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Abstract—In this paper, an optimal voltage vector based
model predictive control strategy is investigated for the direct
power control of a doubly fed induction machine. The model
predictive control computes optimal voltage vector that minimizes
the error in active and reactive power. The computed voltage
vector, if within the linear regulation range, is passed onto a
modulator to be applied in the next sampling instant. In the
over-modulation range the voltage vector is linearly scaled down,
before modulation, to maintain optimality. The paper also focuses
on the saturation of main flux inside an induction machine and
its impact on reactive power control when stator current sensors
are not installed. The machine’s saturation characteristic is fully
utilized to realize full-state stator flux observer that is used to
estimate stator currents which give accurate prediction of reactive
power. Consequently, stator current sensors can be excluded.
Simulations and experimental analyses are conducted on a test
machine to verify fast dynamics of predictive control and the
estimation accuracy of stator current.

Index Terms—direct power control, doubly fed induction ma-
chine, magnetic saturation, modulated model predictive control

I. INTRODUCTION

Wound rotor induction machines are commonly used as
motors in high torque applications [1]. As generators they are
employed in wind energy conversion systems coupled with
variable speed wind turbines. They allow to downsize the
power electronic converter required for four-quadrant active
and reactive power control. The direct power control of a
doubly fed induction machine (DFIM) is widely researched
[2]–[7] in the literature.

Direct power control is usually achieved the same way [2]
as direct torque and flux control of an induction machine, how-
ever this leads to a non-constant converter switching frequency.
Model predictive control (MPC) in its canonical finite control
set (FCS) implementation also results in a variable switching
frequency [8], [9], however, some authors have reported the
application of prediction-based control with constant switching
frequency [4]–[6] that uses a modulator.

In [8], a model predictive control scheme that achieves
active and reactive power control under unbalanced grid condi-
tions is presented. The harmonics contained in the grid voltage
pollute the active and reactive power references which are
removed (compensated) and the resultant power references
ensure sinusoidal currents being injected into the grid from
the DFIM as well as reduced torque ripple on the generator

shaft. It has been noted that the power compensation terms are
necessary also when switching table based direct power control
is used. A robust FCS-MPC is proposed in [9] where a voltage
correction term is added to reference rotor voltage to account
for parameter errors. The reference voltage, generated by
current control, has two components: first arising from current
prediction equations and the second term is introduced to
eliminate error due to parameter mismatch. The cost function
compares the total reference voltage with the six inverter
states and the algorithm selects the state that minimizes the
error in rotor-side voltage. In these works [8], [9], however,
the switching frequency is not constant. A similar work is
presented in [7] where the phase locked loop (PLL) is excluded
for its vulnerability to grid harmonics which appear in angle
estimation. A second-order vector integration is employed
as direct resonant controller to remove fifth and seventh
harmonics to render the currents as smooth sinusoids and
minimize ripples in power and consequently in shaft torque.
To account for varying grid frequency, an adaptive frequency
detection scheme is also included to track the fundamental
grid frequency component. The power control is achieved
through proportional-integral regulators. It has been shown
that, compared to a PLL based approach, this scheme is robust
and stable against harmonic distortions in the grid voltage.

An algorithm presented in [4] predicts the stator active
and reactive power and computes the voltage command to
be applied at the next sampling instant. The errors with
respect to reference power values are eliminated by applying
voltage vectors computed through the inversion of the machine
differential equations. This makes the scheme resemble the
classical deadbeat control. As the computed reference voltage
is to be applied through a modulator, the method produces
constant switching frequency. A similar scheme is developed
in [5] in which virtual torque control is proposed for grid
synchronization purposes. However, the control of active and
reactive power follows the same principle as of [4] and
therefore the strategy is close to deadbeat control. This scheme
is combined with a rotor position sensorless control. Another
direct power control technique with fixed switching frequency
and under unbalanced grid conditions is investigated in [6].
Here the stator active and reactive power slopes are estimated
based on different inverter switching voltage vectors and four
vectors that have positive durations, and that minimize a cost



function of power errors, are applied to achieve power control.
Of the four selected vectors two are the zero vectors V0
and V7 while the other two are the active vectors given by
the sector in which the flux vector lies. The computation of
duty cycles of each active and zero vector based on active
and reactive power slopes makes the control technique similar
to modulated MPC [10]. The performance of the proposed
technique is analysed, in simulation, under unbalanced grid
voltage conditions. A DFIM model predictive control for
rotor side converter with inductive-capacitive output filter is
presented in [11]. An analytical solution with integral error
feedback is proposed for current control.

Apart from prediction-based direct power control, the re-
search also focuses on other control techniques such as
a sliding mode controller [3]. An extended active power
concept is introduced to account for harmonics, caused by
grid unbalances, appearing in power references. The negative
sequence components of grid voltage and current appear in the
extended active power which are compensated in feed-forward
manner to extract power from DFIM that consists only of
the fundamental positive sequence components of voltage and
current. The control is implemented through the integral form
sliding surface variant of sliding mode controller to achieve
suitable steady state and transient performances. While [2]–
[9], [11] use two-level voltage source inverter (VSI), [12]
has demonstrated the vector control of a DFIM using indirect
matrix converter with changing dc-link voltage. Although the
power control is obtained through traditional proportional-
integral current regulators, it has been concluded that a high-
performance power control is possible also without bulky
dc-link capacitors used in a VSI.

In almost all the direct power control strategies cited above,
the machine parameters are considered as known constants.
Although it is true for stator and rotor resistances (as long
as temperature does not change) and leakage inductances, the
magnetizing inductance does vary with main flux saturation as
for any induction machine. In [13] the variation of magnetizing
inductance is highlighted and a model reference adaptive
system is used to track its changes. The accurate value of mag-
netizing inductance used in control is stated to help improve
robustness of the control especially when rotor position sensor
is excluded to implement sensorless control. The short-circuit
modelling of a DFIM presented in [14] describes how the
main flux saturation affects the controllability of the machine
especially when uninterrupted control under fault conditions
is needed. Apart from [13], [14], the influence of magnetic
saturation on the effectiveness of direct power control is not
very widely reported in the literature.

This paper, therefore, presents an in-depth analysis of how
a detuned magnetizing inductance influences the accuracy of
power estimation, especially the reactive power, when the
stator current sensors are not present. The machine under study
is first tested to define its magnetizing characteristic which is
then used to compute the instantaneous value of magnetizing
inductance through look-up tables. A full-state flux observer is
also designed that (i) takes magnetic saturation into account,
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Fig. 1. Doubly-fed induction machine connection to the grid.

(ii) helps estimate the stator currents, and (iii) eliminates
the need for a PLL to track grid voltage (or stator flux)
vector position. The direct power control is achieved through
an optimal voltage vector based modulated model predictive
control that optimizes the voltage vector to be applied both in
linear voltage regulation range as well as in over-modulation.
Simulation and experimental results are presented to show that
the control achieves fast dynamic performance, even when the
rotor side converters dc-link voltage is limited. It has been
demonstrated that almost null steady state error in active and
reactive power control can be achieved even without measuring
stator current.

The following sections briefly describe the modelling of
a DFIM (section II) and the flux observer (section III) that
does not need stator current measurement. In section IV
the modulated MPC strategy used in this paper is detailed
and section V presents simulation and experimental results.
Section VI concludes the paper.

II. MODELLING OF DFIM FOR DIRECT POWER CONTROL

Like a squirrel cage induction machine, a DFIM consists
of a distributed stator winding, but unlike a squirrel cage
machine, the rotor of a DFIM also contains windings. These
windings are connected to external circuit through slip rings.
Fig. 1 shows a generalized scheme of DFIM connection to the
grid. GSC stands for grid side converter and RSC for rotor side
converter. The control of GSC is not discussed in this paper,
the focus is on RSC control. It can be noticed that the stator
current is not considered as a measured quantity.

A. Stator and rotor voltage equations

While writing the following equations, reference is made to
Fig. 2 in which the reference frames are defined. The stator
stationary reference frame αsβs has its α-axis aligned to phase
‘a’ of the stator winding. The reference frame αrβr is fixed
with respect to the rotor windings and rotates at rotor angular
speed ωr (not shown in Fig. 2). The power control will be
carried out in stator flux oriented (SFO) dsqs frame [15]. The
stator and rotor voltage equations of a DFIM in stator flux-
oriented (SFO) dsqs reference frame (defined in Fig. 2) can be
written as:
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Fig. 2. DFIM reference frames definition.

v̄s = Rs īs + dλ̄s
dt + jωsλ̄s (1)

v̄r = Rr īr + dλ̄r
dt + jωsl λ̄r (2)

where v̄, ī, λ̄ are voltage, current and flux vectors, respectively,
with subscript ‘s’ denoting stator quantities and ‘r’ stands for
rotor. Rs and Rr are the stator and rotor resistance, respectively.
ωs is stator electrical frequency (in rad/s), ωsl is the slip
frequency (in rad/s) and j is the complex operator. The stator
and rotor fluxes are related to respective currents through the
following relations:

λ̄s = Ls īs +Lm īr (3)
λ̄r = Lm īs +Lr īr (4)

where Ls, Lr and Lm are stator, rotor and magnetizing induc-
tance, respectively. It must be noted that (3) and (4) are valid
in all reference frames of Fig. 2, namely stator αsβs, rotor
αrβr and SFO dsqs frames.

Noting that the stator current īs is not a measured quantity,
it can be eliminated from rotor flux equation by substituting
(3) into (4) to get:

λ̄r = σLr īr + ksλ̄s (5)

here σ is the leakage factor defined as 1−L2
m/Ls/Lr and ks is

the stator coupling factor given by Lm/Ls. Substituting (5) into
(2) and rearranging to obtain the rotor current state equation:

dīr
dt

=− Rr

σLr
īr− jωsl īr−

jωslks

σLr
λ̄s +

v̄r

σLr
(6)

B. Active and reactive power

The stator active and reactive power in terms of stator dq
currents and voltages is given by:

Ps =
3
2 (vdsids + vqsiqs) (7)

Qs =
3
2 (vqsids− vdsiqs) (8)

Since the active and reactive power control is achieved
through rotor side, the stator currents in (7) and (8) can be
replaced with rotor currents using (3).

īs =
λ̄s−Lm īr

Ls
(9)

From the definition of SFO frame (of Fig. 2), it is noted
that λds = |λ̄s| and λqs = 0. From (1), in steady state, the stator
voltage is given by (10).

V̄s = Rs Īs + jωsΛ̄s (10)

If Rs Īs � ωsΛ̄s, then the stator voltage’s dq components
can be approximated as: vqs ≈ |v̄g| and vds ≈ 0, where v̄g is
the instantaneous grid voltage vector. Thus, after substituting
(9) into (7) and (8), the stator active and reactive power in
terms of grid voltage vector and rotor currents will be:

Ps =− 3
2 ks|v̄g|iqr (11)

Qs =
3
2 |v̄g|

(
|λ̄s|
Ls
− ksidr

)
(12)

Taking the time derivative of (11) and (12) while noting that
|v̄g|= const. and |λ̄s|= const. and substituting (6), the active
and reactive power state equations become:

dPs
dt = 3

2 ks|v̄g|
(

Rr
σLr

iqr +ωsl idr +
ωslks
σLr
|λ̄s|−

vqr
σLr

)
(13)

dQs
dt = 3

2 ks|v̄g|
(

Rr
σLr

idr−ωsl iqr− vdr
σLr

)
(14)

III. FLUX OBSERVER AND FIELD ORIENTATION

In order to get the measured quantities in SFO frame of
Fig. 2, a PLL is generally used [9]. In this work, the full-
state flux observer of an induction machine is exploited for
field orientation. The flux-observer is constructed based on
the stator and rotor voltage equations in respective station-
ary frames by setting ωs = 0 and ωsl = 0 in (1) and (2),
respectively. The stator flux from the rotor and stator voltage
equations (eliminating the stator current) is given in (15) and
(16), respectively, where superscripts ‘re’ and ‘se’ stand for
rotor equation and stator equation, respectively. In (16), τs
represents stator time constant defined as Ls/Rs. It must be
noted that īr in (16) is the rotor current transformed to stator
stationary frame αsβs of Fig. 2 through rotor mechanical angle
θm.

λ̄re
s = 1

kr
{
∫
(v̄r−Rr īr)dt−σLr īr} (15)

λ̄se
s = 1

τs

{∫ (
−λ̄s + τsv̄s +Lm īr

)
dt
}

(16)

A flux-observer is constructed by combining (15) and (16)
through an observer gain g as shown in Fig. 3. This observer
has the benefits of no open-loop integration as opposed to an
observer based only on stator equation. To further mitigate
the effects of dc-offset arising from grid voltage sensors, the
pure integration of (16) is replaced with the scheme of [16].
In Fig. 3, the parameters such as Lm and τs are shown as
functions of λm to appropriately consider their dependence on
the saturation characteristic of the machine. Still in Fig. 3,
∆abc represents the duty cycle vector of RSC switches, vdc
is the measured dc-link voltage and ‘DT’ stands for dead-
time compensation look-up tables [17]. The inverter voltage
error as a function of current (v̄dt

αβ
) is subtracted from the

applied voltage to obtain accurate rotor induced voltage for
flux-observer.



The sine and cosine functions of stator flux angle are
obtained directly from the α and β components of the observed
flux as (17). The use of the flux-observer along with dc-
offset elimination scheme [16] and inverter error compensation
allows to replace the PLL altogether.

cos θ̂s =
λ̂α

|ˆ̄λs|
sin θ̂s =

λ̂β

|ˆ̄λs|
(17)

The other advantage of using the flux-observer of Fig. 3
is realized in terms of accurate stator current estimation that
helps exclude the stator current sensors. The magnetizing
characteristic of the machine is utilized to track online the
change in magnetizing inductance Lm and, consequently, τs
that gives accurate stator and rotor flux estimation from which
the magnetizing flux-linkage λ̄m is obtained using (18) that, in
turn, gives estimated stator current through (19). In (18), Llr
denotes rotor leakage inductance.

ˆ̄
λm = ˆ̄

λr−Llr īr (18)
˜̄is =

ˆ̄
λm

Lm

(
|ˆ̄λm|

) − īr (19)

IV. MODULATED MODEL PREDICTIVE CONTROL

In FCS-MPC, following a cost function minimization one
of the seven possible inverter states are selected as optimal
[18]. The selected inverter state is applied for a complete
switching period. The FCS-MPC produces a variable switch-
ing frequency and gives higher ripple in controlled variables.
In this paper, a modulated alternative of MPC is used based
on [19], [20]. The application of any MPC scheme requires
prediction of state variables. For this, the rotor current state
equation (6) and the active and reactive power state equations
(13) and (14) are discretized using Euler’s approximation as
follows, where k denotes current sampling instant and k+ 1
the next and Ts is the sampling time. Even though the grid
voltage v̄g, the stator flux λ̄s and the slip frequency ωsl do not
vary much over one sampling interval, they are written with
sampling instant markers k, k−1 for correctness.

īr (k) =
(

1− RrTs

σLr

)
īr (k−1)− jωsl (k−1)Ts īr (k−1)

− jωsl (k−1)ks

σLr
Tsλ̄s (k−1)+

Ts

σLr
v̄r (k−1) (20)

Ps (k+1) = Ps (k)+
3
2

Tsks|v̄g (k)|
{ Rr

σLr
iqr (k)

+ωsl (k) idr (k)+
ωsl (k)ks

σLr
|λ̄s (k)|−

vqr (k)
σLr

}
(21)

Qs (k+1) = Qs (k)+
3
2

Tsks|v̄g (k)|
{ Rr

σLr
idr (k)

−ωsl (k) iqr (k)−
vdr (k)

σLr

}
(22)

The control algorithm proceeds in the following sequence:
• The grid voltage v̄g and rotor current īr are read in

stator and rotor reference frames, respectively. The rotor

mechanical position is acquired from the rotor position
sensor.

• The flux-observer of Fig. 3 estimates the stator flux (λ̄s)
and gives the sine and cosine of stator flux angle.

• The measured stator voltages and rotor currents are
transformed to dsqs-frame.

• The rotor current vector is predicted using (20) based
on the measurements and the applied rotor voltage v̄r
at previous sampling instant (after removing the inverter
dead-time effects for accurate prediction).

• The stator active and reactive power at the current sam-
pling instant is obtained using (11) and (12).

• To obtain predictions for the next sampling instant, every
inverter switching state is evaluated. The voltage vector in
rotor αrβr frame is given by (23) for different switching
states.

v̄αβr =
2
3

vdc

[
1 e j 2π

3 e j−2π

3

]Sa
Sb
Sc

 (23)

where S denotes switching function with subscripts ‘a’,
‘b’, and ‘c’ representing phases. The top switch of the
inverter leg is closed for S = 1.

• The voltage vector of (23) is converted to SFO dq-frame
for each of the seven inverter states and the active and
reactive power for the next sampling instant are predicted
through (21) and (22).

• An error vector is computed based on the reference values
of active and reactive power as:

ēi = (P∗s −Ps (k+1))+ j (Q∗s −Qs (k+1)) (24)

where the subscript ‘i’ denotes the inverter state
i ∈ [0,1, ...,6] with ē0 denoting the error when zero vector
is applied.

• The two inverter states that are adjacent and that give
minimum magnitude of the error vector (24) are identified
[20].

• The following system of linear equations is solved to
compute the duty cycle d1 and d2 of each of the two
vectors identified in the previous step [19].[

e1P− e0P e2P− e0P
e1Q− e0Q e2Q− e0Q

][
d1
d2

]
=

[
−e0P
−e0Q

]
(25)

Here, the subscripts ‘P’ and ‘Q’ denote the real and
imaginary parts of the error vector ēi, respectively.

• When the target active (P∗s ) and reactive (Q∗s ) power is
achievable in one switching period, the duty cycles given
by (25) satisfy d1 + d2 ≤ 1 and the duty cycle for zero
vector is obtained as d0 = 1−d1−d2. This is the linear
regulation regime.

• The over-modulation region is encountered when the
target active and reactive power cannot be reached in
one switching period. In that case the solution of (25)
produces the condition d1 +d2 > 1. In order to maintain
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Fig. 3. Stator flux observer for DFIM.
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optimality also in case of over-modulation, the duty
cycles are linearly scaled down as:

d1 =
d1

d1 +d2
, d2 = 1−d1, d0 = 0 (26)

V. RESULTS AND DISCUSSION

The validation of the direct power control strategy through
modulated MPC is carried out on a commercial 7.5 kW wound
rotor induction machine with its rotor windings accessible
through slip rings. The machine under test is first subjected to
no-load and short-circuit tests following the IEEE guidelines
as outlined in [21]. The machine’s magnetizing characteristic
is obtained from the data of no-load tests and is reported in
Fig. 4. The figure shows the flux and magnetizing inductance
as function of magnetizing current. It can be observed that
in deep saturation, the magnetizing inductance reduces by
about a third which has major implications on reactive power
estimation using (12) if stator currents are not measured. Other
equivalent circuit parameters identified for the test machine
are: Rs = 0.41 Ω, Rr = 0.31 Ω, Lls = Llr = 5.7 mH.

A. Simulation results

For carrying out simulations, the data of Fig. 4 is used as a
look-up table (LUT) to create a non-linear model of the DFIM
in Matlab Simulink. The same LUT is used to estimate Lm at
various operating points of the machine. The estimated Lm is
used in the flux observer of Fig. 3 to get accurate flux vector
magnitude.

To verify the dynamic performance of the optimal voltage
vector based MPC proposed here, a step reference change in
active and reactive power is applied while the machine is ro-
tated through an external prime mover that maintains constant
speed. Fig. 5 shows the dynamic response for active power
change and Fig. 6 gives the controller performance on reactive
power axis. The dc-link voltage of RSC is deliberately kept
low (around 25 V) to test the algorithm in over-modulation
range. The duty cycles shown in the lower plots of Fig. 5 and
Fig. 6 show saturated outputs for initial instants according to
(26), notice the duty cycle for d0. However, as soon as the
errors are eliminable within one switching instant, the duty
cycles are modulated as per (25). In these results, the saturation
effects are not enabled as they are meant to test the control
dynamics.

Fig. 7 presents results when the magnetic saturation effects
are enabled. The reactive power is varied as a ramp to show its
influence on magnetizing inductance. The top plot shows the
reference and measured reactive power (and their difference
as error) and the bottom plot gives the magnetizing inductance
variations obtained from the LUT of Fig. 4. Fig. 8 presents
the active and reactive power estimation errors when the
saturation effects are enabled in the machine model but are
not considered in the control and for the flux observer. The
estimation errors are computed as the difference between
actual stator powers (computed using the measured stator
currents) and their estimates obtained through (11) and (12).
As noted above and observed in Fig. 8, the impact of saturation
on the estimation of active power is minimal. However, the
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estimation of reactive power is significantly improved when
magnetic saturation effects are appropriately considered. Fig. 8
effectively demonstrates that open-loop reactive power control
can be achieved with greater accuracy even without measuring
stator currents.

B. Experimental results

Fig. 9 shows the photo of the test rig where the DFIM is
coupled with a permanent-magnet machine that acts as a prime
mover. The rotor position for the DFIM is obtained through
a 25000 pulse per revolution incremental encoder. The stator
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Fig. 8. Active (top) and reactive (bottom) power errors – blue: errors when
magnetizing inductance is constant; red: when magnetizing inductance is
obtained from LUT of Fig. 4.

Fig. 9. Experimental setup – left: DFIM under test, right: prime mover.

voltage and current measurements are made available through
appropriate voltage and current sensors. It must be noted that
the stator current measurement is used only for verification
purposes.

The RSC is a commercial 2 kW drive whose control board
is replaced to allow direct access to the IGBT gate drivers.
The control algorithm runs on a custom DSP/FPGA board
that sends the switch duty cycle commands over a fibre-optic
link. The switching frequency is 10 kHz. The shaft speed is
maintained through the prime mover. The stator is connected
to a 50 Hz grid.

1) Active and reactive power step response: Fig. 10 shows
the results for an active power reference step of 2 kW when the
shaft speed is maintained at 1540 rpm . The lower plot shows
the rotor phase currents. It must be noted that the convention
of consumer is used for the sign of power i.e. positive power
is drawn from the grid and negative is injected into it. Fig. 11
gives the results for reactive power control. For this test, the
shaft speed is reduced to 1500 rpm such that no active power
is produced/consumed. The stator no-load reactive power at
rated flux is close to 5000 VAr which is brought to 0 VAr to
effectuate unity power factor operation. The lower plot of the
figure shows the d- and q-axis stator currents. The stator d-axis
current at no-load is the rated magnetizing current (cf. Fig. 4)
which is compensated through the rotor circuit that results in
unity power factor operation. The inset graphs in Fig. 10 and
Fig. 11 show the zoomed-in results for control dynamics. It
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Fig. 10. Experimental results for active power step response – top: reference
and measured active power, bottom: measured rotor phase currents.
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Fig. 11. Experimental results for reactive power step response – top: reference
and measured reactive power, bottom: measured stator d- and q-axis currents.

must be noted that to obtain the results of Fig. 10 and Fig. 11,
the measured stator current is used only to compute active and
reactive power but the control and flux-observer do not include
stator current measurement. Instead, the LUT (of Fig. 4) is
used to correct Lm online based on the observed mutual flux
value.

Fig. 12 presents results for a step change in both active
and reactive power at the same instant (ωm = 1540 rpm). It
can be observed that the control dynamics of Fig. 10 and
Fig. 11 are preserved. The stator and rotor d- and q-axis
currents are also reported for completeness. Furthermore, to
verify the operation in overmodulation region, an active power
step of 6 kW (80% of rated machine power) is applied and
the duty cycles given by (25) and (26) are shown in Fig. 13.
The figure is zoomed in around the instant when the step is
applied to show saturated operation for initial instants (notice
that d0 = 0) and the modulation once the target is achievable
in one switching instant (now d0 6= 0).

2) Saturation influence on reactive power: To demonstrate
that in the absence of stator current measurement, the reactive
power control is affected by whether the saturation character-
istic (Fig. 4) is taken into account or not, the reactive power
step of Fig. 11 is applied without LUT for Lm correction.
The results presented in Fig. 14 show that the reactive power
control has a considerable steady-state error and the same is
noted from the stator d-axis current (shown in the lower plot).
All other conditions of Fig. 11 are kept the same for Fig. 14.
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Fig. 12. Experimental results for active and reactive power step response –
top: reference and measured power, bottom: measured stator and rotor d- and
q-axis currents.
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Fig. 13. Experimental results for active power step for overmodulation – top:
reference and measured active power, bottom: duty cycles given by (25) and
(26).
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Fig. 14. Experimental results for reactive power step response with constant
Lm – top: reference and measured reactive power, bottom: measured stator d-
and q-axis currents.

The stator current estimated through (19) is compared with
the measured current in Fig. 15. The top plot shows the
comparison when the LUT of Fig. 4 is used for Lm correction.
The bottom plot shows the estimate with constant Lm. It is
evident that the stator current estimation (especially ids) is
significantly improved with the LUT. Fig. 15 also confirms that
with the proposed method, the stator current sensors can very
well be excluded without significantly affecting the reactive
power control (see also Fig. 11 and 14).

Whereas the reactive power is sensible to saturation effects,
the active power control does not suffer from this. The active
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Fig. 15. Experimental results for stator d- and q-axis current estimation – top:
measured and estimated currents with LUT, bottom: measured and estimated
currents with constant Lm.
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Fig. 16. Experimental results for active power step response with constant
Lm – top: reference and measured active power, bottom: measured rotor d-
and q-axis currents.

power control results given in Fig. 16 show that with constant
Lm the estimate of active power has no error and therefore the
steady state error is limited (as in Fig. 10).

VI. CONCLUSIONS

In this paper, a recently developed model predictive control
strategy based on optimal voltage vectors is applied for direct
power control of a DFIM. The paper has also focused on the
magnetic saturation effects that influence the estimation, and
therefore the control, of reactive power in the absence of stator
current sensors. It has been shown that if the magnetizing
characteristic of the machine is known, the stator current
sensors can be excluded that will help bring the overall costs
down and improve the reliability of the system. A flux observer
is designed starting from the measured electrical quantities
and, thanks to this flux observer, the need for a phase-locked
loop is also eliminated for field orientation. The experimental
results have demonstrated that an open-loop reactive power
control can be achieved without significant steady-state error
in the absence of stator current sensors. In this work, the rotor
position is measured through an incremental encoder, however,
the implementation of this method for a rotor position sensor-
less control will be part of future research in this direction.
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