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Universidad Técnica Federico Santa Marı́a
Valparaı́so, Chile

Abstract—Voltage source inverters with LC output filters are
widely used for high-quality output of ac power supplies. They
are also a potential solution for embedded electrical networks in
more-electrical aircraft of the future. In this paper, a recently de-
veloped model predictive control technique that selects modulated
optimal voltage vector is applied for high dynamic output voltage
control of these systems especially when the required output
frequency is well above the standard 50/60 Hz as required by
aerospace applications. The studied predictive control optimizes
the switch duty cycles when in linear regulation range by solving
analytical equations. The over-modulation region is covered by
optimized linear combination of the adjacent hexagon vertices
unlike how it happens in classical space vector modulation. A
load current observer is also designed in this paper which is made
independent of output frequency for improving the disturbance
rejection capability of the voltage control loop when the load
current sensors are not present. Simulation and experimental
results that validate the control and observer performance are
presented under different steady state and dynamic operating
conditions.

Index Terms—LC filters, load current observers, modulated
model predictive control, non-linear loads, optimal vectors, volt-
age source inverters

I. INTRODUCTION

Voltage source inverters (VSI) with output inductive-
capacitive (LC) filters are most commonly employed systems
for applications such as interfacing renewable energy sources
with ac microgrids [1] and uninterruptible power supplies [2].
Additionally, in drive applications the LC filter can be used
to improve waveform quality [3], [4]. The requirement of
a ripple-free voltage at load terminals is the raison d’être
of an LC filter at the output of a VSI [3]. For an ideal
ac power supply, it is imperative that the quality of output
be independent of the type of load as long as the power
ratings are not exceeded. With non-linear loads, it becomes
the merit of the controller to keep the distortions in the
output voltage to a minimum. A fast dynamic control with
rapid disturbance rejection improves the overall quality of any
ac power supply while maintaining a clean output voltage.
However, the inclusion of an LC filter renders the control
design procedure a bit involved and parameter dependence and
axes decoupling become major issues.

The output voltage control of a VSI with LC filter is still
a subject of research especially when it comes to control
dynamics [5]–[13]. Model predictive control (MPC) has been

shown to be a suitable alternative to linear controllers due to
the former’s superior dynamics over the latter [14]. In power
electronics, its use has attracted much attention in the recent
past [10], [15]–[18]. Both finite control set (FCS) [5] MPC as
well as its modulated alternative [19], [20] have been the focus
of research. A growing trend towards modulated optimum
voltage vector based MPC is the motivation behind this work.

Voltage control of a VSI equipped with an output LC
filter is studied in depth in the literature. For instance, [9]
proposes a robust control scheme for a VSI interfaced with
the grid through an LC filter. The authors have dealt with the
problem of changing grid impedance and have proposed an H∞

controller for robustness. The implications of state feedback
coupling on voltage control are analysed in [8] and some
ideal and non-ideal decoupling strategies are introduced. A
comprehensive analysis of multiloop control strategies for VSI
and current source inverter (CSI) equipped with output LC,
CL, or LCL filters is studied in [13]. In [12], a generalized
closed loop control of VSI with LC and LCL output filters
is proposed using the concept of internal and external virtual
impedances. An FCS-MPC based approach is used to achieve
output voltage control in [5]. A cost-function is defined as
the difference between required and predicted output voltage
and the inverter switching state that minimizes this difference
is applied during the next switching interval. To mitigate the
impact of load current, a load current observer is also designed.
However, the implementation takes place in αβ stationary
reference frame that makes the observer response frequency
dependent. The work presented in [21], redesigns the load
current observer for sinusoidal load currents while employing
the same control strategy as presented in [5] effectively
reducing the impact of output frequency on observer response.
MPC for the output voltage control of a four-leg VSI with LC
output filter is presented in [10] in which the cost function
also includes a term to reduce the switching frequency of the
neutral (fourth) leg.

The implementation of MPC through a modulator has
recently been introduced due to its merits of constant switching
frequency; it has also been shown to eliminate the limitations
of FCS-MPC when working with low reactance machines [20].
The modulated optimal vector based control of a VSI with LC
filter is presented in [6] in which the authors have computed
explicit optimum solution when the dc-link voltage constraint



is not violated. In case the optimum lies outside the bounds
of a VSI’s available dc-link voltage, it is scaled down to lie
along the constraint border. Another optimal voltage vector
based MPC is proposed for a permanent magnet synchronous
motor’s speed control in [22] where the duty cycles for
space vector modulation (SVM) are explicitly calculated by
solving an analytical equation. In the linear regulation range
the calculated duty cycles are directly applied to the inverter
switches, as in [6], whereas in over-modulation the duties are
reduced through a linear combination to keep the optimality
condition. A closely similar strategy is employed in [23] that
optimizes the command voltage vector both in linear regulation
and in overmodulation range, however, differently from [22]
the approach presented in [23] identifies the optimum and
second-optimum vectors from the cost-function evaluation.

In this paper, the modulated MPC strategy of [22] and [23]
is modified for its application to the output voltage control
of a VSI with LC filter. The implementation is carried out
in the dq rotating reference frame as opposed to αβ frame
as done in [22] and [5]. A load current observer is designed,
again in the dq frame, to cancel load disturbance effect on
the control performance when load current is not measured.
It is demonstrated that the observer dynamics are independent
of output frequency which renders the method suitable for
applications such as modern programmable ac power supplies
[24] or for open-loop control of an induction machine [3].
The method is verified in simulation and through experimental
analysis with different control objectives and performance
merits.

The paper is organized as follows. In section II the mathe-
matical modelling of a VSI with LC filter is presented along
with the load current observer, section III introduces the
control strategy used, section IV shows control performance
results and, finally, section V concludes the paper.

II. VSI WITH LC FILTER: MODELLING

Fig. 1 shows a VSI with output LC filter and a generic three-
phase load. In this figure, L is filter inductance per phase,
RL is its series resistance and C is filter capacitance. The
vector īL denotes current through the inductors and vector v̄c
is the voltage across filter capacitances; these two are the state
variables of the system and are measured through current and
voltage sensors, respectively. The figure also shows the load
current vector īo, which is not a state variable and is not a
measured quantity. The instantaneous voltage vector applied
by the inverter is given by the state of each switch S1–S6 and
is denoted by ūi in the following state equations written in dq
rotating reference frame where ω is the radian speed of this
frame.

dīL
dt

=−RL

L
īL − jωīL +

1
L
(ūi− v̄c) (1)

dv̄c

dt
=− jωv̄c +

1
C
(īL− īo) (2)

Eq. (1) and (2) give the state equations of the VSI with
LC filter where the load current īo is an unknown input.
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Fig. 1. VSI with LC output filter supplying a generic three-phase load.

Nevertheless, it can be obtained through a properly designed
load current observer. It is assumed that the load current has
slower dynamics than īL and v̄c such that ˙̄io = 0. With this
assumption, the following state and output equations can be
written where īL, v̄c, and īo are vectors in dq reference frame.

d
dt

īL
v̄c
īo

=

−RL
L − jω 1

L 0
1
C − jω − 1

C
0 0 0


︸ ︷︷ ︸

A

īL
v̄c
īo


︸ ︷︷ ︸

x

+

 1
L
0
0


︸︷︷︸

B

ūi (3)

y =
[

1 0 0
0 1 0

]
︸ ︷︷ ︸

C

x (4)

Eq. (3) combines the two state equations (1) and (2) and
includes the third equation for load current with the condition
˙̄io = 0. Additionally, the output of the system is defined in (4)
by y =Cx.

A state observer can be defined from (3) and (4) as:

˙̂x = Ax̂+Bu+K(y− ŷ) (5)

with K as observer gain matrix. The error dynamics of this
observer can be derived as:

ė = (A−KC)e (6)

The eigenvalues of (A−KC) give the poles of the observer.
The observer gain matrix K can be obtained through eigen-
value assignment method that places the observer poles at
desired locations on the complex plane. It can be observed
from (3) that with a fixed gain K, the poles of the observer
move with the rotating reference frame’s angular speed ω.
However, if the arbitrary ω is put equal to zero, the problem
is conducted back to the stationary αβ frame. Furthermore,
if RL is also neglected, the observer becomes identical to
the one proposed in [5]. In order to compute the observer
gain matrix K, it is assumed that ω = 0 and RL = 0 but
in the structure of the observer the terms containing ω are
retained to decouple the d and q axes. This strategy allows
to design the observer through a traditional pole placement
method while keeping it independent of the rotating reference
frame’s angular frequency ω. If the observer poles were to be
placed at −ω0[µ1,(µ2+ jµ2),(µ2− jµ2)] with (µ1, µ2)> 0 then
the observer gains, through eigenvalue assignment, would be:



K =

µ1ω0 − 1
L

1
C 2µ2ω0
0 −2(µ2ω0)

2C

 (7)

It can be noticed from (7) that the observer gains can be
computed a priori based only on the LC filter parameters and
independently of ω. A discussion on the evolution of observer
poles as a function of ω is given in the latter sections.

III. MODEL PREDICTIVE CONTROL WITH MODULATED
OPTIMUM VECTORS

To be able to apply any prediction based control scheme in
a digital environment, the first step is to obtain the discrete
equations of the controlled system. The equations (1) and (2)
are discretized using Euler’s approximation as (8) and (9),
respectively, where k and k+ 1 signify values at consecutive
sampling instants separated by sample time Ts.

īL(k+1) =
(

1− RL

L
Ts− jωTs

)
īL(k)+

Ts

L
(ūi(k)− v̄c(k)) (8)

v̄c(k+1) = (1− jωTs) v̄c(k)+
Ts

C
(īL(k)− īo(k)) (9)

To account for the digital implementation delay, (8) and
(9) are evaluated twice [25]. First, īL(k+1) is predicted from
the previous command voltage ūi(k) and measured v̄c(k) and
v̄c(k+1) is predicted from measured īL(k) and observed īo(k).
Then, in the second instant, (8) is evaluated for all possible
inverter states for which the voltage ūi in αβ frame is given
by (10) and in rotating dq reference frame by (11).

ūiαβ =
2
3

Vdc

[
1 e j 2π

3 e j−2π

3

]Sa
Sb
Sc

 (10)

where Vdc is the available dc-link voltage, S denotes switching
function with subscripts ‘a’, ‘b’, and ‘c’ representing phases.
The top switch of the inverter leg is closed for S = 1 i.e. Sa = 1
corresponds to S1 = 1 and S4 = 0 in Fig. 1.

ūi = ūiαβe− jθ (11)

where θ is the angle of the rotating reference frame given by
(12).

θ =
∫

ωdt (12)

At this point, using the predicted inductor current īL(k+2)
and observed load current ˆ̄io, the capacitor (or load) voltage is
predicted for the next sampling instant (for all seven inverter
states). The predicted v̄c is compared with the reference load
voltage (v̄∗c) and an error vector is computed as (13). Notice
that the error vector has seven elements (each of them a
complex number).

Ēi = v̄∗c− v̄c(k+2) (13)

where the subscript ‘i’ denotes the inverter state i ∈ [0,1, ...,6].

The two error vectors that have minimum magnitude are
identified as Ē1 and Ē2 using either the geometrical analysis
of [22] or simply by minimum magnitude and adjacency
criteria of [23]. It should be noted that the real part of the
error vector corresponds to the d-axis component and the
imaginary part to its q-axis component. The inverter switching
indices corresponding to these two error vectors are selected as
candidate voltage vectors to be applied at the next sampling
instant. However, the duty cycles d1 and d2 with which to
apply these two vectors is computed by solving the system
of linear equations (14) where Ē0 is the error vector when
null state of the inverter is applied (i.e. all switches closed on
positive dc-link or on its negative terminal).[

E1d−E0d E2d−E0d
E1q−E0q E2q−E0q

][
d1
d2

]
=

[
−E0d
−E0q

]
(14)

When in linear regulation range, the values of d1 and d2
produced by (14) satisfy (d1 +d2)< 1 and therefore the duty
cycle for the zero state is obtained as d0 = 1− d1 − d2. If
it is not possible to reach the reference voltage v̄∗c in one
sampling instant with the available dc-link voltage, (14) gives
(d1 + d2) > 1 in which case the duty cycles are linearly
scaled down as given by (15). This type of saturation is
implemented in [22] and is a sub-optimal solution, although
with a sufficiently fast response that converges to the desired
solution. It must be noted that (15) preserves the fast dynamics
of FCS-MPC for very large transient errors as demonstrated
in [22]. In [23], this saturation is implemented based on an
optimization (and a subsequent approximation) leading to a
slightly different solution.

d1 =
d1

d1 +d2
d2 = 1−d1 d0 = 0 (15)

IV. EXPERIMENTAL AND SIMULATION RESULTS

The presented control strategy is implemented both in
simulation and experiments for validation. Fig. 2 shows the
experimental setup used for tests. The LC filter parameters
are: L = 3.0mH, RL = 0.2Ω, C = 40µF. A balanced three-
phase resistive load with Rload = 10Ω is used. The control
performance is evaluated for voltage step change and, unlike
the results presented in the literature, the control response for
a frequency step change is also analysed experimentally for
completeness. The load current observer gains in (7) are set
using ω0 = 2π·200, µ1 = 1 and µ2 = 1. The switching frequency
is 10kHz, however in simulation average model of the inverter
is implemented.

Before presenting results for validation of the proposed
control and observer, it is necessary to check the observer
stability for different output frequencies. As noted earlier, the
observer gains are tuned based on the assumption ω = 0,
however in the observer structure ω appears as a decoupling
term (3). Once the observer gains are set according to (7),
the evolution of observer poles for variable ω is analysed
to determine stability. Even though the problem is that of
complex-coefficient transfer functions and must be studied



Fig. 2. Setup for experimental tests

Fig. 3. Observer poles’ location for 0 < ω < 2π ·5000

in depth [26], here it is sufficient to evaluate observer pole
locations for a practical range of ω. For instance, with a
switching frequency of 10kHz, the maximum output frequency
of 3.2kHz can be obtained. Fig. 3 gives the locus of observer
poles for ω sweep from 0 to 5kHz. The poles remain on the
left-half-plane of the complex plane that verifies stability (in
a very rudimentary way).

Fig. 4 shows the controller response for a step change in
voltage magnitude from zero to maximum possible that can
be achieved with a dc-link of 200V. The lower plot in Fig. 4
shows the switch duty cycles of the top switches of Fig. 1. At
the instant that step is applied, the duties saturate (indicating
operation in over-modulation region) because of large error
which cannot be eliminated in one switching instant. Fig. 5 top
plot gives the d- and q-axis reference and measured voltages, a
slow build-up of voltage is because of the inverter current limit
being reached when the voltage across filter capacitance is
controlled. Note that the required output voltage is considered
to be along d-axis (i.e. v∗d = V ∗amp and v∗q = 0). As can be
seen, the q-axis voltage is disturbed during the large transient
of d-axis voltage step but is effectively brought to zero in
steady state. The lower plot of Fig. 5 shows the duty cycles
d1, d2 and d0 given by (14) (in linear range) and by (15) (in
over-modulation). At the moment a voltage step is applied, the
duty cycles remain saturated for the initial instants and then

v c (V
)

du
tie

s

Fig. 4. Dynamic response for reference voltage magnitude step change – top:
phase voltages across filter capacitances, bottom: phase duty cycles.
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Fig. 5. dq-frame voltages and duties during voltage reference step – top:
reference and measured d- and q-axis load voltage, bottom: duty cycles for
the two active and a zero vector given by (14) and (15).

the linear modulation starts. It must be noted that the duty
cycles d1 and d2 are saturated in the sense that their sum is
1 but are linearly scaled as per (15). In the saturation region,
the fast dynamic performance of FCS-MPC is preserved.

Fig. 6 presents the voltage control performance in the
absence of load current measurement or observer. Since the
modulated MPC implemented here calculates the exact solu-
tion for switch duty cycles through (14) with no integrative
correction element, this results in the steady-state error seen
in Fig. 6. The disturbance (load current) is not compensated
and the exact solution is prone to steady-state error. In Fig. 7,
the same voltage step condition of Fig. 6 is applied but this
time with the load current observer included. As expected
the steady-state error disappears because now the additive
disturbance has been compensated.

Fig. 8 shows the results when a frequency step is applied at
t = 0.132s. The reference frequency is changed from 50 Hz to
250 Hz. However, the reference voltage magnitude is reduced
for this test as the dc-link voltage is not sufficient to supply
the load current at this frequency (due to higher voltage drop
in filter inductance). The upper plot shows the measured load
voltage and the lower plot gives the measured load current.
In Fig. 9 the dynamics of the load current observer are
tested when a step change in reference voltage of Fig. 4 is
applied. The plot compares the observed phase current with
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Fig. 6. Output voltage control without load current measurement or observer
showing steady state error – top: reference and measured d-axis voltage,
bottom: filter inductor phase currents.

Fig. 7. Output voltage control with load current observer – top: reference
and measured d-axis voltage, bottom: filter inductor phase currents.
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Fig. 8. Controller and observer dynamics with frequency step response – top:
measured phase voltages at the load, bottom: observed load current.

the measured one. The observer dynamics under a frequency
step change (of Fig. 8) are presented in Fig. 10 where again the
observed current is compared with the measured phase current.
The advantages of implementing the load current observer in
rotating dq reference frame are evident in this figure.

The operation under non-linear load condition is evaluated
in simulation with a diode bridge rectifier shown in Fig. 11.
The dc-side capacitance Cdc is 1880µF and the load is a
resistance of 100Ω. Fig. 12 shows the control response for

Fig. 9. Observer dynamics for load voltage magnitude step change –
comparison between measured and observed current of one load phase.
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Fig. 10. Observer dynamics for output frequency step – comparison between
measured and observed current of one load phase.
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a voltage step with the non-linear load of Fig. 11. It must
be noted that to verify the control dynamics, the dc-link
capacitance is pre-charged to avoid inrush currents following a
reference voltage step. Although an output frequency change is
not relevant with the load of Fig. 11, it is tested for the sake
of completeness. Fig. 13 shows the results for a frequency
step change from 50 Hz to 250 Hz. To verify the control
performance in a more challenging environment, a test is
performed in which the load of Fig. 11 and a three-phase
resistive load are connected in parallel. Fig. 14 shows the
control performance for a load voltage step and Fig. 15 gives
the results for frequency step.

Next, the dynamics of the observer designed in this paper
are compared with that proposed in the literature [5]. The
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Fig. 12. Voltage step response with non-linear load – top: output phase
voltages, bottom: load phase currents.
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Fig. 13. Frequency step response with non-linear load – top: output phase
voltages, bottom: load phase currents.
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Fig. 14. Voltage step response with a combination of linear and non-linear
loads – top: output phase voltages, bottom: load phase currents.

top plot in Fig. 16 demonstrates that the observer designed
in this paper shows practically no dependence on the output
frequency thanks to the decoupling terms containing ω in
(3). The bottom plot of Fig. 16 highlights the magnitude
attenuation and phase shift caused by frequency dependence
of the observer proposed in [5]. It should be noted that ω0
in (7) is the same in the two cases. In case of non-linear
loads, for instance the diode rectifier of Fig. 11, the designed
observer does not show superior performance to the one that
uses αβ-frame implementation. Fig. 17 shows the comparison
between the two observers when a three-phase diode rectifier,
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Fig. 15. Frequency step response with a combination of linear and non-linear
loads – top: output phase voltages, bottom: load phase currents.

0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11
-4

-2

0

2

4

i lo
a

d
 (

A
)

i
1-meas

i
1-obs

0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11
Time (s)

-5

0

5

i lo
a

d
 (

A
)

i
1-meas

i
1-obs

Fig. 16. Observed and measured load phase current comparison with
magnitude and frequency step condition (resistive load) – top: with proposed
observer, bottom: with the observer of [5].

Fig. 17. Observed and measured load phase current comparison with non-
linear resistive load of Fig. 11 – top: with proposed observer, bottom: with
the observer of [5].

with parallel RC load on its dc-side, is used. The reason for
the observer designed here not being as good as in case of
linear loads is that the rectifier currents in dq reference frame
are not constant, rather they vary at six times the fundamental
frequency (as shown in Fig 18) and the observer with gains
of (7) does not have sufficient bandwidth to follow these fast
varying currents. Nevertheless, the performance is comparable
to the observer presented in the literature (Fig. 17 lower plot).
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Fig. 18. Load currents in dq reference frame for the non-linear load of Fig. 11.

V. CONCLUSION

The paper presented a modulated model predictive control
for output voltage regulation of a voltage source inverter with
LC output filter. The adopted control optimizes the duty cycles
in linear regulation range and preserves the fast dynamics
of a finite control set MPC in over-modulation. The control
performance was enhanced by a load current observer that
was implemented in dq rotating reference frame instead of
αβ-frame as usually done in the literature. The observer
dynamics were shown to be independent of output frequency,
which is an important result for programmable ac power
supplies. Thanks to this feature of the designed observer, a step
change in output reference frequency can be followed with the
same dynamics as the load insertion step. The controller and
observer performance was validated both in simulation and in
experiments. Presented results showed good performance with
linear and non-linear loads as well as a combination of them.
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