years as packs of cigarettes per day 

multiplied by years smoked. Pack-years was 0 for never smokers based on VariableID: 20116 smoking 

status. For ever smokers, we set pack-years to cigarettes per day (VariableID: 2887 in former smokers or 

VariableID: 3456 in current smokers) divided by 20 multiplied by duration of smoking (VariableID: 2897 

minus VariableID: 2867 for former smokers and age at time of study minus VariableID: 3436 in current 

smokers). 

Sample-based genotyping quality control 

Details on procedure, imputation, and quality control of genotyping in UK Biobank were published 

earlier50. Briefly, we excluded 968 individuals with outlying heterozygosity or missingness. We further 

excluded: 1) 378 samples with sex mismatch (reported and genetic sex) 2) 188 samples with >10 3rd 

degree relatives 3) 652 samples with putative sex chromosome aneuploidy. This left 486,367 samples 

with genotypes for further analysis.  

SNP-based Genotyping quality control 

Besides the QC steps described in Bycroft et al.50, we filtered out: 1) variants with minor allele frequency 

lower than 1%; 2) variants with imputation quality lower than 0.5; 3) variants not included into the 

Haplotype Reference Consortium (HRC) imputation panel, as recommended by UK Biobank at the time 

of analysis. This left us with 7,810,596 variants. 

Identification of individuals of European ancestry 

To identify individuals of European ancestry, we used K-means clustering on principal components (PCs) 

provided by UK Biobank. We performed K-means clustering using the first two PCs with number of 

clusters 3-8 in 486,367 samples passing sample-based quality control. Together with self-reported 

ethnicity data, we chose 6-cluster model as it reflects the expected broad ethnic groups. This left us 

453,958 European individuals for further analysis (additional 45,865 putative European individuals in 

addition to 408,093 self-reported white British50). 

Selecting individuals for genome-wide association analysis 

We intersected the individuals passing spirometry QC and sample-based genotyping QC and selected 

individuals with European ancestry as described above. This left us 321,057 individuals in total.  To 

identify individuals who were outliers in phenotype distribution, we plotted the distribution for each 

measure (FEV1, FVC, and FEV1/FVC) adjusting for sex, age, age2, height, and smoking status (ever/never). 

We re-calculated phenotypic adjustment after excluding 10 European samples who were obvious 

outliers. As stated previously, we defined COPD using modified GOLD criteria for moderate to very 

severe airflow limitation51: FEV1 less than 80% of predicted value and FEV1/FVC less than 0.7. We 

excluded 59,358 individuals, who did not match the above criteria. To select completely unrelated 

individuals for genome-wide association analysis, we removed at least one individual from each related 

pair, giving preference to cases. Briefly, we created a graph from related pairs using genetic kinship 

information provided by UK Biobank. For each unconnected component, we removed control nodes 

(healthy individual), starting with the one with the highest degree. If all nodes were cases, we removed 

the one with the highest degree. We excluded additional 26,855 individuals based on kinship and 

further 34,035 individuals who had missing information on sex, ever smoking status, pack-years of 
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smoking, and age.  We also excluded subjects who had withdrawn consent (updated as of May 2018). 

After excluding individuals, we were left with 200,792 individuals for genome-wide association analysis 

of COPD. 

Sensitivity analyses for smoking, sex, and COPD phenotypic misclassification 
To determine whether our results were driven by, or differed by, smoking status, we examined COPD-

associated variants in relationship to ever-smoking status in UK Biobank. In addition, we separately 

examined these variants in ever- and never-smokers in UK Biobank.  To test for sex-difference in genetic 

effects among our top variants, we performed a sex-stratified GWAS of COPD in UK Biobank and tested 

for differences between effects among males and females. For the latter we utilized the “difference 

test52,53”. In addition, we also included a variant-by-sex interaction term and tested this term. We 

defined significant effect differences by Bonferroni correction and further, we attempted to replicate all 

nominally significant variants (P for the difference test < 0.05) from our top SNPs in a meta-analysis of 

sex-stratified COPD association analyses in COPDGene NHW, COPDGene AA, ECLIPSE, and GenKOLS. We 

also investigated variants not our top variants but reaching genome-wide significance (P<5x10-8) only in 

one sex. We attempted to replicate these variants in the meta-analysis of COPD case-control cohorts as 

mentioned above. We used 5% Bonferroni corrected P value to determine significance in replication. 

To simulate power for the difference test, we modified the power simulations in Winkler et al. 52 and 

made them applicable to a case-control dataset. We approximated the phenotypic variance attributable 

to the risk locus as in Peyrot et al.54: 

𝑅𝑖
2 = 2𝑝𝑞(𝑅𝑅 − 1)2 𝑚2⁄  

where 𝑚2 is the mean liability of case subjects and depends on the prevalence of COPD, 𝑝 is the risk 

allele frequency of variant 𝑖, 𝑞 = 1 − 𝑝 and 𝑅𝑅 is the relative risk, respectively. 𝑅𝑖can be derived from 

𝑅𝑖
2 and the direction of the effect 𝑖. 

The variance of a variant 𝑖 (𝑠𝑒𝑖
2) is defined as 

𝑠𝑒𝑖
2 = [(1 − 𝑅𝑖

2)𝜎𝑌
2]/(𝑛𝑖𝜎𝐺

2) 

Where 𝑛𝑖 is sample size in stratum 𝑖. 

Hence, we can derive the power of difference test as52 
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As Φ denotes the cumulative standard normal distribution, 𝑧𝑞 is the q-th quantile of Φ, 𝛼 is the alpha 

level of the test, and f = n2/n1. 

We performed an array of analyses to ascertain if a pre-bronchodilator spirometry definition of COPD 

(as opposed post-bronchodilator spirometry) and the inclusion of subjects with self-reported asthma 

subsequently impacted both effect size estimates and P values of genetic association. First, in the 

COPDGene study, we examined the difference in COPD diagnosis using pre- and post-bronchodilator 

spirometry. Then, we stratified individuals by self-reported asthma and compared the percent of 
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individuals in each stratum that were misclassified as having COPD based on a pre-bronchodilator 

spirometry definition of COPD. We also re-tested the association of COPD by excluding individuals in UK 

Biobank with self-reported asthma and the same control individuals as the primary analysis. Finally, in a 

subset of COPD case-control studies including COPDGene NHW and AA, ECLIPSE, and Norway/GenKOLS, 

we performed logistic regression (controlling for pack years, current smoking, sex, age, and PCs of 

genetic ancestry) and a meta-analysis to assess the relative COPD association effect sizes and P values of 

our top variants when using a pre- vs post-bronchodilator definition of COPD. For the comparison of 

effect sizes, we limited the variants being compared to those that were at least nominally significant (P < 

0.05) in the meta-analysis of the COPD case-control studies. 

Identification of cell types 
Linkage equilibrium score regression (LDSC) requires specifically expressed gene sets to perform cell 

type-specific analysis55. For two human datasets56,57, we computed t-statistics for each cell type on gene 

expression data in Transcripts Per Kilobase Million (TPM) as described previously55. We constructed 

gene sets for each cell type using genes in the top 10% of sorted t-statistics55, and a control gene set 

(i.e., all genes available in a dataset). We annotated regions +/- 100-kb from each gene and computed 

LD scores as previously described55. For two mouse datasets58, we used pre-computed Wilcoxon or 

Welch P-values for each cell to select genes in the top 10%. We mapped gene identifiers from mouse to 

human using biomaRt59. 

We tested for enrichment of lung cell type in sets of genome-wide significant variants using SNPsea60,61. 

Briefly, SNPsea performed three steps: identification of specifically expressed genes, assignment of gene 

in a locus, and significance testing. We first computed the Euclidean norm of gene expression values 

(TPM) in all cell types and divided expression values in each cell type using this value. The score was 

then converted to nonparametric percentiles. Second, we identified the most specifically expressed 

gene in a given locus by ranking the score. Finally, we then tested for significance using permutation 

using matched SNP sets. 

Fine-mapping 
We used biomaRt59 to annotate variants in each credible set based on the Ensembl Variant Effect 

Predictor . We defined deleterious variants as those which resulted in non-synonymous, stop, or splice 

variants (terms: transcript_ablation, splice_acceptor_variant, splice_donor_variant, stop_gained, 

frameshift_variant, stop_lost, start_lost, transcript_amplification, inframe_insertion, inframe_deletion, 

missense_variant, and protein_altering_variant).  Variants were annotated using Haploreg v4.162 and 

SNPnexus63. 

Target gene identification 

Rare coding variants 

We performed single-variant analyses using Firth and efficient resampling methods (SKAT R package64) 

for the COPDGene data (case-control) and generalized linear mixed models (GMMAT) for the BEOCOPD-

ICGN data (using lung function) as previously published65. Gene-based analyses were conducted using 

burden, SKAT, and SKAT-O tests with asymptotic and efficient resampling methods (SKAT package) 

combined with Fisher’s method for the COPDGene data, and using SKAT-O tests (MONSTER) for the 

BEOCOPD-ICGN data. Two variant-filtering criteria were considered: deleterious variants (predicted by 

FATHMM) with minor allele frequency (MAF) < 0.01, and functional variants (moderate effect predicted 

by SNPEff) with MAF < 0.05. We also applied a gene-based segregation test (GESE) to the ultra-rare 
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(MAF < 0.1%) and loss-of-function variants in the BEOCOPD-ICGN data on the severe COPD affection 

status. In gene-based analyses, we combined results from all methods above and retained only most 

significant P values for each gene. 

DEPICT 

DEPICT utilizes pairwise gene correlation data from ~77,000 microarrays to create data-driven 

“reconstituted” gene sets from a backbone of curated data from GO, KEGG, REACTOME, protein-protein 

interaction data, and murine phenotypic gene sets. These “reconstituted” gene sets are used to 

prioritize genes at each GWAS loci based on the similarity each gene’s “reconstituted” gene set 

membership to the gene set memberships of genes at other GWAS loci66. 

Methylation quantitative trait loci (mQTL) 

Of all genome-wide significant loci, we searched for overlapping methylation quantitative trait loci 

(mQTL) using previously published data67. Briefly, lung tissues from 90 severe COPD cases (FEV1 < 50% 

predicted) and 36 control subjects undergoing lung transplantation, lung volume reduction surgery, or 

lung nodule resection68. All subjects were self-reported former smokers at least 1 month prior to the 

surgery. A cis-mQTL analysis was performed using the R/Bioconductor package Matrix eQTL (version 

2.1.1)69. We tested associations of each CpG site and genetic variants within 500 kb upstream and 

downstream (from the CpG site) using a linear regression model adjusting for age, sex, smoking pack-

years, two principal components of genetic ancestry, batch number, and principal components of 

methylation data as previous described67. To determine whether these signals co-localized (rather than 

being related due to linkage disequilibrium), we performed colocalization analysis between our genome-

wide significant loci and mQTL using eCAVIAR70 (eQTL and GWAS CAusal Variants Identification in 

Associated Regions). We tested variants that were significant in both datasets, P < 0.0027 in GWAS 

(equivalent to Z score > 3, as recommended by the author70) and P < 3.2 x 10-6 in mQTL67. We estimated 

the posterior probability of a variant being shared in both GWAS and mQTL, using a cut-off of 0.1 as 

previous demonstrated70. 

Drug repositioning using drug-gene expression signatures 
We used a gene-based association method that utilizes GWAS summary statistics and gene expression 

reference databases to produce a gene list for drug-gene expression similarity analysis71,72. In brief, we 

tested for associations of the genetic component of gene expression and COPD using gene expression 

data in a lung73. This method gave us a rank gene list of up-regulated and down-regulated genes. We 

used the Query, an application in clue.io74, to calculate connectivity score of our top 100 up-regulated 

and 100 down-regulated genes and drug-gene expression signatures. The connectivity score, ranging 

from -1 to 1, reflects the closeness between the expression profiles75. A negative connectivity score 

means that our down-regulated genes are at the top of the reference profile75. We included drug-gene 

expression signatures from 2,837 compounds in nine cell lines in the analysis74. To find candidate drugs 

for repositioning, we used negative connectivity score less than -90% as the threshold74, hypothesizing 

that a drug candidate need to produce an opposing or reverse expression signature induced by the 

disease. 

Determining numbers and features of clusters 
To determine phenotypic clustering, we identified the optimal number of clusters using the Calinski 

index76,77. To identify features that independently predict cluster membership, we fitted a logistic 
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regression model via penalized maximum likelihood using the glmnet package78. We determined optimal 

regularization parameters using 10-fold cross validation. 
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Supplementary Results 

Relationship of genome-wide significant variants to smoking 
To assess the effect of smoking, we tested association of 82 genetic variants and smoking status (ever- 

and never- smokers) in the UK Biobank. Of the 82 identified loci, three were associated with cigarette 

smoking after Bonferroni correction (P < 0.05/82) including the strongest association at the known 

15q25 locus, but also IER3 (P = 9·2 x 10-5) at 6p21 and SPPL2C (P = 1·4 x 10-4) at 17q21. To test if smoking 

status could have confounded the association of these variants and COPD, we re-performed the analysis 

of COPD stratifying by smoking status in the UK Biobank. The lead variants at these latter two loci were 

highly significant for COPD in never-smokers (P = 6·7 x 10-13 and 2·8 x 10-5 at IER3 and SPPL2C loci, 

respectively). Seventy-eight of 82 genetic loci were nominally significant in never-smokers (P < 0.05) 

with the exception of four loci including TESK2, RBMS3, RIN3, and CHRNA3 (Supplementary Tables 14 

and 15). 

Identification of sex-specific genetic effects 
Of 82 genetic variants associated with COPD, we did not find significant evidence of difference in effect 

sizes of COPD among males and females after adjusting for multiple testing (Supplementary Table 16). 

The strongest evidence for different effect size was at TGFB2 locus (rs3009947, betamales=-0.06 and 

betafemales=-0.12, and P unadjusted =0.003). Twelfth of 82 COPD-associated variants were nominally 

significant for sex-difference (P<0.05); none of which was replicated in a meta-analysis of a subset of 

COPD case-control cohorts (Supplementary Note and Supplementary Table 16). Similarly, using a test 

for sex interactions, we did not identify any significant variants after correcting for multiple testing (top 

unadjusted P = 0.003, Supplementary Table 16).  Power calculations indicate that we were well-

powered to detect effect size different of > 0.04 for an allele frequency of ~0.27; for details, see the 

Methods and Supplementary Figure 6. 

COPD misclassification sensitivity analyses 
In 10,720 persons with both pre-bronchodilator and post-bronchodilator spirometry available in the 

COPDGene study, we defined ground truth for COPD status using post-bronchodilator spirometry. Using 

a pre-bronchodilator definition of COPD resulted in 113 out of 4,289 individuals (2.6%) without COPD 

being incorrectly assigned as a COPD cases and 18 out of 3,694 individuals (0.49%) with COPD being 

incorrectly assigned as controls (Supplementary Table 17). A self-reported doctor diagnosis of asthma 

had no significant impact on either the overall misclassification of individuals as being controls, COPD 

cases, or neither (16.6% without asthma and 18.3% with asthma,  squared p value = 0.17); or 

specifically on the misclassification of individuals without COPD as having COPD (1.5% without asthma 

and 1.7% with asthma,  squared p value = 0.77) when using pre-bronchodilator instead of post-

bronchodilator spirometry. 

When comparing the relative effect size of our top 164 variants for a pre- versus post-bronchodilator 

definition of COPD in the subset of our COPD case-control cohorts (COPDGene, ECLIPSE, GenKOLS), 49 

variants were at least nominally significant for association with COPD in the meta-analysis 

(Supplementary Table 18). For these 49 variants, the odds ratio obtained when using a pre- versus post-

bronchodilator definition of COPD was very similar with Pearson correlation coefficient of 0.92 (p value 

< 1e-10). Generally, the post-bronchodilator COPD definition yielded larger effect sizes; however, the 

95% confidence intervals for all estimates crossed the line of identity (Supplementary Figure 7). 



16 

We performed additional GWAS by excluding 6,717 self-reported asthma from 21,081 COPD cases in the 

UK Biobank. While the decreased sample size resulted in less significant associations, we observed 

highly concordant estimates of effect size between the analysis including and excluding asthma 

(Supplementary Figure 8). One outlier was the variant rs2070600 in AGER, which demonstrated a higher 

OR after excluding individuals with asthma. Association statistics for all genome-wide significant loci are 

shown in Supplementary Tables 19 and 20. 

To estimate the effect of asthma inclusion in the overlapping loci analysis, we re-ran gwas-pw using 

statistics from GWAS of COPD including individuals with asthma. The analysis including asthmatic 

individuals identified 24 shared genome segments between COPD and asthma (posterior probability of 

shared association > 0.7). All segments identified in the analysis excluding asthmatics were also 

identified in this analysis, with the exception of the segment in chr12 (near STAT6) (posterior probability 

of 0.81 excluding asthma, 0.29 including asthma).  Results of all loci (with and without exclusion of 

asthma cases) are shown in Supplementary Table 21. 

In addition to individual loci effect, we re-estimated the genetic correlation between COPD and asthma 

using asthma-excluded statistics of COPD. The genetic correlation decreased but remained highly 

significant, from 0.42 (s.e.=0.04, p=3.1x10-26) to 0.26 (s.e.=0.05, p=4.2x10-8). 

Functional consequences of fine-mapped variants 
We explored functional consequence of variants with high posterior probability of association (PPA) 

from the fine-mapping analysis. We used various non-coding variation scoring systems to suggest 

variants’ functional status. An intronic variant at NPNT (rs34712979) appeared to reside in regulatory 

regions for several cell types, including enhancers for fetal lung (Supplementary Table 6), and was 

predicted to be functional: CADD phred score =15.18 (among 15% most deleterious substitutions), 

FATHMM non-coding score=0.98 (predicted deleterious if >0.5), DeepSEA functional significance 

score=0.004 (a range of 0-1; lower scores mean higher likelihood of functional significance of the 

variant), FunSeq2 non-coding score=0.96 (a range of 0-1; higer scores mean more likely to be 

functional), ReMM score=0.95 (higher scores indicate more likely to be deleterious variants). 

Genetic correlation of COPD and related traits 
To gain further insight of genetic contribution of COPD and other traits, we estimated genetic 

correlation among traits using linkage disequilibrium score regression (LDSC) in LD hub79,80 

(Supplementary Table 22). We again identified correlations between COPD and lung function (FEV1 and 

FEV1/FVC), asthma, height, and additionally identified correlation of COPD and lung cancer (rg=0.18, 

P=0.003). However, we were not able to identify significant correlations with common COPD 

comorbidities, including bone mineral density, major depressive disorder, coronary artery disease, or 

type 2 diabetes mellitus. We found suggestive (P < 0.05) genetic correlation between COPD and hand 

grip, angina, weight, schizophrenia, and gastroesophageal reflux disease (Supplementary Table 22). 

Identification of drug targets 
The recent development of richer datasets of drug-induced gene expression signatures74 and a statistical 

framework that utilizes genome-wide associations71 allow us to utilize genome-wide data for drug 

repositioning. This approach considers the similarity between disease and drug-induced gene expression 

signatures in an opposing pattern (i.e., use drug to reverse diseased gene expression signature). We 

approximated COPD gene expression patterns by calculating transcriptome-wide associations in lung 
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tissue from genetic predictors72. We calculated standardized connectivity scores74 from drug-gene 

expression profiles across 2,837 compounds in nine cell lines including A594 and A555. We identified 

seven compounds with an opposing connectivity score >= 90%: leu-enkephalin (an opioid receptor 

agonist), huperizine-a (an acetylcholinesterase inhibitor), periplocymarin (an apoptosis stimulant), PAC-1 

(a caspase activator), TER-14687 (an inhibitor of translocation of PKCq in T cells), vincristine (a tubulin 

inhibitor), and terreic-acid (a Bruton's tyrosine kinase (BTK) inhibitor). 
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Supplementary Information for Select Candidate Target Genes 
* empirical pattern of gene expression in tissues from Human Protein Atlas81 (broad=expressed in 

multiple tissues, exclusive=expressed exclusively in lung, none=rarely expressed in lung). 

Locus 
(SNP) 

Genes Expression* Evidence 

1p13.3 DENND2D Broad DENN domain containing 2D predominantly expresses in 
lymph node and appendix81. It is involved in Rab guanyl-
nucleotide exchange factor activity82. 

 CEPT1 Broad Choline/ethanolamine phosphotransferase 1 encodes an 
enzyme which functions in the synthesis of choline- or 
ethanolamine- containing phospholipids83.  

 DRAM2 Broad DNA damage regulated autophagy modulator 2 encodes the 
protein that binds microtubule-associated protein 1 light 
chain 3 and is required for autophagy84. It is also associated 
with non-ST elevation myocardial infarction85 and retinal 
dystrophy86. 

 CHIA Exclusive Chitinase, acidic encodes a protein that degrades chitin83. Its 
expression is specific to lung81,87. Genetic variants in or 
around this gene were associated with baseline FEV1 and 
rate of FEV1 decline88, asthma89–92, acid mammalian chitinase 
activity91,93, and IgE90 although there were also some null 
results94. The protein is involved in T helper-2 (Th2)-
mediated diseases and protects pulmonary epithelial cells 
from growth factor withdrawal- and Fas ligand-induced 
apoptosis95. It was induced via a Th2-specific, interleukin-13 
(IL-13)-mediated pathway in epithelial cells and macrophages 
in an aeroallergen asthma model96, and ADAM17/EGFR-
dependent pathway97. 

 OVGP1 Broad Oviductal glycoprotein 1 encodes an epithelial glycoprotein. 
It is secreted from non-ciliated oviductal epithelial cells and 
associates with ovulated oocytes, blastomeres, and 
spermatozoan acrosomal regions83. 

 WDR77 Broad WD repeat domain 77 encodes an androgen receptor 
coactivator83. It may be involved in the early stages of 
prostate cancer83. 

 ATP5F1 
(ATP5PB) 

Broad ATP synthase peripheral stalk-membrane subunit b encodes 
a subunit of mitochondrial ATP synthase83. Its 
hypomethylation was involved in drug resistance in chronic 
myeloid leukemia98. 

 FAM212B 
(INKA2) 

Broad Inka box actin regulator 2 is broadly expressed in multiple 
tissues including lung83. 

 PROK1 None Prokineticin 1 induces proliferation, migration, and 
fenestration in capillary endothelial cells derived from 
endocrine glands83. It is induced by hypoxia, and often is  
complementary to the expression of vascular endothelial 
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growth factor (VEGF)83. It was involved in angiogenesis in 
cystic fibrosis99. 

 KCNC4 Broad Potassium voltage-gated channel subfamily C member 4 
encodes a protein that generates atypical voltage-dependent 
transient current that may be important for neuronal 
excitability83. It was related to subacute hypoxia in 
pulmonary arterial smooth muscle cells100. 

3p14.3 ABHD6 Broad Abhydrolase domain containing 6 is involved in the control of 
macrophage activation and inflammation101. 

 ARF4 Broad ADP ribosylation factor 4 encodes a protein that stimulates 
the ADP-ribosyltransferase activity of cholera toxin and plays 
a role in vesicular trafficking and as an activator of 
phospholipase D83. It is involved in Golgi stress and 
susceptibility to pathogens102. 

 IL17RD Broad Interleukin 17 receptor D encodes a membrane protein 
belonging to the interleukin-17 receptor (IL-17R) protein 
family83. The gene product affects fibroblast growth factor 
signaling, inhibiting or stimulating growth through 
MAPK/ERK signaling83. It also interacts with TNF receptor 2 
(TNFR2) to activate NF-κB103. 

 ARHGEF3 Broad Rho guanine nucleotide exchange factor 3 encodes a protein 
that activates RHOA and RHOB, which have a role in bone 
cell biology83. Its gene product also regulates a SPARC protein 
that participates in the assembly and turnover of the 
extracellular matrix104. It also has a role in iron uptake105. 
Genetic variants in or around this gene were associated with 
bone mineral density83. 

7p21.1 
 

ITGB8 Broad Integrin subunit beta 8 is a member of the integrin beta 
chain family and encodes a single-pass type I membrane 
protein that binds to an alpha subunit to form an integrin 
complex83. The complexes mediate cell-cell and cell-
extracellular matrix interactions and this complex plays a role 
in human airway epithelial proliferation83 and repair106. Its 
expression was increased in COPD107–109. It is involved in 
dendritic cell trafficking, and airway inflammation and 
fibrosis processes108. It mediates epithelial homeostasis 
through an MMP-dependent pathway110 and TGF-B107,111. It is 
also regulated by SP3, AP-1, and the p38 pathway112. 

 ABCB5 None ATP binding cassette subfamily B member 5 belongs to the 
ATP-binding cassette (ABC) transporter superfamily of 
integral membrane proteins113. 

 TMEM196 None Transmembrane protein 196 is a novel functional tumor 
suppressor and is associated with lung cancer114. 

11p15.2 
 

BTBD10 Broad The gene product of BTB domain containing 10 is an Akt 
activator115. This gene was associated with neurologic 
diseases116. 
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 PARVA Broad Parvin alpha encodes a member of the parvin family of actin-
binding proteins83. The encoded protein is part of the 
integrin-linked kinase signaling complex and plays a role in 
cell adhesion, motility and survival83. 

 MICALCL Broad MICAL C-terminal like gene product is predominantly 
expressed in skin, testis, and lung81. 

15q25.2 ADAMTSL3 Broad ADAMTS like 3 encodes a gene product that plays a role in 
cell-matrix interactions or in assembly of specific 
extracellular matrices117. It was associated with 
schizophrenia118 and cardiac disorders in tetrasomy119. 

 BNC1 None Basonuclin 1 encodes a zinc finger protein that is present in 
the basal cell layer of the epidermis and in hair follicles, and 
in the germ cells of testis and ovary83,120. Its gene product 
modulates epithelial plasticity and TGF-β1-induced loss of 
epithelial cell integrity121. It is a Pol I and Pol II transcription 
factor that is associated with epithelial expansion and 
proliferation122,123. 

 BTBD1 Broad BTB domain containing 1 encodes a protein that binds 
topoisomerase I. It is a transcription factor124 in the human 
histone deacetylase family125. Its gene product is involved in 
mesenchymal126 and muscle cell differentiation127. 
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Supplementary Figures 
Supplementary Figure 1: Forest plots for 82 genome-wide significant associations 
Association statistics are based on the overall meta-analysis of COPD (35,735 cases and 222,076 
controls). Error bars indicate 95% confidence interval. 
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Supplementary Figure 1-1: Forest plot for rs9435731 (MFAP2 locus at 1p36.13) 
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Supplementary Figure 1-2: Forest plot for rs76841360 (PABPC4 locus at 1p34.3) 
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Supplementary Figure 1-3: Forest plot for rs4660861 (TESK2 locus at 1p34.1) 
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Supplementary Figure 1-4: Forest plot for rs72673419 (C1orf87 locus at 1p32.1) 
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Supplementary Figure 1-5: Forest plot for rs629619 (DENND2D locus at 1p13.3) 
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Supplementary Figure 1-6: Forest plot for rs3009947 (TGFB2 locus at 1q41) 
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Supplementary Figure 1-7: Forest plot for rs11118406 (SLC30A10 locus at 1q41) 
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Supplementary Figure 1-8: Forest plot for rs11579382 (CHRM3 locus at 1q43) 
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Supplementary Figure 1-9: Forest plot for rs955277 (ASAP2 locus at 2p25.1) 
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Supplementary Figure 1-10: Forest plot for rs10929386 (DDX1 locus at 2p24.3) 
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Supplementary Figure 1-11: Forest plot for rs12466981 (EML4 locus at 2p21) 

 



33 

Supplementary Figure 1-12: Forest plot for rs72902175 (NR4A2 locus at 2q24.1) 
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Supplementary Figure 1-13: Forest plot for rs2571445 (TNS1 locus at 2q35) 
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Supplementary Figure 1-14: Forest plot for rs16825267 (PID1 locus at 2q36.3) 
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Supplementary Figure 1-15: Forest plot for rs62191105 (TWIST2 locus at 2q37.3) 
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Supplementary Figure 1-16: Forest plot for rs2442776 (VGLL4 locus at 3p25.3) 
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Supplementary Figure 1-17: Forest plot for rs1529672 (RARB locus at 3p24.2) 
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Supplementary Figure 1-18: Forest plot for rs13073544 (RBMS3 locus at 3p24.1) 
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Supplementary Figure 1-19: Forest plot for rs17759204 (CACNA2D3 locus at 3p14.3) 
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Supplementary Figure 1-20: Forest plot for rs62259026 (SLMAP locus at 3p14.3) 
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Supplementary Figure 1-21: Forest plot for rs4093840 (ADCY5 locus at 3q21.1) 
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Supplementary Figure 1-22: Forest plot for rs2955083 (EEFSEC locus at 3q21.3) 
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Supplementary Figure 1-23: Forest plot for rs7650602 (ZBTB38 locus at 3q23) 
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Supplementary Figure 1-24: Forest plot for rs7642001 (MECOM locus at 3q26.2) 
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Supplementary Figure 1-25: Forest plot for rs4585380 (BTC locus at 4q13.3) 
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Supplementary Figure 1-26: Forest plot for rs7671261 (FAM13A locus at 4q22.1) 
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Supplementary Figure 1-27: Forest plot for rs34712979 (NPNT locus at 4q24) 
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Supplementary Figure 1-28: Forest plot for rs13140176 (HHIP locus at 4q31.21) 
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Supplementary Figure 1-29: Forest plot for rs1551943 (ITGA1 locus at 5q11.2) 
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Supplementary Figure 1-30: Forest plot for rs34651 (TNPO1 locus at 5q13.2) 
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Supplementary Figure 1-31: Forest plot for rs153916 (SPATA9 locus at 5q15) 
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Supplementary Figure 1-32: Forest plot for rs62375246 (HSPA4 locus at 5q31.1) 
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Supplementary Figure 1-33: Forest plot for rs10037493 (HTR4 locus at 5q32) 
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Supplementary Figure 1-34: Forest plot for rs979453 (CCDC69 locus at 5q33.1) 
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Supplementary Figure 1-35: Forest plot for rs10866659 (ADAM19 locus at 5q33.3) 
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Supplementary Figure 1-36: Forest plot for rs12519165 (FGF18 locus at 5q35.1) 
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Supplementary Figure 1-37: Forest plot for rs1334576 (RREB1 locus at 6p24.3) 
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Supplementary Figure 1-38: Forest plot for rs9350191 (ID4 locus at 6p22.3) 
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Supplementary Figure 1-39: Forest plot for rs13198656 (PRL locus at 6p22.3) 
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Supplementary Figure 1-40: Forest plot for rs2284174 (IER3 locus at 6p21.33) 
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Supplementary Figure 1-41: Forest plot for rs2070600 (AGER locus at 6p21.32) 
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Supplementary Figure 1-42: Forest plot for rs2806356 (ARMC2 locus at 6q21) 
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Supplementary Figure 1-43: Forest plot for rs674621 (RFX6 locus at 6q22.1) 
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Supplementary Figure 1-44: Forest plot for rs646695 (CITED2 locus at 6q24.1) 
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Supplementary Figure 1-45: Forest plot for rs9399401 (ADGRG6 locus at 6q24.1) 
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Supplementary Figure 1-46: Forest plot for rs798565 (AMZ1 locus at 7p22.3) 
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Supplementary Figure 1-47: Forest plot for rs2040732 (ITGB8 locus at 7p21.1) 

 



69 

Supplementary Figure 1-48: Forest plot for rs2897075 (ZKSCAN1 locus at 7q22.1) 
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Supplementary Figure 1-49: Forest plot for rs9329170 (MFHAS1 locus at 8p23.1) 
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Supplementary Figure 1-50: Forest plot for rs10114763 (GLIS3 locus at 9p24.2) 
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Supplementary Figure 1-51: Forest plot for rs156394 (ELAVL2 locus at 9p21.3) 
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Supplementary Figure 1-52: Forest plot for rs7866939 (RASEF locus at 9q21.32) 
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Supplementary Figure 1-53: Forest plot for rs10760580 (COL15A1 locus at 9q22.33) 
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Supplementary Figure 1-54: Forest plot for rs803923 (ASTN2 locus at 9q33.1) 
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Supplementary Figure 1-55: Forest plot for rs7068966 (CDC123 locus at 10p13) 
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Supplementary Figure 1-56: Forest plot for rs2579762 (LRMDA locus at 10q22.3) 
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Supplementary Figure 1-57: Forest plot for rs721917 (SFTPD locus at 10q22.3) 
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Supplementary Figure 1-58: Forest plot for rs1570221 (STN1 locus at 10q24.33) 
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Supplementary Figure 1-59: Forest plot for rs4757118 (ARNTL locus at 11p15.2) 
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Supplementary Figure 1-60: Forest plot for rs117261012 (PRSS23 locus at 11q14.2) 
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Supplementary Figure 1-61: Forest plot for rs11049386 (CCDC91 locus at 12p11.22) 
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Supplementary Figure 1-62: Forest plot for rs7307510 (SNRPF locus at 12q23.1) 
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Supplementary Figure 1-63: Forest plot for rs7958945 (MED13L locus at 12q24.21) 
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Supplementary Figure 1-64: Forest plot for rs9525927 (SERP2 locus at 13q14.11) 
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Supplementary Figure 1-65: Forest plot for rs72699855 (RIN3 locus at 14q32.12) 
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Supplementary Figure 1-66: Forest plot for rs72731149 (DTWD1 locus at 15q21.2) 
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Supplementary Figure 1-67: Forest plot for rs1441358 (THSD4 locus at 15q23) 
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Supplementary Figure 1-68: Forest plot for rs55676755 (CHRNA3 locus at 15q25.1) 
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Supplementary Figure 1-69: Forest plot for rs10152300 (ADAMTSL3 locus at 15q25.2) 
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Supplementary Figure 1-70: Forest plot for rs56134392 (TEKT5 locus at 16p13.13) 
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Supplementary Figure 1-71: Forest plot for rs8044657 (TEPP locus at 16q21) 

 



93 

Supplementary Figure 1-72: Forest plot for rs4888379 (CFDP1 locus at 16q23.1) 
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Supplementary Figure 1-73: Forest plot for rs8080772 (EFCAB5 locus at 17q11.2) 
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Supplementary Figure 1-74: Forest plot for rs34727469 (RPL23 locus at 17q12) 
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Supplementary Figure 1-75: Forest plot for rs62065216 (THRA locus at 17q21.1) 
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Supplementary Figure 1-76: Forest plot for rs12373142 (SPPL2C locus at 17q21.31) 
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Supplementary Figure 1-77: Forest plot for rs11655567 (SOX9 locus at 17q24.3) 

 



99 

Supplementary Figure 1-78: Forest plot for rs647097 (MTCL1 locus at 18p11.22) 
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Supplementary Figure 1-79: Forest plot for rs72626215 (DMWD locus at 19q13.32) 
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Supplementary Figure 1-80: Forest plot for rs2096468 (KCNE2 locus at 21q22.11) 
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Supplementary Figure 1-81: Forest plot for rs9617650 (MICAL3 locus at 22q11.21) 
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Supplementary Figure 1-82: Forest plot for rs73158393 (SYN3 locus at 22q12.3) 
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Supplementary Figure 2: Regional association plots for 82 genome-wide significant 

associations 
Association statistics are based on the overall meta-analysis of COPD (35,735 cases and 222,076 
controls). P values are two-sided based on Wald statistics without multiple comparison adjustment. 
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Supplementary Figure 2-1: Regional association plot for rs9435731 (MFAP2 locus at 1p36.13) 

 

Supplementary Figure 2-2: Regional association plot for rs76841360 (PABPC4 locus at 1p34.3) 
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Supplementary Figure 2-3: Regional association plot for rs4660861 (TESK2 locus at 1p34.1) 

 

Supplementary Figure 2-4: Regional association plot for rs72673419 (C1orf87 locus at 1p32.1) 
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Supplementary Figure 2-5: Regional association plot for rs629619 (DENND2D locus at 1p13.3) 

 

Supplementary Figure 2-6: Regional association plot for rs3009947 (TGFB2 locus at 1q41) 
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Supplementary Figure 2-7: Regional association plot for rs11118406 (SLC30A10 locus at 1q41) 

 

Supplementary Figure 2-8: Regional association plot for rs11579382 (CHRM3 locus at 1q43) 
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Supplementary Figure 2-9: Regional association plot for rs955277 (ASAP2 locus at 2p25.1) 

 

Supplementary Figure 2-10: Regional association plot for rs10929386 (DDX1 locus at 2p24.3) 
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Supplementary Figure 2-11: Regional association plot for rs12466981 (EML4 locus at 2p21) 

 

Supplementary Figure 2-12: Regional association plot for rs72902175 (NR4A2 locus at 2q24.1) 
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Supplementary Figure 2-13: Regional association plot for rs2571445 (TNS1 locus at 2q35) 

 

Supplementary Figure 2-14: Regional association plot for rs16825267 (PID1 locus at 2q36.3) 
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Supplementary Figure 2-15: Regional association plot for rs62191105 (TWIST2 locus at 2q37.3) 

 

Supplementary Figure 2-16: Regional association plot for rs2442776 (VGLL4 locus at 3p25.3) 

 



113 

Supplementary Figure 2-17: Regional association plot for rs1529672 (RARB locus at 3p24.2) 

 

Supplementary Figure 2-18: Regional association plot for rs13073544 (RBMS3 locus at 3p24.1) 
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Supplementary Figure 2-19: Regional association plot for rs17759204 (CACNA2D3 locus at 3p14.3) 

 

Supplementary Figure 2-20: Regional association plot for rs62259026 (SLMAP locus at 3p14.3) 
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Supplementary Figure 2-21: Regional association plot for rs4093840 (ADCY5 locus at 3q21.1) 

 

Supplementary Figure 2-22: Regional association plot for rs2955083 (EEFSEC locus at 3q21.3) 
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Supplementary Figure 2-23: Regional association plot for rs7650602 (ZBTB38 locus at 3q23) 

 

Supplementary Figure 2-24: Regional association plot for rs7642001 (MECOM locus at 3q26.2) 
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Supplementary Figure 2-25: Regional association plot for rs4585380 (BTC locus at 4q13.3) 

 

Supplementary Figure 2-26: Regional association plot for rs7671261 (FAM13A locus at 4q22.1) 
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Supplementary Figure 2-27: Regional association plot for rs34712979 (NPNT locus at 4q24) 

 

Supplementary Figure 2-28: Regional association plot for rs13140176 (HHIP locus at 4q31.21) 
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Supplementary Figure 2-29: Regional association plot for rs1551943 (ITGA1 locus at 5q11.2) 

 

Supplementary Figure 2-30: Regional association plot for rs34651 (TNPO1 locus at 5q13.2) 
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Supplementary Figure 2-31: Regional association plot for rs153916 (SPATA9 locus at 5q15) 

 

Supplementary Figure 2-32: Regional association plot for rs62375246 (HSPA4 locus at 5q31.1) 
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Supplementary Figure 2-33: Regional association plot for rs10037493 (HTR4 locus at 5q32) 

 

Supplementary Figure 2-34: Regional association plot for rs979453 (CCDC69 locus at 5q33.1) 
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Supplementary Figure 2-35: Regional association plot for rs10866659 (ADAM19 locus at 5q33.3) 

 

Supplementary Figure 2-36: Regional association plot for rs12519165 (FGF18 locus at 5q35.1) 
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Supplementary Figure 2-37: Regional association plot for rs1334576 (RREB1 locus at 6p24.3) 

 

Supplementary Figure 2-38: Regional association plot for rs9350191 (ID4 locus at 6p22.3) 
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Supplementary Figure 2-39: Regional association plot for rs13198656 (PRL locus at 6p22.3) 

 

Supplementary Figure 2-40: Regional association plot for rs2284174 (IER3 locus at 6p21.33) 
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Supplementary Figure 2-41: Regional association plot for rs2070600 (AGER locus at 6p21.32) 

 

Supplementary Figure 2-42: Regional association plot for rs2806356 (ARMC2 locus at 6q21) 
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Supplementary Figure 2-43: Regional association plot for rs674621 (RFX6 locus at 6q22.1) 

 

Supplementary Figure 2-44: Regional association plot for rs646695 (CITED2 locus at 6q24.1) 
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Supplementary Figure 2-45: Regional association plot for rs9399401 (ADGRG6 locus at 6q24.1) 

 

Supplementary Figure 2-46: Regional association plot for rs798565 (AMZ1 locus at 7p22.3) 
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Supplementary Figure 2-47: Regional association plot for rs2040732 (ITGB8 locus at 7p21.1) 

 

Supplementary Figure 2-48: Regional association plot for rs2897075 (ZKSCAN1 locus at 7q22.1) 
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Supplementary Figure 2-49: Regional association plot for rs9329170 (MFHAS1 locus at 8p23.1) 

 

Supplementary Figure 2-50: Regional association plot for rs10114763 (GLIS3 locus at 9p24.2) 
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Supplementary Figure 2-51: Regional association plot for rs156394 (ELAVL2 locus at 9p21.3) 

 

Supplementary Figure 2-52: Regional association plot for rs7866939 (RASEF locus at 9q21.32) 
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Supplementary Figure 2-53: Regional association plot for rs10760580 (COL15A1 locus at 9q22.33) 

 

Supplementary Figure 2-54: Regional association plot for rs803923 (ASTN2 locus at 9q33.1) 
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Supplementary Figure 2-55: Regional association plot for rs7068966 (CDC123 locus at 10p13) 

 

Supplementary Figure 2-56: Regional association plot for rs2579762 (LRMDA locus at 10q22.3) 
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Supplementary Figure 2-57: Regional association plot for rs721917 (SFTPD locus at 10q22.3) 

 

Supplementary Figure 2-58: Regional association plot for rs1570221 (STN1 locus at 10q24.33) 
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Supplementary Figure 2-59: Regional association plot for rs4757118 (ARNTL locus at 11p15.2) 

 

Supplementary Figure 2-60: Regional association plot for rs117261012 (PRSS23 locus at 11q14.2) 
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Supplementary Figure 2-61: Regional association plot for rs11049386 (CCDC91 locus at 12p11.22) 

 

Supplementary Figure 2-62: Regional association plot for rs7307510 (SNRPF locus at 12q23.1) 
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Supplementary Figure 2-63: Regional association plot for rs7958945 (MED13L locus at 12q24.21) 

 

Supplementary Figure 2-64: Regional association plot for rs9525927 (SERP2 locus at 13q14.11) 
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Supplementary Figure 2-65: Regional association plot for rs72699855 (RIN3 locus at 14q32.12) 

 

Supplementary Figure 2-66: Regional association plot for rs72731149 (DTWD1 locus at 15q21.2) 

 



138 

Supplementary Figure 2-67: Regional association plot for rs1441358 (THSD4 locus at 15q23) 

 

Supplementary Figure 2-68: Regional association plot for rs55676755 (CHRNA3 locus at 15q25.1) 
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Supplementary Figure 2-69: Regional association plot for rs10152300 (ADAMTSL3 locus at 15q25.2) 

 

Supplementary Figure 2-70: Regional association plot for rs56134392 (TEKT5 locus at 16p13.13) 
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Supplementary Figure 2-71: Regional association plot for rs8044657 (TEPP locus at 16q21) 

 

Supplementary Figure 2-72: Regional association plot for rs4888379 (CFDP1 locus at 16q23.1) 
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Supplementary Figure 2-73: Regional association plot for rs8080772 (EFCAB5 locus at 17q11.2) 

 

Supplementary Figure 2-74: Regional association plot for rs34727469 (RPL23 locus at 17q12) 
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Supplementary Figure 2-75: Regional association plot for rs62065216 (THRA locus at 17q21.1) 

 

Supplementary Figure 2-76: Regional association plot for rs12373142 (SPPL2C locus at 17q21.31) 
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Supplementary Figure 2-77: Regional association plot for rs11655567 (SOX9 locus at 17q24.3) 

 

Supplementary Figure 2-78: Regional association plot for rs647097 (MTCL1 locus at 18p11.22) 
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Supplementary Figure 2-79: Regional association plot for rs72626215 (DMWD locus at 19q13.32) 

 

Supplementary Figure 2-80: Regional association plot for rs2096468 (KCNE2 locus at 21q22.11) 
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Supplementary Figure 2-81: Regional association plot for rs9617650 (MICAL3 locus at 22q11.21) 

 

Supplementary Figure 2-82: Regional association plot for rs73158393 (SYN3 locus at 22q12.3) 
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Supplementary Figure 3: Distribution of number of variants in 99% credible sets 
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Supplementary Figure 4: Heatmap of associations of phenotypes in COPDGene 
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Supplementary Figure 5: Associations of index variants and traits in NHGRI-EBI GWAS 

Catalog 
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Supplementary Figure 6: Power analysis for sex-difference analysis 
The power analysis was based on the effective sample size of 104,119 (male) and 130,707 (female). 
X-axis and Y-axis represent effect sizes in males and females, respectively.  
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Supplementary Figure 7: Scatter plot of COPD odd ratio of nominally significant SNPs in 
meta-analysis of a subset of COPD case-control cohorts* using a pre- and post-
bronchodilator definition of COPD 
 
*COPD cohorts includes COPDGene AA, COPDGene NHW, ECLIPSE, and GenKOLS 
The meta-analysis of a subset of COPD case-control controls included: 666 cases and 1,298 controls in 
COPDGene AA, 2,442 cases and 1,663 controls in COPDGene NHW, 1,721 cases and 130 controls in 
ECLIPSE, and 827 cases and 600 controls in GenKOLS. Dots represent odds ratio (OR). Error bars indicate 
95% confidence interval. 
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Supplementary Figure 8: Comparison of odds ratios (OR) including and excluding 

individuals with asthma of 82 genome-wide significant variants 
The association statistics are based on the analysis including (21,081 cases and 179,711 controls), 
excluding (14,364 cases and 179,711 controls) individuals with asthma. Dots represent odds ratio (OR). 
Error bars show 95% confidence interval for OR estimates. 
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