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Abstract—While power networks evolve towards the new 

concept of smart grids, with the proliferation of power electronics 

embedded systems and distributed generation, the insurgence of 

system unbalance and voltage harmonic distortion, become more 

and more frequent. Also, often a noisy voltage sampling system 

can produce offsets in measurements. Such imperfections bring 

challenges to the phase identification using a traditional phase-

lock loop (PLL), utilized in the control of all grid connected 

converters.  However, since the imperfections lead to periodic 

harmonics in the corresponding dq-axis voltages, the repetitive 

controller (RC) can be useful for harmonic suppression.  This 

paper presents a three- phase PLL using a feed-back RC. 

Specially, a novel running mean filter has been added to minimize 

the interaction between RC and the Proportional-Integral (PI) 

controller in the PLL. Simulation results show that the proposed 

PLL can track the phase of the three-phase voltage without being 

influenced by harmonic distortion.  

Keywords— repetitive control, phase-lock loops, power system 

harmonics, fault tolerant control, three-phase electric power 

I. INTRODUCTION  

More and more power electronics are involved the power 
networks with development of smart grids including distributed 
generation. Harmonics introduced by the power converters, 
short circuits, the unbalanced load among the three phases, as 
well as the measurement offset and noise may result in variety 
of harmonics in the dq-axis voltage, and bring challenges for the 
phase identification using a traditional phase-lock loop (PLL).  

Many PLL solutions have been proposed in literature in the 
past decades. For example, four different structures of three-
phase PLLs are found and compared in [1], while two three-
phase PLL systems are compared in [2]. In this paper, the 

simplest PLL configuration, as shown in Fig.1, is considered as 
a basis of the proposed implementation. 

Considering a reference frame in which the d-axis aligns 
with the a-axis of the three-phase when the phase angle is zero, 
and assuming phase a voltage is at its maximum value when the 
phase angle is zero, if the tracked phase θ (as drawn in Fig.1) 
equals the phase angle, Uq should equal zero. Since the 
proportional integral (PI) controller forces the q-axis voltage Uq 
to be zero in the steady state, eventually, the phase θ equals to 
the phase angle between the d-axis and the a-axis. 

However, the q-axis voltage Uq may contain harmonics, 
therefore will not be zero even when phase angle θ is correct. In 
another words, Uq=0 cannot be used as a sign for indicating the 
correctness of phase tracking. For example, harmonics can be 
generated in Uq from the following three sources, and these 
harmonics bring periodic errors in the tracked phase θ of the 
PLL: 

1) if 5th, 7th harmonics are present in U*
abc, 6th harmonics will 

be present in Udq (as well as multiple of the 6th harmonic in the 
presence of higher order harmonics in the system);  

2) if there is a ground fault on one of the three phases, 2nd 
harmonics will be present in Udq;  

 

Fig. 1 Block diagram of a basic phase-lock loop.    



3) if the voltage amplitudes of any two phases are wrongly 
measured or in the presence of voltage sags, 2nd harmonics will 
be produced in Udq. 

Therefore, it is necessary to enhance the robustness of PLL 
against harmonics or faults with other advanced algorithms [3-
6]. Discrete Fourier Transform algorithms are used for 
identifying the fundamental frequency in [3, 4]. A complex 
Hilbert filter, is proposed for the PLL in [5]. 

Alternatively, the PLL in Fig.1 will be able to operate 
correctly if the PI controller is “blind” for the harmonics and 
only works to bring the d.c. part of Uq to zero. This harmonic 
rejection feature can be achieved using a repetitive controller 
(RC).  

RC is originally proposed in 1981 for motor control 
application in order to track periodic reference [7-10]. RC is a 
perfect tool for periodic signals tracking or periodic harmonics 
rejection. As shown in Fig.2, it memorizes the periodic error 
with a delay chain z-N, where N is the closest integer of the ratio 
between the sampling frequency fs and the frequency of the 
target periodic error. The periodic error is amplified by the gain 
Grc. The robustness filter Qf(z) is generally a low-pass filter with 
the function of attenuating the amplitude of the controller gains 
at high frequency harmonics. In this paper, it is chosen to be a 
gain in the range of zero to one (called forgetting factor Qrc) 
providing an equal attenuation at all frequencies. The stability 
filter Gf(z) is commonly required for removing the phase shift 
between the compensation action and the target error. Gf(z) 
needs to be carefully designed to ensure not only the stability, 
but also higher performance.   

Authors in [6] have proposed a feed-forward multi-band-
pass filter based PLL configuration. The pass bands of the filter 
are some selected even harmonics. Although, this multi-band-
pass filter is also named RC, it is totally different from the 
conventional RC as in Fig.2.   

The feed-back conventional RC based structure in Fig.3 is 
instead adopted for this paper. The working principle of the 
proposed PLL will be discussed in the next section.  

Overall, the aim of this paper is to propose a novel PLL 
which can track the correct fundamental frequency and phase 
even under extreme conditions such as odd harmonic distortion, 
single phase to ground fault, two-phase voltage sags, frequency 

variation and phase jumps. Two main points are considered in 
the development of the intended PLL: 

 To enhance the robustness of the PLL in Fig.1 
against harmonics in Uq, a feed-back RC as in Fig.3 is 
proposed to cancel the ripple component in Uq. 

 To ensure that the RC only cancels the ripple 
in Uq, the stability filter Gf(z) of the proposed RC is 
chosen to be a running mean filter Grmf(z) to filter out 
the d.c. value.  

The performance of the proposed PLL is confirmed in the 
simulation tests. 

II. THE PROPOSED PLL WITH FEED-BACK RC 

The diagram of the proposed PLL is shown in Fig.3. 
Theoretically, at steady state, the input of PI controller and 
repetitive controller (RC) will be zero, whereas the ripple 
components contained in Uq are stored in RC through the 
learning process, and are cancelled by the output Uq

com of RC. 
ω0 is the initial value for the output of PI ω.  

The equation of the RC in Fig.3 can be expressed as in (1). 

RC=
Uq

 com

Uq
 err =

GrcGf(z)z-N

1-Qrcz-N
                                (1) 

Where, Uq
err is the input of RC, Uq

com is the output of RC. 
Again, Qrc is the forgetting factor of RC (Qrc∈[0,1]), Grc is the 
gain of RC, Gf(z) is the robustness filter. N is the closest integer 
of the ratio between the sampling frequency fs and the 
fundamental frequency fd of the three-phase voltages. 

The PI controller is expressed as in (2). Where, kp is the 
proportional gain of PI, and ki is the integral gain. Ts is the 
sampling period, and Ts=1/fs. 

PI=kp+ki∙
Ts

z-1
                                    (2) 

As may have been noticed, the parameters free for tuning are 
the Grc, Qrc of RC, and kp, ki of PI. These parameters can be 
chosen according to the system stability. Before the stability of 
the system can be analyzed, it is worth now deriving the 
equivalent diagram for the proposed PLL with feed-back RC as 
in Fig.3.   

A. Equivalent Diagram and Working Principle of the 

Proposed PLL with Feed-back RC 

The αβ-axis voltages Uαβ
*can be expressed as in (3). Where, 

A denotes the peak value of the three-phase voltages. Phase θ* 
denotes the actual phase of the three-phase system. 

{
Uα

*=Acosθ
*

Uβ
*=Asinθ

*                                   (3) 

Hence, the real dq-axis voltages Udq
* after the αβ to dq 

transformation are defined in (4). 

[
Ud

*

Uq
*]= [

cos(θ
*
) sin(θ

*
)

-sin(θ
*
) cos(θ

*
)
] [

Uα
*

Uβ
*]                  (4) 

 

Fig. 2 Block diagrams of a repetitive controller. 

 

 

Fig. 3 Block diagrams of the proposed PLL with feed-back RC. 



Substituting (3) into (4), we can know that, ideally, Ud
*=A 

and Uq
*=0. Assuming the tracked phase θ in the PLL has a small 

error δθ when compared with the actual phase θ*, i.e. θ=θ*+δθ. 
The “feedback” dq-axis voltages Udq

 are defined as in (5).   

[
Ud

Uq
]= [

cosθ sinθ

-sinθ cosθ
] [

Uα
*

Uβ
*]                     (5) 

The relationship between Udq
* and Udq

 can be derived from 
(4) and (5). As shown in (6), the magnitude of Uq depends on A 
and δθ.  

[
Ud

Uq
]= [

cos(δθ) sin(δθ)

-sin(δθ) cos(δθ)
] [

Ud
*

Uq
*] = [

cos(δθ) sin(δθ)

-sin(δθ) cos(δθ)
] [

A

0
] 

                (6)  

Since δθ is assumed to be small, sin(δθ)≈δθ is hold. 
Therefore, q-axis voltage Uq=-Asin(δθ)≈-A∙ δθ. Based on this 
conclusion, the equivalent circuit (in discrete form) of Fig.3 can 
be drawn as in Fig.4. 

Again, the Uq
* in Fig.4 is defined as in (4). It is the q-axis 

voltage when the phase used for the αβ to dq transformation is 
correct. As discussed after (4), Uq

*=0 is hold when the αβ-axis 
voltages are as ideal as in (3), i.e. when the three-phase voltages 
are perfectly balanced and pure sinusoidal. However, if the 
three-phase system is not balanced or contains ripple, Uq

* will 
contain ripple as well.  

As illustrated in Fig.4, the working principle of the 
proposed PLL with feed-back RC is to use the RC to track the 
a.c. part (i.e. ripple part) of Uq

*, whereas, the PI controller is 
used to track the d.c. part (equals zero) of Uq

*. Ideally, at steady 
state, Uq

com cancels all the ripple in Uq
*, so that the input of PI 

equals zero, and indicates δθ=0, i.e. the correctly tracking of 
the phase.  

B. Tuning of the Proposed PLL with Feed-back RC 

Following the system diagram in Fig.4, the closed loop 
transfer function Gclosed(z) can be derived as in (7), where 
Gp(z)=ATs/(z-1). 

Gclosed(z)=

1
1+RC

∙PI∙Gp(z)

1+
1

1+RC
∙PI∙Gp(z)

 

=(1-Q
rc

z-N)∙
PI∙Gp(z)

1+PI∙Gp(z)
∙

1

1-[Qrcz-N-
GrcGf(𝑧)z

-N

1+PI∙Gp(z)
]

            (7) 

According to (7), the proposed PLL-RC system can be 
divided into three parts as shown in Fig.5. The stability can be 
ensured if each part of the three is designed to be stable [11, 
12]. 

In fact, the part 2 in Fig.5 is the closed loop system without 
the RC. Therefore, the first step of tuning the proposed PLL is 
to tune the PI controller without considering the RC.  

The relationship between the proportional gain Kp, integral 
gain Ki of PI and the natural frequency ωn, damping ζ is given 
by (8), which can be derived from the equivalent circuit in Fig. 
4 and Fig.5.  

kp=
2ζωn

A
, ki=

ωn
2

A
                              (8) 

The part 1 in Fig.5 is actually the denominator of the RC 
equation in (1). By substitution z with ejωTs, the term 1-Qrcz-N can 
be expressed as 1-Qrce-jNωTs. Again, N=fs/fd=1/(Tsfd), Ts is the 
sampling period. Therefore, the boundary of (1-Qrce-jNωTs) can be 
calculated. Its minimum value (1-Qrc) is achieved when 
NωTs=2πk, k=0, 1, 2…, i.e. ω=2πkfd. Since the design intention 
is to reject all periodic harmonics at the fundamental frequency 
and its multiple frequencies, Qrc is chosen to be one for the 
maximum attenuation, and consequently, the system response 
will be zero for inputs at the fundamental frequency and its 
multiple frequencies.  

From the discussions above for the part 2 and part 1, we can 
know that the input and output of the part 3 is bounded. For 
bounded system, the small gain theorem [13] can be applied to 
ensure the stability. The part 3 will be stable if (9) is hold (when 
Qrc=1). 

|S(ejωTs)|= |1-
GrcGf( e

jωTs)

1+PI(e jωTs)∙Gp(e jωTs)
| ∙|e-jNωTs|<1       (9) 

Where, ω∈[0, π/Ts], π/Ts is the Nyquist frequency in rad/s. 
Eq. (9) can be used as the stability criterion for choosing the gain 

Grc and robustness filter Qf(z) of RC. Since |e-jNωTs| is within 
zero to one. Equation (9) can be simplified into (10). 

|1-
GrcGf( e

jωTs)

1+PI(e jωTs)∙Gp(e jωTs)
|<1 

0<|
GrcGf( e

jωTs)

1+PI(e jωTs)∙Gp(e jωTs)
| <2                         (10) 

In this paper, the natural frequency ωn and damping ζ are 
chosen to be 62.83rad/s (i.e.10Hz) and 0.791 respectively for the 
condition when the fundamental frequency fd of the three-phase 
voltages is 50Hz. Calculating from (8), kp=1 and ki=40. 
Similarly, when fd=400Hz, choose ωn=314rad/s (i.e.50Hz), 
ζ=0.791, such that kp=5, ki=1000. The peak value of the 
fundamental component in the three-phase system A is 100V. 
Substituting A, kp, ki into PI(ejωTs)Gp(ejωTs), we can find that 

 

Fig. 4 Equivalent diagram of the proposed PLL with feed-back RC. 

 

 
Fig. 5 Updated equivalent diagram of the proposed PLL with feed-back 

RC 



PI(ejωTs)Gp(ejωTs) is always above zero. Consequently, it can be 
derived from (10) that the system will be sufficiently stable if 
(11) is hold.  

0<|GrcGf( e 
jωTs)|<2[1+PI(e jωTs)∙Gp(e jωTs)]        (11) 

Another point need to be considered is that Qrc, Grc and Gf(z) 
not only affect the stability of the system, but also the 
performance. As aforementioned, the maximum attenuation of 
periodic harmonics can be achieved when Qrc=1. The gain Grc 
mainly affects the converge speed of the RC[14]. The robustness 
filter Gf(z) is designed to be a running mean filter as below. 

C. Running Mean Filter 

As described in the working principle in section II-A, it is 
desired that RC would only react to the a.c. part of Uq

*. 
However, steady state error in the tracked phase θ may occur in 
the following scenario. 

For example, when the fundamental frequency fd of the 
three-phase voltages varies, a d.c. offset will be present in Uq 
due to the sudden mismatch between the tracked frequency and 
2πfd. Consequently, the sudden voltage error in Uq

err will be 
recorded in the delay chain of RC, and therefore, be cancelled or 
partly cancelled by Uq

com. Meanwhile, PI will also react on this 
voltage error until the offset is reduced to zero. Eventually, due 
to the present of a d.c. component in Uq

com, Uq will not be zero 
at steady state, and the remaining offset in Uq is responsible for 
the steady state error in the tracked phase θ.  

To remove the d.c. component in Uq
com, the robustness filter 

Gf(z) is chosen to be the running filter Grmf(z) as expressed in 
(12), where, z-NGrmf(z) can be understood as the z-N minus a 
moving average filter, of which the window size is N. 

z-NGrmf(z)=z-N-
1

N
(z-(N-1)+⋯+z-2+z-1+1) 

Grmf(z)=1-
1

N
(z+⋯+zN-2+zN-1+zN)               (12)  

Fig.6 shows the magnitude response of GrcGf(z) when 
Gf(z)=Grmf(z), and Grc=1. As shown, the design satisfies the 
stability condition given by (11). 

The problem of having steady state error in the tracked 
phase and the effectiveness of the running mean filter will be 
simulated in section III-E. The performance when Gf(z)=1 and 
when Gf(z)=Grmf(z) are compared. 

III. SIMULATION RESULTS 

Simulation tests are carried out to verify the proposed PLL 
system performance under five non-ideal conditions as follows, 
including both grids at 50Hz and 400Hz. The control parameters 
for the tests are defined in Table I. The natural frequency of the 
PI is chosen to be smaller than fd. 

A. Condition 1: Odd Harmonics in U*
abc and with 

Fundamental Frequency (50Hz) Variation 

In this test, 10% 5th and 5% 7th harmonics are included in the 
three-phase voltages U*

abc as given in (13). The total harmonic 
distortion (THD) is 11.18%. 

{
 

 Ua
∗=100cos(θ

*
)+10cos(5θ

*
)+5cos(7θ

*
)

Ub
∗=100cos(θ

*
-

2π

3
)+10cos(5θ

*
-

10π

3
)+5cos(7θ

*
-

14π

3
)

Uc
∗=100cos(θ

*
+

2π

3
)+10cos(5θ

*
+

10π

3
)+5cos(7θ

*
+

14π

3
)

    

(13) 

Where, dθ*/dt=2πfd , again, fd is the fundamental frequency 
of the three-phase voltages U*

abc, and  fd varies from 49.5Hz to 
50.5Hz during the test. The initial angular frequency ω0 shown 
in Fig.3 and Fig.4 is set to be 100π rad/s for the 50 Hz system.  

Fig.7a shows the real dq-axis voltages (i.e. Udq
*) as defined 

in (4). Fig.7b and Fig.7c show respectively the tracked 
frequency and phase calculated by the PLL with/without the 
proposed RC (includes the running mean filter).  

The waveforms in Fig.7 confirms the following points: 

 The 5th and 7th harmonics in the three-phase system 
leads to 6th harmonics in its dq-axis voltages. However, 
the d.c. part of the real q-axis voltage Uq

* is still zero. 
This motivates the use of RC to cancel the a.c. 
component in Uq

*.  

 The performance is the best when fd=50 Hz, and perfect 
frequency tracking and zero phase tracking error are 
achieved. The performance degrades slightly to ±0.17º 
phase tracking error, as shown in Fig.6c, when fd varies 
from 49.5 Hz to 50.5 Hz. This is due to the mismatch 
between the actual period of the three phases and the 
corresponding fixed value N used in the delay chain. 

 The RC is activated at 0s, and starts to take effect after 
the first period (i.e. 0.02s) 

 
(a) When fd=50Hz and N=400 

 
(b) When fd=400Hz and N=50 

Fig. 6 Magnitude response of the GrcGf(z) if Grc=1, Gf(z= Grmf(z). 



B. Condition 2: Phase c to Ground Fault and with 

Fundamental Frequency (50Hz) Variation 

In this test, the three-phase voltages as in (14) are considered, 
where, the phase c is missing. dθ*/dt=2πfd, fd varies from 49.5Hz 
to 50.5Hz during the test. The initial angular frequency ω0 
shown in Fig.3 and Fig.4 is set to be 100π rad/s.  

{

Ua
*=100cos(θ

*
)

Ub
*=100cos(θ

*
-

2π

3
)

Uc
*=0

                         (14) 

Fig.8a shows the real dq-axis voltages (i.e. Udq
*) as defined 

in (4). Fig.8b and Fig.8c show respectively the tracked 
frequency and phase calculated by the PLL with/without the 
proposed RC (includes the running mean filter).  

It can be seen from Fig.8: 

 Single phase to ground fault in the three-phase system 
leads to 2nd harmonics in its dq-axis voltages. 

 The performance is the best when fd=50 Hz, and perfect 
frequency tracing and zero phase tracing error are 
achieved. The performance degrades to ±0.4º phase 
tracing error as shown in Fig.7c when fd varies from 
49.5 Hz to 50.5 Hz. 

C. Condition 3: Wrong Voltage Amplitude in Ua 
*, Ub

* and 

with Fundamental Frequency (50Hz) Variation 

In this test, the three-phase voltages as in (15) are considered, 

where, the amplitudes of phase a and phase b are half. 

dθ*/dt=2πfd, fd varies from 49.5Hz to 50.5Hz during the test. The 

initial angular frequency ω0 shown in Fig.3 and Fig.4 is set to 

be 100π rad/s.  

{
 

 Ua
*=50cos(θ

*
)

Ub
*=50cos(θ

*
-

2π

3
)

Uc
*=100cos(θ

*
+

2π

3
)

                           (15) 

 
Fig.9a shows the real dq-axis voltages (i.e. Udq

*) as defined 
in (4). Fig.9b and Fig.9c show respectively the tracked 
frequency and phase calculated by the PLL with/without the 
proposed RC (includes the running mean filter). 

Similar to the results in section III-B, the proposed PLL-RC 
system works better than the original PLL for both frequency 
and phase tracking when the amplitudes of U*

a and U*
b are half 

of the amplitude of U*
c. 

D. Condition 4: Odd Harmonics in U*
abc and with 

Fundamental Frequency (400Hz) Variation 

In this test, the same three-phase voltages as in (13) are 
considered. However, fd varies from 399 Hz to 401 Hz during 
the test. The initial angular frequency ω0 shown in Fig.3 and 
Fig.4 is set to be 800π rad/s for the 400 Hz system.  

Fig.10a shows the real dq-axis voltages (i.e. Udq
*) as defined 

in (4). Fig.10b and Fig.10c show respectively the tracked 
frequency and phase calculated by the PLL with/without the 
proposed RC (includes the running mean filter). 

Similar to the results in section III-A, the RC starts to take 
effect after one cycle (1/400=0.0025s). The proposed PLL and 
RC works significantly better than the original PLL for both 

 
(a) Voltages 

 
(b) Tracked frequency  

 
(c) Tracked phase error in degree 

Fig. 7 Performance of PLL with/without the proposed RC when U*
abc have 

5th, 7th harmonics and during fundamental frequency variation (fd=49.5~50.5 

Hz). 

 
(a) Voltages 

 
(b) Tracked frequency  

 
(c) Tracked phase error in degree 

Fig. 8 Performance of PLL with/without RC under phase c to ground fault 

and during fundamental frequency variation (fd=49.5~50.5Hz). 

 



frequency and phase tracing for a 400Hz distorted three-phase 
system.  

E. Condition 5: Phase Jump and Fundamental Frequency 

(50Hz) Variation 

In this test, the same three-phase voltages as in (13) are 
considered. fd also varies from 49.5 Hz to 50.5 Hz during the test 
as in section III-A. Additionally, a 50º phase jump in the three-
phase voltages are applied at 0.6s. The initial angular frequency 
ω0 shown in Fig.3 and Fig.4 is set to be 100π rad/s. The 
performance of the proposed RC (i.e. Gf(z)=Grmf(z)) is compared 
with the RC when Gf(z)=1. 

Fig.11a shows that comparable frequency tracking 
performance is achieved when with and without the running 
mean filter Grmf(z).  

The advantage of using Grmf(z) can be seen from Fig.11b and 
Fig.11c for the phase tracking. As shown, large phase offset is 
present only when Grmf(z) is not used. Again, such phase offset 
is caused by the d.c. offset in the output Uq

com of RC. The phase 
offset is removed by the proposed running mean filter. 

Fig.11 also confirms that the proposed PLL with feed-back 
RC can track the 50º phase jump within 0.04s (i.e. two periods). 

IV. CONCLUSIONS 

This paper aims at improving the frequency and phase 
tracking performance of a PLL in distorted three-phase system. 
Five non-ideal grid conditions are considered in this paper in 
order to test the effectiveness of the proposed solution, including 
harmonics in the three-phase voltages, the single phase to 
ground fault, the two-phase sag fault or sampling error, slight 
frequency variations, and phase jumps. It is found that certain 

 

 
(a) Voltages 

 
(b) Tracked frequency  

 
(c) Tracked phase error in degree 

Fig. 9 Performance of PLL with/without RC when Ua
*
 and Ub

* are half the 
amplitude of Uc

* and with fundamental frequency variation(fd=49.5~50.5Hz). 

 

 

 
(a) Voltages 

 
(b) Tracked frequency  

 
(c) Tracked phase error in degree 

Fig. 10 Performance of PLL with/without the proposed RC when U*
abc have 

5th, 7th harmonics and during fundamental frequency variation (fd=399~401 

Hz). 
 

 

 
(a) Tracked frequency 

 
(b) Tracked phase error in degree 

 
(c) Zoom in of (b) 

Fig. 11 Performance of PLL with the RC (but Gf(z)=1) and the proposed RC 

(Gf(z)=Grmf(z)) when U*
abc have 5th, 7th harmonics, during fundamental 

frequency variation (fd=49.5~50.5 Hz) and during 50º phase jump at 0.6s. 



harmonics will be generated in the q-axis voltage Uq for these 
conditions, and the perfect phase tracking can be achieved by 
controlling the d.c. value of Uq to zero. This motivates the use 
of a repetitive controller (RC) within a traditional PLL 
configuration to remove the a.c. component in Uq.  Furthermore, 
a running mean filter based RC is proposed in order to make sure 
the RC only compensates the a.c. part of Uq. 

The tuning of the PI controller and RC in the proposed PLL 
have been demonstrated according to the stability analysis. 

 As verified in five selected non-ideal conditions, the 
proposed PLL with feed-back RC can improve frequency and 
phase tracking with respect to the traditional three-phase PLL 
under periodic disturbance conditions. Although the proposed 
PLL is mainly designed for fixed frequency systems, it works 
effectively even under slight frequency variations as previously 
demonstrated.   
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TABLE I 

CONTROL PARAMETERS FOR SIMULATION TESTS 

Symbol Quantity Value 

Ts Sampling period 0.00005 s  

fs Sampling frequency 20 kHz 

fd Fundamental frequency of 

the three-phase voltages 

50 or 400 Hz 

A Peak value of the 
fundamental component in 

three-phase 

100 V 

N Length of delay chain in 

RC 

400 (if fd =50 Hz)  

50 (if fd =400 Hz) 

Grc Gain of RC 0.888 

Qrc Forgetting factor of RC 1 

ζ Damping 0.791 

ωn 

 

Natural frequency of PI 

 

62.83 rad/s (if fd =50 Hz) 

314 rad/s (if fd =400 Hz) 

kp=2ζωn/A Proportional gain of PI 1 (if fd =50 Hz)  

5 (if fd =400 Hz) 

ki=ωn
2/A 

 

Integral gain of PI 

 

40 (if fd =50 Hz)  

1000 (if fd =400 Hz) 

 


