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Abstract: Using phantom samples, we investigated the feasibility of spatially-offset Raman 
spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone 
tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed scaffolds of 
poly-caprolactone (PCL) and hydroxyapatite (HA) blends, with varying concentrations of 
HA, to mimic the mineralisation process. The scaffolds were covered by a 4 mm layer of skin 
to simulate the real in-vivo measurement conditions. At a concentration of HA approximately 
1/3 that of bone (~0.6 g/cm3), the characteristic Raman band of HA (960 cm−1) was detectable 
when the PCL:HA layer was located at 4 mm depth within the scaffold (i.e. 8 mm below the 
skin surface). For the layers of the PCL:HA immediately under the skin (i.e. top of the 
scaffold), the detection limit of HA was 0.18 g/cm3, which is approximately one order of 
magnitude lower than that of bone. Similar results were also found for the phantoms 
simulating uniform and inward gradual mineralisation of the scaffold, indicating the 
suitability of SORS to detect early stages of mineralisation. Nevertheless, the results also 
show that the contribution of the materials surrounding the scaffold can be significant and 
methods for subtraction need to be investigated in the future. In conclusion, these results 
indicate that spatially-offset Raman spectroscopy is a promising technique for in-vivo 
longitudinal monitoring scaffold mineralization and bone re-growth. 

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. 
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, 
journal citation, and DOI. 

1. Introduction

A common treatment for major bone damage is autologous bone grafting [1]. Autologous 
grafting is not the optimal solution because the quality and quantity of bone grafts that can be 
harvested is sometimes not sufficient to meet demand, it increases the risk of infection, and 
can lead to haemorrhaging, cosmetic disability, nerve damage, and a loss of function. An 
alternative to autologous grafts is the use of tissue engineered scaffolds that can be implanted 
in the defect to offer a 3D structure to support and stimulate the regeneration and repair of the 
bone [2]. In vivo models where scaffolds are implanted in critical bone defects in large 
animals (e.g. sheep) have been commonly used to model the healing process in humans [3]. 
These studies provide a better understanding of the bone repair process in order to optimise 
the physical and chemical properties of the material to reduce healing time and improve the 
quality of the newly formed bone. For a critical bone defect, the damage to the bone is so 
great that the body fails to repair the bone correctly [4]. What will constitute a critical defect 
depends on the size of the bone damaged [5,6], and the age and health of the patient [7,8]. 
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When a defect reaches this critical size, the body fails to fill the defect with extracellular 
matrix (e.g. collagen) and to mineralise; instead, the exposed damaged bone is repaired 
leaving an indent or hole in the tissue with repaired sides, leading to bone tissue that is 
weaker than before the damage [9]. When using a scaffold, the quality of the repaired bone 
depends on the ability of cells to populate and remodel the scaffold. Thus, longitudinal data 
regarding mineral deposition within the scaffold is desirable and important for optimizing the 
physiochemical properties of the scaffold. 

Typically, the quality of the repaired bone is evaluated by end-point histological tests. 
However, histology is destructive and therefore can be used only at the end time-point 
(typically 4-6 weeks after implantation). 3D micro-computed tomography (μCT) is commonly 
used to analyze the morphology and mineral density of newly formed bone in animal models 
[10], including for in-vivo longitudinal studies [11,12]. μCT has also been combined with 
single photon emission computed tomography (SPECT) in order to obtain more detailed 
molecular information during the course of bone formation and remodeling [13]. Although 
this technique requires radioactive SPECT probes, a study using synthetic hydrogel scaffolds 
implanted in critical size calvarial defects generated in mice, showed that in-vivo longitudinal 
data regarding morphology and bone density agreed with end-point histological and μCT 
evaluations [13]. 

Raman spectroscopy (RS) is a non-destructive spectroscopic technique that has high 
chemical specificity and does not require exogenous labels or probes [14]. RS has been 
widely used for the analysis of bone tissue [15–17] and bone tissue engineering scaffolds [18–
22]. Spatially-offset Raman Spectroscopy (SORS) is a variant RS technique that is able to 
recover molecular information of bone in-vivo transcutaneously [23,24]. Recently, we 
demonstrated the feasibility of using SORS to measure Raman spectra of hydroxyapatite 
(HA) powder buried in layers of polymer and ceramic tissue engineering scaffolds as thick as 
few millimetres, covered by 1 mm thick skin layer [25]. While these feasibility studies 
indicated the potential of SORS for measuring in-vivo longitudinal data from small animal 
model studies, a better understanding of the SORS signals is required in order to optimise the 
instrumentation for in-vivo measurements (i.e. a hand-held probe) and support the data 
analysis. By increasing the maximum offset of the device and having control over the size of 
the collection points the sensitivity of the device was optimised. 

Here we have developed a series of phantom samples to mimic the mineralisation of 
scaffolds implanted in a large animal critical bone defect and the measurement conditions for 
in-vivo longitudinal study. The samples consisted of 3D printed composite scaffolds with 
polycaprolactone (PCL) and hydroxyapatite (HA) microparticles, for which the concentration 
of HA varied to simulate different degrees of mineralisation [26]. The experiments were 
carried out using a table-top SORS instrument based on a digital micro-mirror device (DMD) 
[27], that allowed flexible adjustments of the spatial offsets in order to optimise the 
measurement conditions and develop the design of a future fibre-optics SORS probe that 
could be used in real animal studies. 

2. Materials and methods 

2.1 Spatially-offset Raman spectroscopy (SORS) instrument 

The DMD-based SORS instrument was equipped with a 785 nm wavelength laser (Xtra II, 
Toptica). A 100 mm focal length 2-inch diameter lens was used to focus the laser beam on the 
sample (120 mW power, spot size ~0.5 mm) and to collect the backscattered Raman photons. 
After passing through a dichroic filter that blocked the elastically scattered photons, the 
Raman photons were focused with a lens on a software-controlled DMD (size 14.4 mm x 8.8 
mm, resolution 1920 x 1080 pixels, DLP6500 Texas Instrument). As the DMD was located in 
a plane conjugate to the sample, it allowed the selection of multiple spatially offset collection 
points (0.22 mm size) distributed in a semi-circle around the point conjugated to the laser 
excitation, equivalent to spatial offset values in the range of 0-4 mm. The Raman photons 
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hole (10 mm x 10 mm x 10 mm) which mimicked the critical defect. Behind the Teflon slab, 
a 5 mm thick layer of polystyrene (PS) was placed in order to give an indication of whether 
the femur bone at the back of the defect would contribute to the measured SORS signal. After 
the insertion of the scaffolds (sizes 10 mm x 10 mm x 2mm) in the Teflon hole, the phantom 
sample was covered by a layer of pig skin (sourced from a local retail outlet) cut to 4 mm 
thickness, with a large enough surface area to cover the face of the phantom. While this 
phantom closely resembled the in-vivo measurement conditions, the materials used were 
selected to have similar light scattering properties to bone [2] but distinctive Raman bands to 
allow an understanding of the contributions of various regions of the phantom to the 
measured SORS spectra. This is particularly important for SORS measurements where 
different parts of the sample can be probed depending on the value of the spatial offset. 
Figure 2(e) presents the Raman spectra of each material used for the phantom. The spectrum 
of HA has a strong band at 960 cm−1 (phosphate band) [15–17]. The PCL has Raman bands 
assigned to the C-O-C vibrations as a triplet at 1067 cm−1, 1098 cm−1, and 1110 cm−1, and 
CH2 bands at 1300 cm−1 and 1445 cm−1 [4]. Teflon and PS have strong Raman bands at 734 
cm−1 and 1004 cm−1 respectively. Therefore, the use of these two materials for the bone 
phantom effectively allows us to identify the contributions of the sides (Teflon) and back (PS) 
of the critical defect to the measured SORS spectrum without interfering with our 
measurement of the 960 cm−1 band from HA. Because the molecular composition of pig skin 
changes with depth, Raman spectra were measured from the top epidermis/dermis part (bands 
at 970 cm−1 and 1300 cm−1 assigned to collagen) and from the adipose tissue at the bottom 
part (strong 1368 cm−1 band) [30,31]. 

2.4. Data analysis 

First, all spectra were normalised to minimum 0 and maximum 1. The difference between the 
SORS spectra of the PCL:HA scaffold and PCL-only scaffold (control sample) at each offset 
value was then calculated using an in-house iterative algorithm. To eliminate errors caused by 
small baseline or intensity variations (likely due to small differences in optical scattering 
properties between samples), a correction factor in the form of a 2nd order polynomial was 
included in the subtraction algorithm. This polynomial was determined by minimising the 
square difference between the two SORS spectra in an iterative method. The spectral region 
930-980 cm−1 containing the main HA band at 960 cm−1 was excluded from the minimisation. 
A number of 30 iterations was used, as this was observed to lead to stable solutions in all 
cases. 
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real measurements, this background signal can overlap the signal from the newly deposited 
HA in the scaffold. To evaluate the optimal conditions for quantification of HA in the 
phantom samples, Fig. 7 presents the calculated ratio between the intensity of the 960 cm−1 
band in the difference spectra (PCL:HA minus PCL-only scaffolds) and the 1445cm−1 band in 
the spectra of the sample containing HA (I960/I1445). The results show that the relative intensity 
of the 960 cm−1 band increased when the concentration of HA and the spatial offset increased. 
The highest sensitivity and detection resolution for HA was observed when using the 4 mm 
spatial offset. However, once the outer PCA:HA layer of the scaffold reached the 1:4 ratio, 
the I960/I1445 ratio seemed to plateau, regardless of the value of the spatial offset (higher than 
0), indicating a decrease in detection resolution for HA. 

4. Conclusions 

The use of tissue engineering scaffolds for stimulating bone re-growth in critical bone defects 
is a promising way to improve bone healing; however, monitoring bone growth in situ 
remains a challenge. Using phantom samples based on 3D-printed PCL:HA scaffolds we 
investigated the feasibility of SORS to monitor mineralisation of bone tissue engineering 
scaffolds in large animal models. The tests investigating the detection limits for 
mineralisation showed that SORS is able to detect HA concentrations at an order of 
magnitude lower than that found in living bone, even through a 4 mm thick layer of skin 
(mimicking in-vivo transcutaneous measurements). These low concentrations are only 
detected when the HA was located immediately under the skin surface. As the HA 
concentration increased so did the depth at which the HA was detectable. For the highest 
concentration of HA, the detection depth increased to 4 mm. Bone has a higher concentration 
of HA than any of the scaffolds investigated here and a 2 mm thick layer produced a stronger 
signal across all depths as seen in Fig. 4. The I960/I1445 band ratio can be a useful parameter to 
attempt longitudinal quantification of HA concentration, but would require a means to 
measure the thickness of the skin layer, which can vary during the 4-6 week duration of the 
real in-vivo experiments. Nevertheless, such changes in skin thickness may be measured using 
complementary techniques, such as ultrasound imaging. 

For the experiments mimicking the uniform scaffold mineralisation, setting a spatial offset 
larger than 2 mm allowed sensitive detection of HA. Similar results were observed for the 
inward gradual mineralisation model. Nevertheless, the highest sensitivity and detection 
resolution for HA was observed when using the 4 mm spatial offset (largest offset possible 
with current instrument), which indicates that even the earliest mineralisation stage included 
in this study was detectable (i.e. only the outer 2 mm layer of the scaffold contained HA at a 
concentration ~10x lower than bone). The results also show that the surrounding walls of the 
bone defect also contributed to the measured SORS spectra (Teflon signal), that may overlap 
the Raman bands from the HA in the scaffold. For this reason, it would be advantageous to 
start the acquisition of SORS spectra as soon as the scaffold was implanted in order to 
establish a baseline SORS spectrum and quantify the changes in the HA signals during the 4-
6 week period of bone re-growth. The ability to follow the bone healing process on the same 
animal will provide higher quality data with ethical and economic benefits from reducing the 
number of animals used during the research. 
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