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Abstract—with the increasing demand of low-cost, high-
efficiency, high performance for AC motor drive system, the 
permanent-magnet synchronous motor (PMSM) with binary 
Hall sensors begins to be adopted in many fields. Compared 
with sensorless control, the usage of binary Hall sensors is a 
guarantee for the drive to achieve moderate control 
performance, and it is in smaller volume and more cost-
effective compared with other types of position sensors. In this 
paper, a solution is provided to realize fully-closed loop control 
with low-resolution position sensors, by treating the position 
and speed estimators as separate systems. Results reveal that 
the model-based methods can take advantage of model 
information and model-free methods can smoothly process the 
quantized Hall position signal. Extensive experiment results 
are provided demonstrating the position control performance 
and basic servo performance for a PMSM drive using 3 bit-
per-pole-pair sensing system. 

Keywords—Observer, polynomial fitting, binary Hall sensors, 
servo application 

I. INTRODUCTION  

The surface-mounted permanent magnet synchronous 
motor (SMPMSM), with advantages such as reliable 
operation, high efficiency and small volume, has gradually 
become the main trend of AC servo field. AC servo motor 
drives based on field-oriented control (FOC) have been 
widely applied in position control systems, whose 
performance is principally dependent on the accuracy of 
rotor angle and speed information. Generally, cost and 
reliability are the primary concerns in many servo fields, 
such as machine tools, robot arms, electric vehicle and home 
appliance applications, where the servo motor is operated 
with huge impact or vibration forces or it is driven in high-
temperature and high-humidity environment conditions. 

In order to avoid encoder troubles and to improve the 
servo system reliability, various sensorless techniques, or 
position sensorless techniques in other words, have been 
developed as an alternative measure of shaft-mounted 
sensors over the last two decades or so. However, estimation 
and control of the absolute (mechanical) rotor position has 
been rarely considered and it is indispensably required 
particularly in motion and position controls for servo drive 

applications [1]. In addition, it is well known that most of the 
sensorless methods are still not mature to realize the aim of 
low cost while guarantee its performance within entire speed 
and torque range for some mission-critical drives[2-5]. 

At the same time, as a practical compromise, the sensor 
board fixed to the stator including inexpensive binary Hall 
sensors is often employed since it requires little cost and 
volume compared with shaft-mounted sensors and provides 
discrete absolute rotor position information. As reported in 
[6], two Hall sensors produce position information with 
electrically ±45° resolution are the worst resolution for 
detecting the rotating direction of the motor. Incidentally, it 
is not easy to conduct the servo control at such a low 
resolution. The layout with three Hall sensors can provide a 
±30° resolution and possess an inherent double redundancy 
to faults [7-8]. From these rough position measurements, 
moderate position control performance can be cost-
effectively achieved by estimating accurate speed and high 
resolution position through signal processing or error 
correction techniques [9-11]. 

In recent years, a lot of investigations on PMSM drives 
using binary Hall sensors have been done and many 
speed/position estimation approaches ranging from model-
free and model-based have been extensively studied [12-16]. 
Most of the model-based methods exploit observer, or 
Kalman filter (KF) techniques. These methods can take 
advantages of the information of plant models and feature 
high-accuracy estimation and good dynamic characteristic in 
speed estimation. However, it should notice that, the position 
error from the quantization always exists in the sampled 
position signals, and this error can be regarded as a kind of 
measurement noise. So in this noisy environment, bumps 
may exist in speed estimation. Furthermore, the rotor 
position is usually obtained by numerical integration method 
from the estimated speed. Hence, the estimated speed error 
can affect the position estimation directly, so it becomes an 
actual limitation factor of the overall system performance in 
cascaded-loop structure based servo motor drive. In addition, 
for practical application, the observer gains were tuned 
simply by considering the relation of pole locations in s- and 
z- planes. However, stability analysis for observer needs to 
be further and comprehensively studied in Hall sensor based 
drives where the sampling frequency of position changes 
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with respect to the motor velocity. Moreover, the Kalman 
filter based methods usually require the knowledge of noise 
variance and assume that the quantization error is Gaussian 
noise, which is hard to be satisfied in low resolution sensor 
system. On the other hand, model-free methods usually 
exploit signal processing techniques, such as filtering 
techniques, curve fitting methods, or numerical integration. 
These methods calculate the estimated position by 
reconstruct Hall position information without using motor 
parameter and the speed can be easily obtained by numerical 
differentiation methods from the calculated position 
information. Hence, the problem of time delay in estimated 
speed is unavoidable, the speed control loop may become 
slower and inefficient, and sometimes even unstable in speed 
dynamics. 

Finally, it is worth noticing that position/speed estimators 
can be treated as separated systems, since the model-based 
methods can take advantage of model information and 
model-free methods can smoothly process the quantized Hall 
position signal. This paper discusses a new method that 
combines them together, which consider both position 
control and speed servo control performances. In proposed 
algorithm, the position signal is reconstructed by a 
polynomial fitting approach based on a series of past position 
and time data, and the speed feedback is estimated by a 
multi-sampling rate observer. Besides, to reduce the 
algorithm computational load and improve the fitting 
accuracy, simple solutions are also considered in this paper. 

The outline of this paper is as follows. In Section II, the 
performance limitations of two conventional methods are 
analyzed from perspectives of time delay and estimation 
errors. In Section III, the proposed scheme is introduced in 
detail, followed by tuning and estimation performance 
analysis. The experimental results verify the effectiveness of 
the proposed scheme in Section IV. Section V concludes the 
whole paper. 

II. PERFORMANCE LIMITATION ANALYSIS OF  
CONVENTIONAL METHODS 

It is necessary that the resolution should be enhanced for 
achieving high-performance vector control for a sinusoidal, 
surface-mounted PM machine drive that uses low resolution 
position sensors. However, it is not easy to estimate the exact 
speed and rotor position in the low-cost mass products. Two 
conventional methods, i.e. average speed method and 
Luenberger observer method, are analysed in the following 
subparagraphs. The analysis shows that the two methods 
may introduce time delay and errors in the estimated position 
and speed, and this can influence both the dynamic and 
steady performances and also stability of PMSM servo 
system to some extent. 

A. Average speed method 

The average speed with three Hall sensors can be 
calculated by the time-based strategy as shown by following 
expression: 
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where Δt is the time interval of the previous Hall sector, θ(tk) 
is the quantized position measured from the Hall  
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Fig. 1. Actual rotational speed and calculated average rotational speed 
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Fig. 2. Bode diagram of average speed method with MA filter 

sensors, ωavg is the calculated electrical rotor speed. Then, 
the rotor position can be obtained by numerical integration: 

ˆ ( ) ( ) ( )h k s k avg k st n T t n t T                    (2) 

where ˆ ( )h k st n T    is the calculated rotor position in 

electrical angle at a sampling point n, Ts is the sampling 
frequency of current loop. 

Applying Laplace transform, (1) becomes 
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However, even the machine rotates at constant speed, 
due to the inaccuracy in the detected position, Δt may exit 
±Ts sampling error and the calculated speed by (1) has an 
error and the resultant interpolated position by (3) has the 
discontinuity wherever the Hall signal occurs, as shown in 
Fig. 1. The simplest solution is to low pass filter the 
estimated speed and to compute the average of the last N 
samples, giving rise to the medium average (MA) filter as 
follows: 
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Then, the transfer function between the estimated and 
actual velocity can be described as： 
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It’s magnitude and phase depend on the number of 
samples in the MA filter, N, and on the sampling of Hall 
signals, Δt, as follows: 
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Thus, the average speed method with MA filter acts as a 
low pass filter whose effects on the velocity (see Fig. 2), in 
terms of amplitude and phase distortion, increase as N 
increases and real speed decreases. 

Due to the delay of the estimated velocity in the low-
speed region, the speed control loop becomes slower and 
inefficient, and sometimes even unstable. 

B. Luenberger observer method 

In order to extract potentially “zero-lag” estimates of 
position and velocity, a number of methods have been 
proposed. Among these, the method utilizing a Luenberger 
observer illustrated in Fig. 3 has superior dynamic 
characteristics and high accuracy in estimation, such 
observer has intrinsic zero-lag tracking capability. 

Assuming the friction coefficient of the system is 0, thus 
the state equation of the observer can be expressed as 
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where, θh, Td, Te, and J represent quantized Hall position 
signal, load torque, electromagnetic torque, and rotational 
inertia, respectively. L is the observer gain. y represents the 
output variables, and its value is  ˆ ˆ ˆ1 0 0y Cx x  . 

The transfer function for the speed, ̂ , can be deduced 
as follows: 
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In (8), the quantized Hall position and the torque 
reference can be described as 
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Fig. 3. Block diagram of Luenberger position observer 
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From (9), the transfer function for rotor speed can be 
deduced as 
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The error of estimation ω can be expressed as 
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where, ˆJ J J   . 

From (11), it can be seen that the estimated rotor speed 
error is affected by both Δt and ΔJ.  In servo systems, 
however, the moment of inertia varies slightly in a specific 
application, and it can be estimated by off-line method, so it 
can be assumed known. For outputting speed estimation at 
every control period Ts, observer input θh varies in step 
manner, it can be regarded as a piecewise constant signal 
during every Hall interval Δt. And Δt is much bigger than Ts 
during zero to low speed range. Therefore, Δt must be 
considered, and this is the reason for the existence of bumps. 
Experimental results of bumps in the speed estimation 
related to Δt will be illustrated in the following Section. 

III. PROPOSED SCHEME 

To enhance the performance of the rotor position 
estimation, an improved optimal curve fitting approach based 
on least square method is developed. Also, a real-time 
reconstruction strategy is adopted to determine the degree of 
the polynomials automatically at different motion conditions, 
and a gradual adjustment method is proposed as the updating 
strategy to eliminate the angle step if a new polynomial is 
determined based on the last approximate value. 

A. Curve fitting based position estimator 

From the Hall sensors data, an appropriate polynomial 
approximation to the position/time data relationship can be 
deduced, and this approximation is then used to generate a 
continuous estimation of rotor position. 

There are six states of Hall signals in one electrical 
period, so a polynomial for fitting seven discrete 
time/position data ({(tk-6+i, θh(k-6+i)}i=0,1,2,ꞏꞏꞏ,6) is 
considered[17]. The n-degree polynomial can be regarded as 
an approximation signal of the actual angular output in the 
time-limited interval [tk-6, tk], such that n < 7. The 
polynomial of degree n can be written as 
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Fig. 4. Real-time reconstruction strategy: a) moving window update 
manner b) the length setting of the fitting window 
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In positioning system, as well as some household 
applications, the velocity loop is controlled in trapezoid or 
step manner. Also, the variation of load torque can be 
ignored when the load torque varies much more slowly 
compared to the variation of other state variables and the 
coefficient friction can be neglected in most speed regions. 
Here, when the motor and load torques are equal, the rotor 
acceleration is zero and the drive runs at constant speed. 
However, if the motor and load torque are unequal, the drive 
accelerates or decelerates. Therefore, by considering the 
aforementioned assumption, the degree of the fitting curve 
is restricted to cube (n ≤ 3) in this work as a compromise 
between accuracy and efficiency.  

At time instant tk, θh(k) is sampled from Hall sensors, 
and the new polynomial coefficients in (12) can be obtained 
by adopting the least square fitting approach. Therefore, the 
fitting problem can be formulated by:   
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with variables a = [a0 a1 ꞏꞏꞏ an]T. 

The problem of (13) can be expressed by: 
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The polynomial function is evaluated continuously to 
give an extrapolated position estimation over the time 
interval  
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Fig. 5. Timing chart of the output from Hall sensors 

beginning at tk and ending when the next Hall signal arrives, 
say, from tk to tk+1. For forward motion of the rotor, the next 
Hall signal is usually produced at the position (θh(k)+60°).  

To realize a smooth and steady performance at low 
speed region and at the start-up process, the length (N) of 
the fitting window should be speed varied. This is due to the 
fact that in practice the total torque may varies nonlinearity 
during a long time interval at low speed region. Fig.4 shows 
the real-time reconstruction strategy. As shown above, θp(t) 
is determined from the data θ, where N is varied based on 
the time interval of last Hall sector. By considering 
variations of the fitting window’s length and the motion 
character in low speed region, fitting problem can be 
reformulated by: 

2

2 1
minimize : 

a
Ta - a                (16) 

where η is the weight factor, the following ℓ1-norm 
regularization method is exploited to reduce the number of 
nonzero coefficients.   

B. Multi-sampling-rate observer based velocity 
estimator 

In real time implementation, the timing chart of the 
output of Hall sensors is shown in Fig. 5. The variables Ts, 
T1, and Tw denote the control periods, the interval between 
two consecutive pulses read by the DSP and the actual 
interval between two consecutive Hall pulses. The sampling 
instant [k, m] is defined by 

1
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where k and m denote the index number of the Hall signal, 
and the sampling instant the counting of which starts when a 
signal edge is detected and reset when the next pulse is 
detected, respectively. The value of n is between 0 and N, 
where N denotes last sampling instant. The relationship 
between the sampling indices k and m can be concluded as 

[ , ] [ 1,0]k N k                                (18) 

During whole speed region, DSP may not read a new 
position signal in each sampling, and T1 > Ts. When DSP 
does not read a new Hall pulse, the old position read by DSP 
in this sampling has an error compared with the actual 
position, which means that the position read by DSP is 
unreliable. Then, the measurement value should be ignored. 
Since accurate position is available only at the moment of 
Hall pulse input, it is nature to transform (7) in discrete form 
with sampling period T1 as 
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Fig. 6. a) block diagram of reduced-order multi-sampling rate observer  b) execution sequence chart of proposed observer 

112

21 22 2

11 1
111 1

1 1 1
2 2

( 1) ( )

( 1) ( )

k k

k k

     
               

BA Ax x
u

x xA A B
         (19a) 

11 12

21 22

1

2
1 1 1 1

1
1 1 1

2
1 1

1
11

2

1 2

0 1

0 0 1

2

0

T T J

T J

T J

T J

              
 

       
     

A A
A =

A A

B
B

B

     (19b) 

Where x = [θ ω TL]T is the state variant; u = [Te] is the 
motor torque signal. The observability matrix O(C, A) is 
full rank (det(O)=T1

3/J), so that it is possible to construct a 
full state variable estimator, given by 

1 1 1ˆ ˆ ˆ[ 1] [ ] [ ] ( [ ] [ ])k k k k k    x A x B u L y y    (20) 

where y[k] denotes the real position from the Hall sensors, 
ˆ ˆ[ ] [ ]k ky Cx  denotes the estimated position from the 

observer,  [10 0]C =   and L1 is a proper observer gain vector. 

A discrete observer must use a sufficiently long 
sampling period to match the availability of Hall sensors 
information, which will lead a poor speed control 
performance. To address this long sampling problem, it is 
desirable to estimate velocity information at every sample 
period Ts for the satisfaction of control requirement. As a 
result, the multi-sampling-rate observer is adopted to predict 
and correct the errors at every Ts sampling instant. In other 

words, the angular position read by DSP is used to correct 
the estimation errors at each T1 instant, and system model is 
used as a predictor for state variables, i.e. fig.6. b), as shown 
in (21) 
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(21) 
where As, Bs, Cs and Ls= [l1 l2 l3]T denote the matrices in 
discrete-time domain sampled by Ts.  

A full order observer reconstructs all the state variables. 
However, in practice, the angular position is accurately 
measured and need not to be estimated at each T1 instant 
when error correction works. Therefore, in the case of 
detecting angular velocity, a reduced-order observer is 
suitable. From (19), a reduced-order estimator becomes 

22 22 2ˆ ˆ[ 1] [ ] [ ]s sm m m  x A x B u             (22) 

With proper feedback components and gain vector Ks, 
observer can be designed as follows: 

22 2 12 122 2 2 2ˆ ˆ ˆ[ 1] [ ] [ ] ( [ ] [ ])s s s s sm m m m m    x A x B u K A x A x  

(23) 

For error correction only works at time instant m = 0, the 
actual state variables x2 are unknown, so replace A12x2[0] by 
accessible term x1[0] from equation (19a), so defining 
position error 1 1 1ˆ[0] [0] [0] x = x x ,  (19a) can be written as 

12 2 1 1 1[0] [1] [0] [0]  A x x x B u              (24) 



12 2 1 1 1 1ˆ ˆ ˆ[0] [1] ( [0] [0] [0])    A x x x x B u      (25) 

Finally, with (24) and (25), (23) can be performed as  

2 22 2 2 1 1ˆ ˆ ˆ[1] [0] [0] ( [1] [1])   x A x B u L x x    (26) 

According to equation form (23) to (26), we can 
conclude the proposed speed observer as expressed in 
equation (27), and the block diagram of the observer is 
shown in Fig.6. a). 

The frequency of the Hall signal transitions between the 
six quantized states is speed-dependent, so T1 is variable. As 
a result, the observer gain should be determined by a 
tradeoff between estimation performance and estimation 
noise response. On one hand, the bandwidth of the observer 
should not be too high, causing the estimated velocity to 
track the quantized nature of the input and be erroneous. On 
the other hand, relatively high bandwidth is usually desired 
in order to obtain good dynamic estimation of disturbances. 
Thus, to maximize performance while limiting errors, pole 
assignment can be achieved by a consideration of the error 
dynamics of the observer. 

Rearranging (27)  based on the sampling instant m = N-1, 
the state variable can be expressed as 
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The state vector of plant can be written with the same 
form in discrete time domain as  
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Subtracting (29) from (28), the error of estimation e of a 
sampling frame T1 can be expressed as  
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Consequently, the observer gains are obtained by placing 
the poles in the unit circle and solving the equation 
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s N s s s
i

i
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Where zi and q denotes the i th pole on z-plane and 
number of poles, respectively. 

IV. EXPERIMENT RESULTS 

The experiment platform is composed of a 750W motor, 
whose parameters are given in Table I, IGBT full bridge 
inverter and 32 bit floating point DSP TMS320F28335. The 
inverter is powered by single phase 220v, and the switching 
frequency is 10 KHz. In order to verify the accuracy of 
estimation result, the low cost hall position sensor and an 
encoder with 10000 pulses per revolution. As shown in Fig.7 

TABLE I.  SPECIFICATION OF SPM 

Quantity Value[Unit] 

Pole 8 

Rate torque 2.39[N m] 

Base speed 3000[r/min] 

Rated current 3[A] 

Voltage constant 48[V/1000r/min] 

Stator resistance 2.88[Ω] 

Stator inductance 6.4[mH] 

Rotational inertia 0.001638[Kg.m2] 

the Hall signals distribute averagely during one electrical 
period in the target machine. 

A. Position estimator performance 

The position estimation performance by average speed 
method and proposed curve fitting based method are 
demonstrated in Fig.8 (a) and (b), respectively. Severe phase 
current distortion can be observed in Fig.8 (a), which is 
caused by inaccurate position estimation. In average speed 
method, the real position information is updated at the edges 
of hall signals. At this point the estimated position largely 
mismatches with the real one, leading to the undesired 
current distortion. While by adopting proposed curve fitting 
method, the position estimation accuracy is greatly improved 
since more data is used in the estimation process as well as 
increase the polynomial order. This is the reason why much 
better performance is obtained in Fig.8 (b). 

The real position, estimated position using proposed 
curve fitting method, and position error in the speed reversal 
process are demonstrated in Fig.9. It gives that in steady state, 
the position estimation error is very small within the range of 
only 0.066rad (around 3.8 degree). Even if in the transient 
state, the position error is also acceptable, with the largest 
error is only 0.182 rad (around 10.4 degree). This result 
further confirms the effectiveness and accuracy of proposed 
curve fitting based method. 

B. Speed estimator performance 

The speed estimation performances by Luenberger 
observer (LOB) and proposed multi-sampling-rate observer 
(MSROB) are demonstrated in Fig.10. The red waveforms 
represent the estimated speed coming from LOB, while the 
blue curves represent the estimated speed of MSROB. The 
estimated speed of LOB has obvious oscillation, which is 
caused by the discontinuity of LOB input. In addition, it is 
worth to note that the speed difference between maximum 
and minimum value of LOB decrease from 30.864 rpm to 6.4 
rpm as the speed incresae from 300rpm to 3000rpm. This can 
be explained that  as the increase of speed, the sampling rate 
of Hall sensor will incresae as well.  

 
12

12

1

1
1 2 1

22 2 2 1 1 2 1

2

22 2 2

[ 1], 0
ˆ [ 1]

ˆ [ ] [ ] [ ], 1,2,..., 1

ˆ ˆ[ ] [ ] [ 1] ( [ ] [ ] [ ])}, 0
ˆ [ 1]

1,2,..., 1ˆ [ ] [ ],

s s

s s s s s

s s

m m
m

m m m m N

m m m m m m m
m

m Nm m

       
           

x
x

x A x B u

A x B u K {x x A x B u
x

A x B u

         (27) 



Ha
Hb

Hc

One electrical period

 
Fig. 7. The discrete output of 3 binary Hall sensors 
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Fig. 8. Phase current waveform and rotor position at constant speed: a) 
with average speed method. b) with the proposed method. 

 

However, by adopting the proposed MSROB, the 
influence of discontinuous effect of input will be weakened 
due to the multi-sampling character of proposed 
observerexplains why the estimated speed of MSROB is 
much smoother compared with that of LOB. 

C. Servo operation 

To verify the feasibility of proposed idea in the servo 
application, the position control experiment is carried out as 
shown in Fig.11. The position reference is given in a step 
manner. The actual position which is obtained from a 10000 
pluses/rev encoder, the estimated position from proposed 
method, and the q-axis currents are exhibited. The results 
confirm that with the proposed idea, the low resolution Hall 
sensor can be successfully used in servo application. 
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Fig.9. Position estimation performance at speed reversal process with 

proposed method 
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Fig.10. The discrete output of 3 binary Hall sensors 

 
Fig. 11. Position loop control performance with proposed approach 

V. CONCLUTION 

In this paper, the drawbacks of conventional model-free 
and model-based position/speed estimation methods in 
practical applications are analyzed. Based on this, a new 
method that combines them together is proposed, where 
model-free method is for position estimation and model-
based method is for speed estimation. Besides, some 
compensation ideas are carried out to confirm a favorable 
close loop control effect within a wide speed range, which 
can satisfy the needs for majority low cost servo, electric 
vehicle and household appliance. The feasibility of the 
proposed method is verified by experimental verifications. 
Experimental results show that compared with the 
conventional methods, the proposed idea is able to smoothly 
manage the speed and position estimation. In addition, the 
closed-loop servo operation performance is also desirable. 



Experimental results highlight this promising method in the 
low cost servo applications.  
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