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1. Introduction

This paper develops a methodology to test for slope heterogeneity and cointegration in large panels

defined by the equation

yit = αi + β′ixit + uit, (1.1)

with i = 1, ..., n and t = 1, ..., T , and both yit and xit non-stationary for all i.

For each i, equation (1.1) could be cointegrating or not, i.e. uit could be stationary or not. Also, it is

well known that, in a non-stationary panel context, spurious regression and neglected heterogeneity are

in a dual relationship (see Phillips and Moon (1999)). Indeed, when model (1.1) is wrongly replaced by

the pooled version

yit = αi + β′xit + vit, (1.2)

this introduces the term (βi − β)
′
xit in the error term vit = uit + (βi − β)

′
xit, thereby making it non-

stationary by construction. Thus, vit can have a unit root due to two non mutually exclusive reasons:

genuine lack of cointegration in some of the units, or neglected slope heterogeneity. In this paper, we

build on the possible presence of a unit root in vit and on the source thereof, in order to propose two

tests, for slope homogeneity and cointegration in equation (1.1) respectively. Our tests are based on

the dispersion of the βis around their average (denoted as σ2
β), and on the fraction of units where uit

has a unit root (denoted as λ). Specifically, in order to test for poolability, a test for H0 : σ2
β = 0 is

developed that is robust to any value of λ; the null hypothesis is slope homogeneity, i.e. βi = β for all i.

In order to test for cointegration, a test for H0 : λ = 0 is proposed, which is valid for any σ2
β ; thus, the

null hypothesis is cointegration. Thus, the results in this paper may also be viewed as a tool to detect

the presence (and the determinants) of a unit root in vit in (1.2); in addition to the two tests, we also

develop two estimators for λ and σ2
β .

Both issues (testing for heterogeneity and cointegration) have been investigated to some extent by

the literature. Tests for slope homogeneity are available in the context of stationary panels: examples

include Phillips and Sul (2003), Kapetanios (2003) and Pesaran and Yamagata (2008), and have also been

developed for cointegrated panels (see Mark and Sul, 2003 and Westerlund and Hess, 2011). However,

existing tests designed for non-stationary panels require the assumption that all the units in the panel

are cointegrated. Thus, currently available tests cannot be applied to the case where some of the units

are (observationally equivalent to) spurious regressions, i.e. with uit non-stationary. On the contrary,

the test developed in this paper can be used irrespective of the uits being stationary, non-stationary, or

a mixture of the two (and therefore to all possible values of λ in the interval [0, 1]).

Allowing for some units to be cointegrated (and simultaneously for others to be non cointegrated) is

important in empirical applications. In addition to being a possible example of heterogeneity which

makes the set-up more general and comprehensive, evidence of a “mixed panel”, where some units are

not cointegrated, is a well known stylized fact, which has been found in numerous contexts (see also

the discussion in Fuertes, 2008, and Trapani, 2012). Indeed, it is not uncommon, at a disaggregate
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level, to find evidence of a panel where some units are cointegrated but others are not. This can be

due to various reasons, typically related to the presence of neglected nonlinearity in the adjustment

mechanism. Examples of such nonlinearities, and, therefore, possible examples of empirical applications

where our methodology could prove useful include: threshold effects such as fixed costs of adjustment,

presence of target bands or no-arbitrage bands (Balke and Fomby, 1997; see also Lo and Zivot, 2001

for a survey); asymmetries in the adjustment process to a long-run equilibrium (Levy et al., 1997); and

the possible presence of (non-stationary) measurement errors or omitted variables (Choi et al., 2008);

or neglected breaks in the long run relationship (Gregory and Hansen, 1996). As well as a theoretical

possibility, finding a mixed panel (and thus evidence against panel cointegration) is a well documented

fact in empirical applications. This is the case e.g. in PPP studies (Balke and Wohar, 1998; Taylor,

2001; Coakley et al., 2005); in the Feldstein-Horioka puzzle literature (Coakley et al., 2004; Giannone

and Lenza, 2009); and in the growth literature (Krueger and Lindahl, 2001), inter alia.

In the light of the discussion above, another potentially relevant contribution of this paper is a test for

the null of cointegration. Having cointegration (instead of no cointegration) as the null can be viewed

as more natural, since it usually is the working hypothesis of interest and it often corresponds to a well

established economic theory (see e.g. Taylor, 2001, in the context of PPP). The test can be applied in

the presence of slope heterogeneity and cross-sectional dependence in the uits. This complements the

existing literature, where earlier contributions required cross sectional independence (e.g. McCoskey and

Kao, 1998).

The inferential theory for σ2
β and for λ uses the Method of Moments, applied to data in levels. Consistency

is shown on the whole parameter space
(
λ, σ2

β

)
∈ {[0, 1] × [0,+∞)}. Indeed, we show that it is possible

to estimate σ2
β even when λ > 0, without needing to know which units are cointegrated and which

ones are spurious regressions. This would not be possible if one were to use a dispersion-type estimator

based e.g. on the individual slope estimates, given that some of these would be inconsistent. As far as

estimating λ is concerned, Ng (2008) proposes an estimation technique for the fraction of non-stationary

units in a panel unit root context; however, the inferential theory is not fully developed. In this paper,

we develop a consistent estimator of λ without imposing any restrictions on λ or on σ2
β : again, the

estimator can be employed without prior knowledge as to which units cointegrate or not, or whether

slopes are homogeneous or not.

The remainder of the paper is organised as follows. Section 2 discusses the model and the main assump-

tions. Estimation of the degree of heterogeneity and of the fraction of spurious regressions, and the tests,

are in Section 3; we present the main results for the case of a single regressor in (1.1), but in Section

3.3 we also report the generalisation of our results to the case - relevant for empirical applications - of

a multiple regression. Monte Carlo evidence is in Section 4, and in Section 5 we present an application

to the PPP hypothesis to illustrate the results in the paper. Section 6 concludes. Proofs of the main

results are in Appendix A; further results and derivations are in Appendix B.

NOTATION. Throughout the paper,
d→ and

d→
H0

denote weak convergence and weak convergence under

the null H0 respectively, and
p→ convergence in probability; M denotes a generic finite constant that does
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not depend on n or T . Stochastic processes such as W (r) on [0, 1] are usually written as W , integrals

such as
∫ 1

0
W (r) dr are written as

∫
W and we define demeaned Brownian motions as W̄ = W −

∫
W .

We extensively use the notation φnT = min
{√

n,
√
T
}

; b·c denotes the integer part of a number, and

‖·‖ is the Euclidean norm of a vector. Finally, the vectorization operator and the trace of a matrix A

are defined as vec (A) and tr (A), respectively. Other notation is introduced later on in the paper.

2. Model and assumptions

We begin by considering the case of a single regressor in (1.1). Although this is an obvious limitation for

practical applications, on the other hand it allows to present the main ideas of the paper without these

being overshadowed by notation and mathematical details. In Section 3.3, we consider the extension of

our estimators and tests to the case of a multiple regression.

Consider equation (1.2) with a single regressor:

yit = αi + βxit + vit,

where vit = uit + (βi − β)xit and yit and xit are I (1). We allow for strong cross sectional dependence

among the regressors xit by considering the following DGP

xit = l′ift + wit, (2.1)

with ft an h-dimensional vector of common nonstationary factors (i.e. ft ∼ I (1)) and wit assumed

to be I (1) also. Note that stationary common factors and stationary idiosyncratic shocks could be

added to (2.1) without changing any of the arguments in the paper: in essence, this is because the

asymptotics is driven by the nonstationary components only. Equation (2.1) considers the presence of

common stochastic trends (and therefore of strong cross dependence) in the regressors, in a similar spirit

to Kapetanios et al. (2011) (see also Bai et al., 2009).

As far as the error term uit is concerned, we consider the following representation:

uit = eit +

+∞∑
j=−∞

cij∆xit+j + g′iht, (2.2)

where ht is a vector of common stationary factors to allow for cross dependence. The purpose of the

term
∑+∞
j=−∞ cij∆xit+j in (2.2) is to take into account the possible presence of endogeneity in some or

all the units: this way of modelling endogeneity is similar to Saikkonen (1991) and Choi et al. (2008).

Finally, we consider the presence of both cointegrating and spurious regressions by defining

eit = eλ,itdλ,i + e1−λ,it (1− dλ,i) , (2.3)

with dλ,i = 1 for bnλc units and zero for n− bnλc units. Let ∆eλ,it = εeit and e1−λ,it = εeit, where εeit is

stationary for all i. In essence, (2.3) entails that eλ,it is non-stationary and e1−λ,it is stationary. Since
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λ ∈ [0, 1], three alternative cases are considered: (a) all units are cointegrated, (b) all units are spurious

regressions, and (c) the panel is a mixture of cointegrated and spurious regressions (mixed panel).

Let ewit = ∆wit and eft = ∆ft, and define ωit = [ew′it , ε
e
it]
′
, ω̃it =

[
ω′it, e

f ′
t , h

′
t

]′
. Consider the following

assumptions.

Assumption 1: (i) ωit is independent across i; (ii) li and gi are either (a) nonstochastic with

‖li‖ ≤ M , and ‖gi‖ ≤ M for all i, or (b) stochastic and independent across i and of all other random

variables with E ‖li‖8+δ ≤M and E ‖gi‖4+δ ≤M for all i.

Assumption 2: (i) ω̃it is a linear process with ω̃it =
∑+∞
j=0 ρijε

ω
it−j , where, for all i: (a) εωit is

independent across t with E (εωit) = 0, (b)
∑+∞
j=0 j

2 ‖ρij‖ ≤ M , (c) E ‖ewit‖
8+δ ≤ M , E

∥∥∥eft ∥∥∥8+δ ≤ M ,

E ‖εeit‖
4+δ ≤ M , and E ‖ht‖4+δ ≤ M ; (d) E ‖ewi0‖

8+δ ≤ M , E
∥∥∥ef0∥∥∥8+δ ≤ M , E ‖εei0‖

4+δ ≤ M , and

E ‖h0‖4+δ ≤ M ;; (ii) letting the long-run variances of ∆xit and ∆eλ,it be denoted as σ2
x,i and σ2

e,i

respectively, it holds that they are non-stochastic with (a) 0 < M ≤ σ2
x,i <∞ and (b) 0 < M ≤ σ2

e,i <∞
for all i; (iii) it holds that, in equation (2.2),

∑+∞
j=−∞ |cij | ≤M for all i; (iv) for 1 ≤ t ≤ T , {εeit}, {ht},{

eft

}
and {ewit} are mutually independent groups for all i.

Assumption 3: (i) βi is independent across i with E (βi) = β, V ar (βi) = σ2
β , and E |βi|4+δ ≤M

for some δ > 0; (ii) {βi} is independent of all other random variables.

Assumption 1 considers the cross sectional properties of the innovations. Both εeit and ewit are assumed to

be cross sectionally independent. In essence, this is required in order for a cross sectional CLT to hold,

and in principle it could be relaxed by replacing independence with some summability conditions. The

presence of (strong) cross sectional dependence in the error term uit is taken into account by introducing

a common factor structure in (2.2). However, the common factors ht are assumed to be stationary,

otherwise uit would be non-stationary by construction for all i - see also Ng (2008) - thus making

λ = 1 by construction. This, inter alia, rules out the case where the yits are cross-unit cointegrated,

which corresponds to having ht ∼ I (1) and eit, in (2.2), stationary for all i; we refer to the paper by

Gengenbach et al. (2006) for a comprehensive discussion of the various sources of cointegration and

nonstationarity in panels with common factors. We point out that, in principle, it would be possible to

allow for common nonstationary factors, i.e. for ht ∼ I (1), as long as these are “weak” - i.e. as long as

gi = O
(
n−1/2

)
. In this paper, estimation of gi and ht is not required: this is essentially due to the fact

that the relevant asymptotics is driven by the non-stationary components, and the stationary ones are

smoothed away. Also, in (2.1), estimation of li and ft is not required and results hold even if li = 0 for

some or all the units.

Assumption 2 entails that time dependence and heteroskedasticity are allowed for; all innovations are

assumed to be generated by a linear process. Note that, whilst endogeneity is allowed for in equation (2.2)

through the term
∑+∞
j=−∞ cij∆xit+j , estimation of the cijs, or using an estimator that takes into account

endogeneity, is not required. Part (iv) of the assumption states that the innovations driving eit and xit



L. Trapani/Heterogeneity and cointegration in panels 6

are independent at all leads and lags. This is tantamount to assuming that the (infeasible) dynamic

regression method removes endogeneity, which corresponds to the assumption of strict exogeneity of

the dynamic regression of Choi et al. (2008). As far as the notation is concerned, in part (ii) of the

assumption we have defined the long-run variance of ∆eλ,it as σ2
e,i; based on (2.2), it is clear that σ2

e,i

is the long-run variance of ∆uit for all the units which are spurious regressions, whereas, when uit is

stationary, Assumption 2 entails that the long-run variance of ∆uit is zero by construction.

Assumption 3 contains moment conditions for βi, and it is based, essentially, on the so-called “random

coefficient model” - see e.g. Kapetanios et al. (2011), who use a very similar setup.

Finally, we point out that the paper is based on the maintained assumption that yit and xit are I (1)

for all i. This can be verified by running a panel unit root test that takes cross sectional dependence

into account - examples include Bai and Ng (2004) and Pesaran et al. (2013).

Let x̄it = xit − T−1
∑T
t=1 xit and ȳit = yit − T−1

∑T
t=1 yit. The LSDV estimator for β in (1.2) is

β̂ =

[
n∑
i=1

T∑
t=1

x̄2it

]−1 [ n∑
i=1

T∑
t=1

x̄itȳit

]
.

The quantities of interest, for the purpose of estimation and testing, are the fraction of spurious re-

gressions, λ, and the degree of heterogeneity across coefficients, σ2
β . In order to estimate them, we now

present two statistics whose probability limits depend, linearly, on both λ and σ2
β . In particular, we

present a consistent estimator of the asymptotic variance of β̂ (equation (2.4) below), and an inconsis-

tent one (equation (2.5) below). The idea is that, once the probability limits of the two statistics are

worked out and their dependence on λ and σ2
β is explicitly expressed, inference can be based on either

(or both) statistic, essentially by an application of the Method of Moments. Let v̂it = ȳit − β̂x̄it and

define the two statistics

ψ̂1 = n

∑n
i=1

[∑T
t=1 x̄itv̂it

]2
[∑n

i=1

∑T
t=1 x̄

2
it

]2 , (2.4)

ψ̂2 =

∑n
i=1

∑T
t=1 v̂

2
it∑n

i=1

∑T
t=1 x̄

2
it

. (2.5)

Henceforth, we use the following notation. We define the σ-field associated with {ft}Tt=1 as F ; expecta-

tions conditional on F are denoted as EF . We let Wxi and Wei denote the Brownian motions associated

with the partial sums of xit and eit respectively, i.e. T−3/2
∑bTrc
t=1 xit

d→ Wxi (r) and similarly Wei. We

also define σ2
e = limn→∞ (nλ)

−1 ∑n
i=1 σ

2
e,idλ,i, using the convention that σ2

e = 0 when λ = 0.

It holds that:
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Proposition 1. Let Assumptions 1-3 hold. As (n, T )→∞

ψ̂1
p→ γ−23

[
λγ1 + σ2

βγ2
]
, (2.6)

ψ̂2
p→ γ−13

[
λ
σ2
e

6
+ σ2

βγ3

]
, (2.7)

where γ1, γ2 and γ3 are short-hand notations for the limits of (nλ)
−1 ∑n

i=1EF

[(∫
W̄xiW̄ei

)2]
dλ,i, n

−1∑n
i=1EF

[(∫
W̄ 2
xi

)2]
and n−1

∑n
i=1EF

(∫
W̄ 2
xi

)
respectively - we use the convention that γ1 = 0 when

λ = 0. Further, as (n, T )→∞ with n
T → 0 and

(
λ, σ2

β

)
6= (0, 0)

√
n
(
β̂ − β

)
d→ γ−13

√
λγ1 + σ2

βγ2 × Z, (2.8)

with Z ∼ N (0, 1) independent of F . When
(
λ, σ2

β

)
= (0, 0), it holds that β̂ − β = Op

(
T−1

)
.

Equations (2.6) and (2.7) provide the probability limits for ψ̂1 and ψ̂2: as an ancillary result, it can

be noted that ψ̂1 estimates the asymptotic variance of β̂ consistently, whilst ψ̂2 is an inconsistent

estimator. Equation (2.8) states that, as long as n
T → 0 as (n, T ) → ∞, β̂ is consistent for β at a

rate
√
n. This result is typical of spurious panel regression (Kao, 1999; Phillips and Moon, 1999). An

illustration of the rate of convergence for β̂ when
(
λ, σ2

β

)
6= (0, 0) can be given by noting that the

denominator of β̂−β is Op
(
nT 2

)
; on the other hand, the term that dominates in the numerator is given

by
∑n
i=1 (βi − β)

∑T
t=1 x̄

2
it +

∑bnλc
i=1

∑T
t=1 x̄itēit. Considering the first term, heuristically

∑T
t=1 x̄

2
it =

Op
(
T 2
)

by the FCLT, and the cross sectional independence of the βis entails that the first term should

have magnitude growing as
√
n, whence

∑n
i=1 (βi − β)

∑T
t=1 x̄

2
it = Op

(√
nT 2

)
. Similarly, the second

term is Op
(√
nT 2

)
: in view of eit being I (1), the FCLT gives

∑T
t=1 x̄itēit = Op

(
T 2
)
; the

√
n rate

follows from cross sectional independence of the eits. Thus,
∑bnλc
i=1

∑T
t=1 x̄itēit = Op

(√
nT 2

)
. These

results illustrate the dual relationship between neglected slope heterogeneity and spurious regression in

a panel context.

When
(
λ, σ2

β

)
= (0, 0), the rate of convergence of β̂ is Op

(
T−1

)
due to endogeneity: this introduces an

asymptotic bias of order Op
(
T−1

)
in each unit i, which does not get smoothed away by cross-sectional

averaging. Under no endogeneity, Trapani (2012) shows that β̂ − β = Op
(
n−1/2T−1

)
.

3. Inference on σ2
β and λ

This section discusses the consistent estimation of σ2
β and λ (Sections 3.1.1 and 3.2.1 respectively),

providing estimators and rates of convergence in the whole parameter space
(
λ, σ2

β

)
. Further, tests are

proposed for the two null hypotheses H0 : σ2
β = 0 and H0 : λ = 0 (Sections 3.1.2 and 3.2.2 respectively).

Building on Proposition 1, it is possible to construct estimators for σ2
β and λ using, with some modifi-

cations detailed below, ψ̂1 and ψ̂2 defined in (2.4) and (2.5). Estimation of σ2
β and λ (and testing for

H0 : σ2
β = 0) is based on ψ̂2 only; conversely, in order to test for H0 : λ = 0, we employ a test statistic
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based on the system of equations defined by (2.6) and (2.7). In order to present the results, we define

the following Boolean variables, used throughout this section:

d0 = 1 if λ = 0,

d1 = 1 if λ = 1,

dσ = 1 if σ2
β > 0,

and zero otherwise.

3.1. Inference on σ2
β

In this section, we present results on the estimation of σ2
β (Section 3.1.1), and on testing for H0 : σ2

β = 0

(Section 3.1.2). In the whole section, λ is allowed to take any value in the interval [0, 1]: results are

robust to λ and do not require its estimation.

3.1.1. Consistent estimation of σ2
β

We define the estimator of σ2
β , based on Proposition 1, as

σ̂2
β = ψ̂2 −

1

6γ̂3

1

n

n∑
i=1

σ̃2
e,i, (3.1)

where

γ̂3 =
1

n

n∑
i=1

[
1

T 2

T∑
t=1

x̄2it

]
. (3.2)

In (3.1), σ̃2
e,i is an estimator of the long run variance of ∆uit, and it can be calculated by using a

weighted-sum-of-covariances estimator (see e.g. Andrews, 1991) based on the first-differenced residuals

∆ûit = ∆yit −β̃i∆xit, where β̃i is a consistent estimator of βi. In order to accommodate for the possible

presence of endogeneity, we suggest estimating βi from the individual equations using the Feasible GLS

(FGLS) estimator proposed in Choi et al. (2008).1 Heuristically, it can be expected that σ̃2
e,i is consistent

for σ2
e,i at a rate η ∈

(
0, 12
)

for the units that are spurious regressions, i.e. σ̃2
e,i = σ2

e,i + Op (T−η). On

the other hand, for the units that are cointegrating regressions, σ̃2
e,i converges to zero by construction

at a rate T−η, viz. σ̃2
e,i = Op (T−η). We postpone the discussion on how to actually compute σ̃2

e,i after

Theorem 1.

The rates of convergence of σ̂2
β are reported in the following theorem:

1The FGLS estimator of Choi et al. (2008) is based on estimating ρ in ũit = ρũit−1 + error, where ũit is the OLS
regression error from (1.1), and then use the estimated ρ (say ρ̂) to implement the Cochrane-Orcutt transformations
yit− ρ̂yit−1 and xit− ρ̂xit−1. The slope βi can be then estimated running OLS on the transformed data. Naturally, when
the estimator is applied to an individual equation where cointegration is not present, the slope βi merely represents the
short-run correlation between the first differences of the yits and of the xits. The FGLS yields β̃i − βi = Op

(
T−1

)
if unit

i cointegrates, and β̃i − βi = Op
(
T−1/2

)
if unit i is a spurious regression.
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Theorem 1. Let Assumptions 1-3 hold and assume that E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

)
for each i. As

(n, T )→∞, it holds that σ̂2
β − σ2

β = op (1) for all
(
λ, σ2

β

)
, with

σ̂2
β − σ2

β = dσOp

(
1√
n

)
+ (1− d0)

[
Op

(
1

T η

)
+Op

(
1√
n

)]
+ (1− d1)Op

(
1

T η

)
.

Theorem 1 states that σ̂2
β is consistent for σ2

β in the whole parameter space. Discontinuities are present

on the boundary of the parameter space, as summarized below:

σ2
β 0 > 0

λ

0 Op
(

1
Tη

)
Op

(
1√
n

)
+Op

(
1
Tη

)
∈ (0, 1] Op

(
1√
n

)
+Op

(
1
Tη

)
Op

(
1√
n

)
+Op

(
1
Tη

)
Table 1: rates of convergence for σ̂2

β − σ2
β as (n, T )→∞.

In the case of either λ 6= 0 or σ2
β 6= 0, σ̂2

β is consistent at a rate 1/min {
√
n, T η}. It could be shown

that
√
n-convergence would also be obtained if a dispersion-type estimator were employed, viz. σ̃2

β =

n−1
∑n
i=1

(
β̂i − β̂

)2
, where β̂i is a unit-specific slope estimate. However, this requires λ = 0: if λ 6= 0,

some of the β̂is will be inconsistent, thereby making σ̃2
β inconsistent also. Conversely, Theorem 1 states

that σ̂2
β estimates σ2

β consistently without imposing any restrictions on λ. A possible intuition is that

the estimation error σ̂2
β − σ2

β can be expressed in terms of cross-sectional averages - see equation (7.1).

The rate
√
n is a consequence of the cross-sectional independence of the βis and of the eits.

As far as estimating σ2
e,i is concerned, as mentioned above this can be based on

σ̃2
e,i = γ̂ei0 + 2

hT∑
j=1

ϕ

(
j

hT

)
γ̂eij , (3.3)

where

γ̂eij = T−1
T∑

t=j+1

∆ûit∆ûit−j , (3.4)

and ϕ (·) is a kernel. The rates in Table 1 indicate that convergence of σ̃2
e,i to σ2

e,i should be as fast as

possible, i.e. the rate η should be as close to 1
2 as possible. If the bandwidth hT is chosen using the

optimal selection rule of Andrews (1991), and ϕ (·) is chosen to be the quadratic spectral kernel (see

Andrews, 1991), then it can be shown that, under our assumptions, η = 2
5 .

Theorem 1 provides rates of convergence - the limiting distribution of σ̂2
β is in Theorem 7 in Appendix B,

where it is also shown that σ̂2
β has a bias of order 1/n; the following corrected version can be employed

as an alternative

σ̂2
β,bc = σ̂2

β

(
1− 1

n

γ̂2
γ̂23

)−1
, (3.5)
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with

γ̂2 =
1

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄2it

)2

. (3.6)

3.1.2. Testing for slope homogeneity - H0 : σ2
β = 0

This section contains a test for slope homogeneity. The hypothesis testing framework is:{
H0 : σ2

β = 0

HA : σ2
β > 0

,

for λ ≥ 0.

On the grounds of Theorem 1, we define the following test statistic for H0 : σ2
β = 0

S
(σ)
nT = γ̂3 × V̂ −1/2σ ×

√
nσ̂2

β , (3.7)

where

V̂σ =
1

45

1

n

n∑
i=1

(
σ̈2
e,i

)2
. (3.8)

In (3.8), σ̈2
e,i is an estimator of the log-run variance σ2

e,i; as Theorem 2 below indicates, this should be a

consistent estimator of σ2
e,i, with a slower rate of convergence than that of σ̃2

e,i employed in (3.1). Thus,

based on (3.3), σ̈2
e,i can be computed as σ̈2

e,i = γ̂ei0+2
∑h′T
j=1 ϕ

(
h′−1T j

)
γ̂eij , with bandwidth h′T = O

(
h1−εT

)
for ε > 0.

The test statistic can also be computed using the bias-corrected version of σ̂2
β , σ̂2

β,bc, defined in (3.5),

as S̃
(σ)
nT = γ̂3 × V̂

−1/2
σ ×

√
nσ̂2

β,bc. Under the null, σ̂2
β should be “small”, and therefore a test based on

S
(σ)
nT rejects for large values of S

(σ)
nT .

Let cα be the 1− α percentile of the standard normal distribution for some α ∈ [0, 1], and define Vσ as

the probability limit of V̂σ. It holds that:

Theorem 2. Let Assumptions 1-3 hold; assume further that E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

)
(and the same

for σ̈2
e,i) for each i. As (n, T )→∞ with n

T 2η → 0 and for λ ∈ (0, 1], it holds that

S
(σ)
nT

d→
H0

N (0, 1) . (3.9)

As (n, T )→∞, if
√
nσ2

β →∞, it holds that P
[
S
(σ)
nT > cα

]
= 1.

If λ = 0, assuming that E
∣∣σ̈2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

′
)

for some η′ ∈ [0, η), as (n, T )→∞ with n

T 2(η−η′) →

0 it holds that P
[
S
(σ)
nT ≤ cα

]
= 1 under H0 and P

[
S
(σ)
nT > cα

]
= 1 if

√
nσ2

β → ∞ for any cα > 0. The

same results hold for S̃
(σ)
nT .

In view of (3.9), when λ > 0, S
(σ)
nT is asymptotically normal under the null. If λ = 0, we show under

which circumstances S
(σ)
nT = op (1); although S

(σ)
nT is degenerate in this case, the test can in principle still
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be used. Indeed, when using the critical values of the standard normal distribution, the test has a zero

probability of incurring in a Type I error; this theorem, essentially, states that the test can be employed

with no prior knowledge on λ. Actually, the test should be employed under the assumption that λ > 0,

using the critical values of the standard normal distribution. When λ = 0, such a choice yields a test

which rejects the null when false with probability 1, and, when correct, with probability zero.

The test is shown to be consistent for any value of
(
λ, σ2

β

)
. In the Appendix, we show that, under

alternatives, the test statistic has a random drift term given by
√
nσ2

β × γ3 × V
−1/2
σ . Upon noting that,

heuristically, Vσ increases as λ increases, this entails that the test based on S
(σ)
nT becomes less capable

of detecting heterogeneity as model (1.1) is contaminated with spuriousness. Also, V̂σ increases as σ2
e,i

increases; conversely, γ3 increases with σ2
x,i. Thus, the power of the test can be expected to be larger as

the signal-to-noise ratio grows larger.

3.2. Inference on λ

In this section, we present results on the estimation of λ (Section 3.2.1), and on testing for H0 : λ = 0

(Section 3.2.2). For both results, the degree of slope heterogeneity σ2
β can take any value in the interval

[0,+∞).

3.2.1. Estimation of λ

We define the estimator of λ, based on Proposition 1, as

λ̂ = 6γ̂3ψ̂
∗
2 − 6 ∗ σ̂2

β ×
1

nT 2

n∑
i=1

T∑
t=1

x̄2it
σ̂2
e,i

, (3.10)

where

ψ̂∗2 =
1

γ̂3

1

nT 2

n∑
i=1

T∑
t=1

(
v̂it
σ̂e,i

)2

. (3.11)

In the calculation of λ̂, σ̂2
β is computed using the long run variance estimator σ̃2

e,i defined in (3.3), whose

rate of convergence is σ̃2
e,i − σ2

e,i = Op (T−η), and η is chosen to be as large as possible. Conversely, the

estimators σ̂2
e,i employed in (3.11) are defined in a different way, having a rate of convergence given by

σ̂2
e,i − σ2

e,i = Op (T−ε) with ε < η. We postpone the discussion on the computation of σ̂2
e,i after Theorem

3. Note that the construction of σ̂2
e,i is a delicate issue, since no prior knowledge is usually available as to

which units are spurious or cointegrating regressions; a similar issue is in Ng (2008). Thus, in equation

(3.11), there could be some “divisions by zero” - this is essentially the reason why the choice of the rates

of convergence in the estimation of the long-run variances (see also Theorem 2 above) requires a great

deal of attention.

The rates of convergence of λ̂ are reported in the following theorem.
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Theorem 3. Let Assumptions 1-3 hold and assume that E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

)
and E

∣∣σ̂2
e,i − σ2

e,i

∣∣2
= O

(
T−2ε

)
for each i. Let sT be a sequence such that s−1T = o (T−ε). As (n, T ) → ∞, it holds that

λ̂− λ = op (1) for every
(
λ, σ2

β

)
with

λ̂− λ = (1− d0)

[
Op

(
1

T ε

)
+Op

(
1√
n

)]
+dσ [(1− d0)Op (1) + (1− d1) op (sT )]Op

(
1√
n

)
+ (1− d0) op

(sT
n

)
+ (1− d1) op

( sT
T η

)
+ dσ (1− d1)Op

(
1√
T

)
.

Theorem 3 states that λ̂ is consistent for λ, in the whole parameter space, with some discontinuities at

the boundary.

σ2
β 0 > 0

λ

0 Op
(
sT
Tη

)
Op

(
sT√
n

)
+Op

(
sT
Tη

)
∈ (0, 1) Op

(
1
T ε

)
+Op

(
sT√
n

)
+Op

(
sT
Tη

)
Op
(

1
T ε

)
+Op

(
sT√
n

)
+Op

(
sT
Tη

)
1 Op

(
1
T ε

)
+Op

(
1√
n

)
Op
(

1
T ε

)
+Op

(
1√
n

)
Table 2: rates of convergence for λ̂− λ as (n, T )→∞.

As mentioned above the definitions of ψ̂∗2 in (3.11) contain some “divisions by zero” (asymptotically),

which occur when σ2
e,i is estimated from a cointegrating regression. In this case, σ̂2

e,i = Op (T−ε), which

would entail that terms like v̂it
σ̂e,i

have asymptotic magnitude Op (T ε). However, the presence of σ̂2
e,i in

the denominator is counterbalanced by the numerator converging to zero at a faster rate.

As Table 2 shows, the choice of the long run variance estimator σ̂2
e,i plays an important role in deter-

mining the rate of convergence of λ̂− λ. Based on (3.3), σ̂2
e,i can be computed as

σ̂2
e,i = γ̂ei0 + 2

hnT∑
j=1

(
1− j

hnT + 1

)
γ̂eij , (3.12)

where the γ̂eijs are defined in (3.4); in (3.12), we use the Bartlett kernel, although other kernels could

also be employed. As an example of how to select the bandwidth hnT , consider the case λ ∈ (0, 1), where

λ̂− λ = Op (T−ε) +Op (sTφη,nT ), where we use the short-hand notation φη,nT = min {
√
n, T η} - recall

from the previous section that η is chosen to be as high as possible, with typically η = 2
5 . The optimal ε

which maximizes the rate of convergence of λ̂ is the solution of minε
[
T−ε + T ε+Hφη,nT

]
, where H > 0

is an arbitrarily small number. It holds that:

T ε =
√
THφη,nT = TH/2 min

{
n1/4, T η/2

}
. (3.13)
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Equation (3.13) informs the choice of the bandwidth hnT in (3.12). Based on Theorem 1 in Andrews

(1991), the rate of convergence of σ̂2
e,i is Op

(√
hnT
T

)
. This entails that hnT can be chosen so as to

satisfy hnT = O
(
T 1−Hφ−1η,nT

)
. In Section 4, we run a set of simulations using hnT = T 0.9φ−1η,nT , under

η = 2
5 ; results do not seem to be strongly affected by different choices of hnT , which serves as a guideline

as to how to construct σ̂2
e,i. Note that, in this context, there is no need for an optimal estimator of σ2

e,i

that minimizes the MSE of σ̂2
e,i: the requirement on the rate of σ̂2

e,i − σ2
e,i is the one specified in (3.13),

which states that the long run variances should be estimated at a rate that is neither too fast (otherwise

the σ̂2
e,is estimated from cointegrating regressions would make λ̂ diverge), nor too slow (otherwise the

σ̂2
e,is estimated from spurious regressions would slow down the rate of convergence of λ̂).

From (3.10), it can be noted that the bias correction is needed only when σ2
β > 0; indeed, when σ2

β = 0,

the proof of Theorem 3 shows that implementing the bias correction would have the effect of making

the convergence of λ̂ to λ slower - in essence due to the estimation error of σ̂2
β . Thus, as an alternative,

λ̂ could be computed after testing H0 : σ2
β = 0 (and, of course, after testing for H0 : λ = 0); upon failing

to reject the null, σ̂2
β should be set to zero. The limiting distribution of λ̂ for the case σ2

β = 0 (and σ̂2
β

set to zero) is in Theorem 8 in Appendix B.

3.2.2. Testing for cointegration - H0 : λ = 0

This section contains a test for H0 : λ = 0, i.e. for the null of panel cointegration. The hypothesis testing

framework is {
H0 : λ = 0

HA : λ > 0
,

for σ2
β ≥ 0.

The estimator λ̂ defined in (3.10) is affected by the estimation errors of σ̂2
β and σ̂2

e,i. Thus, we do not

base the test on λ̂; rather, we define a test statistic, λ̂†, which is proportional to λ but unaffected by σ̂2
β

and σ̂2
e,i, viz.

S̃
(λ)
nT = V̂

−1/2
λ ×

√
n
(
λ̂† − b̂SλnT

)
, (3.14)

where

λ̂† = −γ̂33 × ψ̂1 + γ̂2γ̂3 × ψ̂2, (3.15)

b̂SλnT = γ̂2 ×
1

nT

n∑
i=1

σ̂2
u,i, (3.16)

V̂λ =
1

n

n∑
i=1

[(
β̂i − β̂

)2
− σ̂2

β

]2 γ̂3( 1

T 2

T∑
t=1

x̄2it

)2

− γ̂2

(
1

T 2

T∑
t=1

x̄2it

)2

; (3.17)

in (3.16), σ̂2
u,i = T−1

∑T
t=1 û

2
it and ûit = ȳit − β̂ix̄it, with the β̂is being unit specific estimates, e.g.

equation-by-equation OLS. Under the null, all units are stationary and therefore it can be expected that

the β̂is are superconsistent, and that σ̂2
u,i is consistent for V ar (uit).
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Under the null λ should be “small”, and therefore H0 is rejected for large values of S̃
(λ)
nT . Define cα to

be the 1 − α percentile of the standard normal distribution, and Vλ as the probability limit of V̂λ. It

holds that:

Theorem 4. Let Assumptions 1-3 hold and assume that E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

)
in the estimation

of σ̂2
β in (3.17). As (n, T )→∞, for σ2

β > 0, it holds that

S̃
(λ)
nT

d→
H0

N (0, 1) . (3.18)

As (n, T )→∞, if
√
nλ→∞, it holds that P

[
S̃
(λ)
nT > cα

]
= 1.

If σ2
β = 0, as (n, T )→∞ with

√
n

T 2−η → 0 it holds that P
[
S̃
(λ)
nT ≤ cα

]
= 1 under H0 and P

[
S̃
(λ)
nT > cα

]
= 1

if
√
nλ→∞ for any cα > 0.

Theorem 4 provides the null distribution and the consistency of the test, for any value of σ2
β . No

restrictions on the relative rate of divergence between n and T are needed when σ2
β > 0. When σ2

β = 0,

under the null S̃
(λ)
nT = op (1): the same considerations hold in this case as for S

(σ)
nT when λ = 0. Specifically,

the test can be applied with no prior knowledge as to whether σ2
β > 0, and should be applied under the

assumption that σ2
β > 0 - when this is correct, the test follows a standard normal asymptotically, under

the null. Conversely, when σ2
β = 0, the test rejects the null, when false, with probability 1 and, when

correct, with probability zero.

In appendix, we show that the test statistic has, under alternatives, a drift proportional to
(
γ1γ3 − γ2

6 σ
2
e

)
V
−1/2
λ .

This is inversely related to the signal-to-noise ratio, which entails that the test has more power, the

lower the signal-to-noise ratio. Further, based on (3.17), it is also inversely related to the dispersion of

the βis around their average. Thus, as slope heterogeneity increases, tests based on S̃
(λ)
nT are less capable

of detecting failure of cointegration.

3.3. Extension to multiple regressors

In this section, we extend the theory to the case of k regressors. The presentation is aimed at empirical

applications: the proofs of all the results reported here follow readily from modifying the arguments in

the univariate case.

We begin by discussing the issue of testing, which essentially does not require any substantive modifi-

cations; we then move to the issue of estimation, where some modifications are required.

3.3.1. Testing in the presence of multiple regressors

Consider the following notation, which is employed throughout the whole section. We assume that the

k-dimensional vector βi is i.i.d. across i, with E (βi) = β and V ar (βi) = Σβ ; we also define

Γ̂3 =
1

nT 2

n∑
i=1

T∑
t=1

x̄itx̄
′
it.
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The estimation error of the pooled OLS estimator for β in yit = αi + β′xit + vit is

β̂ = β +

[
n∑
i=1

T∑
t=1

x̄itx̄
′
it

]−1 [ n∑
i=1

T∑
t=1

x̄itx̄
′
it (βi − β)

]
+

[
n∑
i=1

T∑
t=1

x̄itx̄
′
it

]−1 [ n∑
i=1

T∑
t=1

x̄itūit

]
.

Let V ar
(
β̂
)

denote the asymptotic covariance matrix of β̂. It can be shown along the same lineas as

(2.8) that

V ar
(
β̂
)

= Γ−13 (λΓ1 + Γ2) Γ−13 ,

where Γ2 is the limit of n−1
∑n
i=1EF

((∫
W̄xiW̄

′
xi

)
Σβ
(∫
W̄xiW̄

′
xi

))
, Γ3 is the limit of Γ̂3, and Γ1 of

(nλ)
−1 ∑n

i=1

(∫
W̄xiW̄ei

) (∫
W̄xiW̄ei

)′
dλ,i.

As in the univariate case, we consider the following two estimators of V ar
(
β̂
)

:

Ψ̂1 = Γ̂−13

 1

nT 4

n∑
i=1

( T∑
t=1

x̄itv̂it

)(
T∑
t=1

x̄itv̂it

)′ Γ̂−13 , (3.19)

Ψ̂2 = Γ̂−13

[
n∑
i=1

T∑
t=1

v̂2it

]
. (3.20)

As (n, T )→∞, similar calculations as in the proof of Proposition 1 yield

Ψ̂1
d→ V ar

(
β̂
)
,

Ψ̂2
d→ λ

σ2
e

6
Γ−13 + Γ−13 Γβ3 ,

where Γβ3 is the limit of n−1
∑n
i=1EF

(∫
W̄ ′xiΣβW̄xi

)
.

The estimating equation corresponding to (3.20) is

Γ̂3Ψ̂2 =
1

6

(
λσ2

e

)
Ik +

{
Γ̂v3 [vec (Σβ)]

}
Ik, (3.21)

where Γ̂v3 =
(
nT 2

)−1∑n
i=1

∑T
t=1 (x̄′it ⊗ x̄′it). Taking the trace, we obtain

1

nT 2

n∑
i=1

T∑
t=1

v̂2it = Γ̂v3 [vec (Σβ)] +
1

6
λσ2

e . (3.22)

Hence, after some manipulations based on exactly the same passages as in Section 3.1.2, the test statistic

for the null of slope homogeneity (H0 : Σβ = 0) is

S̆
(σ)
nT =

√
nV̂ −1/2σ

[
1

nT 2

n∑
i=1

T∑
t=1

v̂2it −
1

6n

n∑
i=1

σ̃2
e,i

]
, (3.23)

where σ̃2
e,is and V̂σ are defined in (3.3) and (3.8) respectively.
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Similarly, a test for the null of cointegration (H0 : λ = 0) can be developed using the same logic as in

Section 3.2.2, based on

S̆
(λ)
nT =

√
nV̂
−1/2
λ

(
λ̂† − b̂SλnT

)
, (3.24)

where

λ̂† =
1

nT 2

n∑
i=1

T∑
t=1

v̂2it − Γ̂v3

(
Γ̂m2

)−1 1

nT 4

n∑
i=1

vec

( T∑
t=1

x̄itv̂it

)(
T∑
t=1

x̄itv̂it

)′ ,
V̂λ =

1

n

n∑
i=1

[
Γ̂v3i − Γ̂v3

(
Γ̂m2

)−1 (
Γ̂3i ⊗ Γ̂3i

)]
K̂β,iK̂

′
β,i

[
Γ̂v3i − Γ̂v3

(
Γ̂m2

)−1 (
Γ̂3i ⊗ Γ̂3i

)]
,

with

Γ̂m2 =
1

nT 4

n∑
i=1

(
T∑
t=1

x̄itx̄
′
it

)
⊗

(
T∑
t=1

x̄itx̄
′
it

)
,

Γ̂3i =
1

T 2

T∑
t=1

x̄itx̄
′
it,

Γ̂v3i =
1

T 2

T∑
t=1

(x̄′it ⊗ x̄′it) ,

K̂β,i = vec

[(
β̂i − β̂

)(
β̂i − β̂

)′
− Σ̂β

]
;

recall that b̂SλnT and β̂i are defined in Section 3.2.2.

The asymptotics of S̆
(λ)
nT and S̆

(σ)
nT is in the following theorem, whose proof can be derived from the same

arguments as in the proofs of Theorems 2 and 4.

Theorem 5. Under the same assumptions as Theorem 2, it holds that, when λ ∈ (0, 1]

S̆
(σ)
nT

d→
H0

N (0, 1) . (3.25)

When λ = 0, it holds that P
[
S̆
(σ)
nT ≤ cα

]
= 1 under H0. Further, as (n, T )→∞, if

√
nσ2

β →∞, it holds

that P
[
S̆
(σ)
nT > cα

]
= 1 for any value of λ.

Under the same assumptions as Theorem 4, it holds that, when tr (Σβ) > 0

S̆
(λ)
nT

d→
H0

N (0, 1) . (3.26)

When tr (Σβ) = 0, it holds that P
[
S̆
(λ)
nT ≤ cα

]
= 1 under H0. Further, as (n, T )→∞, if

√
nλ→∞, it

holds that P
[
S̆
(λ)
nT > cα

]
= 1 for any value of tr (Σβ).
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3.3.2. Estimation

We begin by considering (3.19), and the corresponding estimating equation

vec
(

Γ̂3Ψ̂1Γ̂3

)
= Γv1 + Γ̂m2 [vec (Σβ)] , (3.27)

where the k2 × 1 vector Γv1 is defined as the limit of

vec

[
1

n

n∑
i=1

EF

(∫
W̄xiW̄ei

)(∫
W̄xiW̄ei

)′
dλ,i

]
.

There is no “natural” estimator of Γv1; thus, we propose

Γ̂v1 = vec

 1

n

n∑
i=1

σ̃2
e,i

(
1

T 2

T∑
t=1

x̄itū
∗
it

)(
1

T 2

T∑
t=1

x̄itū
∗
it

)′ , (3.28)

where recall that σ̃2
e,i is defined in (3.3); also, ū∗it = u∗it − T−1

∑T
t=1 u

∗
it, and the u∗its are simulated as

i.i.d. N (0, 1), with independence holding over time and across units.

A comment on Γ̂v1 is in order. The main difference with the univariate case is the presence of the ū∗its

in (3.28). In order to understand how this works, note first that, intuitively, the σ̃2
e,is will converge to

their limit (that is, to σ2
e,i > 0 for the units which are spurious regressions, and to 0 for those which are

cointegrated), thus filtering out the cointegrated units, which do not play a role in the limit of Γ̂v1. As

far as the spurious regression units are concerned, heuristically it can be expected that, for each i

σ̃2
e,i

(
1

T 2

T∑
t=1

x̄itū
∗
it

)(
1

T 2

T∑
t=1

x̄itū
∗
it

)′
d→ σ2

e,i

(∫
W̄xiW̄

∗
ui

)(∫
W̄xiW̄

∗
ui

)′
, (3.29)

where W̄ ∗ui is a demeaned, standard Brownian motion. Averaging across i, it follows that

1

n

n∑
i=1

σ̃2
e,i

(∫
W̄xiW̄

∗
ui

)(∫
W̄xiW̄

∗
ui

)′
d→ (nλ)

−1
n∑
i=1

σ2
e,iEF

[(∫
W̄xiW̄

∗
ui

)(∫
W̄xiW̄

∗
ui

)′]
dλ,i.

(3.30)

These arguments highlight the helpfulness of cross sectional averaging: in (3.29), the σe,i
(∫
W̄xiW̄

∗
ui

)
s

are different from the
(∫
W̄xiW̄ei

)
s, but they have the same distribution by construction, and therefore

the cross-sectional averages converge to the same limits.

It is now possible to estimate Σβ ; indeed, considering (3.27), the estimator is given by

vec
(

Σ̆β

)
=
[
Γ̂m2

]−1 [
vec

(
Γ̂3Ψ̂1Γ̂3

)
− Γ̂v1

]
.
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As far as the estimation of λ is concerned, the logic is the same as in Section 3.2.1. Let

Ψ̂∗2 = Γ̂−13

[
n∑
i=1

T∑
t=1

v̂2it
σ̂2
e,i

]
,

Γ̂∗v3 =
1

nT 2

n∑
i=1

T∑
t=1

(x̄′it ⊗ x̄′it)
σ̂2
e,i

,

where σ̂2
e,i is defined in (3.10). The estimator of λ is

λ̆ = 6Γ̂3Ψ̂∗2 − 6
{

Γ̂∗v3

[
vec

(
Σ̂β

)]}
Ik. (3.31)

Theorem 6. Under the same assumptions as Theorem 1, it holds that∥∥∥vec(Σ̆β

)
− vec (Σβ)

∥∥∥ = dσOp

(
1√
n

)
+ (1− d0)

[
Op

(
1

T η

)
+Op

(
1√
n

)]
+ (1− d1)Op

(
1

T η

)
.

Also, under the same assumptions as Theorem 3, λ̆ has the same rate of convergence as λ̂.

4. Small sample properties

This section contains Monte Carlo evidence on the size and power of tests for H0 : σ2
β = 0 and H0 : λ = 0.

The DGP for each experiment is based on equations (1.1), (2.1) and (2.2)-(2.3):

yit = αi + βixit + uit,

xit = lift + wit,

uit = eit + giht,

eit = dλ,i (eit−1 + εeit) + (1− dλ,i)
[
ρeit−1 + εeit + θεeit−1

]
.

We set (n, T ) = {(20, 100) , (20, 200) , (20, 400) , (50, 50) , (50, 100) , (50, 200) , (100, 200)}. In order to

avoid dependence on initial conditions, T + 1000 data have been generated, and the first 1000 ob-

servations have been discarded. We set the number of replications equal to 2000, so that the empirical

null rejection frequencies reported in the tables have a 95% confidence interval of width ±0.01.

The innovations (εeit,∆wit) are created as i.i.d. Gaussian with V ar (∆wit) = 1 and V ar (εeit) = {0.5, 1, 2}
in order to assess the impact of different levels of the signal-to-noise ratio. We set li ∼i.i.d. N (1, 1) for all

i and generate ∆ft as i.i.d. N (0, 1); we have tried using a multifactor structure, but results are virtually

unchanged. Similarly, we have used gi ∼i.i.d. N (1, 1) and ht ∼i.i.d. N (0, 1), and again changing this into

a multifactor structure has no impact on the results (as also predicted by the theory). Dynamics in the

(stationary) error terms eit is created using {ρ, θ} = {0, 0.75}×{−0.75, 0, 0.75}. Unreported experiments

show that results are virtually unchanged when considering endogeneity as in (2.2). Finally, we have

generated αi ∼i.i.d. N (1, 1) and βi ∼i.i.d. N
(

1, σ2
β

)
.

A final note on the estimation of the long-run variances σ2
e,i: there are three estimators which need to
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be considered for them. In all three cases, we have used a HAC-type estimator based on the Bartlett

kernel. The bandwidth has been set equal to:
⌊
T 2/5

⌋
for σ̃2

e,i;
⌊
T 0.9 ∗ T 2/5

⌋
for σ̈2

e,i; and
⌊
T 0.9 ∗ φ−1η,nT

⌋
for σ̂2

e,i. All routines have been written using Gauss 10.

Estimation of σ2
β and λ

We begin by evaluating the performance of the estimators of σ2
β and λ - in particular, we consider σ̂2

β,bc

defined in (3.5) and λ̂, defined in (3.10). We report bias and Root Mean Squared Error (RMSE); as far

as σ̂2
β,bc is concerned, these are computed as

bias =
1

2000

2000∑
j=1

[
σ̂2
β,bc (j)− σ2

β

]
,

RMSE =

√√√√ 1

2000

2000∑
j=1

[
σ̂2
β,bc (j)− σ2

β

]2
,

where σ̂2
β,bc (j) is the value of σ̂2

β,bc at the j-th replication; the same is done for λ̂.

Results are based on
{
λ, σ2

β

}
∈ {0, 0.25, 0.75} × {0, 0.25, 0.5}, under the set-up described above. As in

the case of the other experiments in this section, we have also carried out simulations for λ = 0.5, which

we do not report here to save space; results are anyway in line with the other cases reported here.

[Insert Tables 3a-4b somewhere here]

Considering σ̂2
β,bc, it can be noted that the bias and RMSE decline with T , mainly, and also with n,

as can be expected from the theory - indeed, the RMSE declines as n increases in a more pronounced

way than the bias. The impact of λ is quite apparent from the table: as λ increases, the estimator σ̂2
β,bc

improves. One exception is the slight increase in both bias and, especially, RMSE, as λ changes from

0 to 0.25. The presence of serial correlation has an impact on the performance of σ̂2
β,bc: the estimator

performs clearly better when the error terms are uncorrelated, or when they have an autoregressive

structure; conversely, they perform worse in the case of moving average structures. In this case, results

are not sensitive to whether the MA root is positive or negative; a possible explanation could lie in the

fact that the long-run variance estimators are based on estimated covariances, and these, in the case of

moving average structures, decline to zero so that the HAC-type estimators considered here, which are

truncated, are likely to miss some of the autocovariances.

Turning to λ̂, the bias and RMSE decline as T increases but seem to be virtually unaffected by n -

compare the results for (n, T ) = (20, 200), (50, 200) and (100, 200). Also, the estimator is not affected

in any obvious way by the value taken by σ2
β , whereas it can be noted that estimation becomes better

as λ itself increases. The impact of error autocorrelation is also quite interesting, since λ̂ behaves in the

opposite way than σ̂2
β,bc. The performance of λ̂ in the presence of moving average structures, at least
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as T increases, is the same as one would have with uncorrelated errors; conversely, the presence of an

autoregressive root worsens (dramatically, for small T ) both the bias and the RMSE.

Testing for slope homogeneity - H0 : σ2
β = 0

In addition to the settings described above, simulations were carried out with λ ∈ {0.25, 0.5, 0.75}.
When evaluating power, we set σ2

β ∈ {0.1, 0.5}. Tests are based on using σ̂2
β,bc.

[Insert Table 5 somewhere here]

Table 5 contains the null rejection frequencies for the case V ar (εeit) = 1; virtually no changes were

noted for different values of V ar (εeit). In general, the test has a slight tendency to over-reject in small

samples. As n and T increase (with n ≥ 50 and T ≥ 200), the size is very close to its nominal value

and almost always within the confidence band 0.04− 0.06. The size is also robust to the value of λ, for

moderately large samples: as λ changes, the empirical rejection frequencies change very little. Finally,

dependence in the error term has almost no impact.

[Insert Table 6 somewhere here]

Table 6 report the power of the test under the alternative σ2
β = 0.5. The power decreases as V ar (εeit)

increases (as predicted by the theory), especially in small samples. The power increases as n increases,

and also, albeit less so, as T increases. In small samples, it can be noted that the power decreases with

λ, as predicted by the theory. When n and T increase, this becomes unnoticeable, and it is likely to be

due to the fact that the number of units used for the test is actually bnλc. Finally, the presence of serial

dependence of the error term has little impact, especially as n and T increase.

Testing for cointegration - H0 : λ = 0

Simulations have been carried out for σ2
β ∈ {0.25, 0.5, 0.75}, in order to assess the dependence of power

and size on heterogeneity; also, V ar (εeit) has been set to 0.5.

[Insert Table 7 somewhere here]

Table 7 shows that the test has a tendency to be conservative in finite samples, at least when σ2
β is small.

This is in line with what predicted by the theory: Theorem 2 stipulates that, when σ2
β = 0, the test has

zero probability of Type I error. This gradually vanishes, as n and T increase. Serial dependence in the

error term has little effect, especially as n increases.
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[Insert Table 8 somewhere here]

Table 8 reports the power of the test versus the alternative that λ = 0.5. The power increases clearly

as n increases; the impact of T is less clear. The impact of nuisance parameters (σ2
β and V ar (εeit)) is

as predicted by the theory. As far as σ2
β is concerned, as slope heterogeneity increases, the power of the

test decreases significantly. As far as V ar (εeit) is concerned, as the signal-to-noise ratio increases, the

power also increases.

5. Empirical application

In order to illustrate our approach, we apply it to verify the PPP hypothesis. This application is also

motivated by various empirical studies, which have found evidence of failure of cointegration at the

unit-specific level, evidence of slope heterogeneity, and in general other mis-specification issues such as

endogeneity (see e.g. Taylor, 2001 and Wagner, 2008).

We employ monthly observations, starting from April 1981 to December 2000 (so that T = 237), for

n = 21 countries (the list is in Table 9, where the data and their source are also described). Based on

the results in the previous section, we could expect that, with these sample sizes, the tests should have

good power under the alternative and the correct size under the null - with, possibly, some tendency to

be undersized when testing for H0 : λ = 0 (at least for small values of σ2
β) and to be oversized when

testing for H0 : σ2
β = 0 (at least for small values of λ).

Letting Eit be the exchange rate of country i with respect to the base country (in our case, the US, so

that Eit is expressed as US dollars per unit of currency i), PUSt the price of a representative basket of

goods in the US, and finally Pit be the price of the same basket in country i, our model is

lnEit = αi + β ln
PUSt
Pit

+ uit. (5.1)

Equation (5.1) is the so-called “strong form” of the PPP, where it is postulated that (a) all units are

cointegrated (so that the PPP holds for each individual country) and (b) all units have the same slope

β, which is equal to 1.

In Table 9, we have carried out tests for cointegration at an individual equation level, using an Engle-

Granger procedure based on FM-OLS residuals; these results may be affected by the typical low power

of such procedures (see e.g. Pedroni, 2004), and are reported only as a benchmark: however, as can be

seen, the null of cointegration is rejected in 6 cases out of 21.

We have also included, in the table, the outcome of Kao (1999) test for the null of no panel cointegration.

As can be noted, we found no evidence of cointegration at a panel level, thereby rejecting the PPP in the

strong form - or, equivalently, rejecting the joint null that λ = 0 and σ2
β = 0. Of course, this approach too

can be criticised due to numerous reasons, and it is reported here merely for comparison and reference

- we refer to the analysis by Wagner (2008), where it is pointed out that conventional, first-generation
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panel unit root (and cointegration) tests may erroneously lead to rejection of PPP due to e.g. presence

of strong cross-dependence, non-stationary common factors in the regressors (in this case, the prices),

endogeneity, etc.

Based on the results above, a possible approach to studying the PPP at a panel level is based on the

following “weak” form of the PPP

lnEit = αi + βi ln
PUSt
Pit

+ uit, (5.2)

testing whether slope homogeneity holds (that is, σ2
β = 0), and whether cointegration holds for all units

(that is, λ = 0). We have implemented the tests proposed above with the same specifications as in

the Monte Carlo exercise. Specifically, we have computed S
(σ)
nT using the bias corrected estimator σ̂2

β,bc,

although results do not change much when using σ̂2
β . Similarly, when computing λ̂ - and when using

equation (3.17) to compute S̃
(λ)
nT - we have again used σ̂2

β,bc, and again using σ̂2
β instead does not change

the main findings.

All results are reported in Table 9.

[Insert Table 9 somewhere here]

As can be seen, the null of cointegration, H0 : λ = 0, is rejected: the error terms in some of the units

are observationally equivalent to non-stationary series. However, it can be noted that the point estimate

is λ̂ = 0.21, which suggests that the PPP equation, in its weak form, is satisfied in around 5-6 out of

21 units. This result is very similar to the one implied by the individual specific tests. Furthermore, it

should be noted that, as discussed in the Introduction, failure of cointegration in the micro equations

(5.2) can be due to numerous reasons, such as neglected non-linearities, thus not necessarily implying

the genuine lack of a long-run relationship between exchange rates and relative prices.

The null of slope homogeneity is also rejected; estimation shows that σ̂2
β = 0.6 approximately. This

estimate could be contrasted with the (reported) standard deviation of the individual estimates β̃i,

which has been carried out using the first-differenced version of (5.2) as per footnote 1, and which again

appears very similar.

6. Conclusions

Testing for slope heterogeneity and cointegration are important issues in large, non-stationary panels.

This paper develops an estimator for the degree of slope heterogeneity, that is robust to the case of

having a mixture of cointegrated and spurious regressions. An estimator for the fraction of spurious

regressions is also proposed. Hence, two tests are proposed for the null hypotheses of slope homogeneity
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and cointegration. Our methodology is valid under cross dependence, heteroskedasticity of errors and

regressors, presence of common trends in the regressors, and endogeneity, which are typically found in

empirical applications (see e.g. Wagner, 2008, in the context of PPP). Monte Carlo evidence shows that

the tests have good size and power properties.

Some methodological and theoretical questions are still outstanding, at least partly. As Theorems 2 and

4 show, the two tests for H0 : σ2
β = 0 and H0 : λ = 0 can be applied separately, and directly from the

outset; based on the result for the case of λ = 0 in Theorem 2, one should first test for H0 : λ = 0,

and subsequently decide how to compute V̂σ in (3.8). Alternatively, a test for the null of homogeneous

cointegration can be ran first and, upon rejecting the null, the two tests can be applied to identify the

reason why homogeneous cointegration does not hold. As far as the model is concerned, one case that

is left out from the basic model is the case of uit containing I (1) common factors. In this case, the

framework implemented here could not be employed directly (essentially due to Proposition 1 failing;

see Trapani, 2012, for details), and some pre-filtering of the common factors may be required. Similarly,

we need to rule out the presence of linear trends in (1.1) and (2.1) - even in this case, Proposition 1

would fail, thus invalidating the main arguments in this paper, and therefore some detrending may be

necessary prior to carrying out the analysis. Finally, inference is based mainly on ψ̂2, and also on ψ̂1

(at least as far as testing for H0 : λ = 0 is concerned): albeit somewhat “natural”, these statistics are

defined arbitrarily. In theory, it is possible to define other statistics similarly to ψ̂1 and ψ̂2, e.g. based

on different estimators for β in (1.2). Several statistics could thence be combined, in a similar spirit to

overidentified GMM. These issues are the subject of ongoing research by the author.
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7. Appendix A: proofs of the main results

In this section, we present the proofs of the main results. Preliminary Lemmas, their proofs and the

proof of Proposition 1, and further results of independent interest are in Appendix B. Henceforth,

we use the following notation. The martingale approximation of a stationary process zt (derived by

applying the Beveridge-Nelson decomposition, BN henceforth; we refer to Phillips and Solo, 1992 for

details) is denoted as z∗t ; similarly, the martingale approximation of a unit root process St =
∑t
j=0 zt

is denoted as S∗t =
∑t
j=1 z

∗
t . Under Assumption 2, xit and εeit both admit a martingale approximation,

and we refer to Phillips and Moon (1999) for details in a panel cointegration context. Recall also that

φnT = min
{√

n,
√
T
}

; that F is the σ-field associated with {ft}Tt=1 and that EF denotes expectation

conditional on F ; and that the bar symbol above a series denotes demeaning, i.e. z̄t = zt − T−1
∑T
t=1 zt.

Where helpful, in the proofs we assume (with no loss of generality) that the first bnλc units are spurious

regressions, and that the remaining ones are cointegrating regressions.

Proof of Theorem 1. We have

σ̂2
β = γ̂−13

{
1

n

n∑
i=1

(βi − β)
2

(
1

T 2

T∑
t=1

x̄2it

)
+

1

nT 2

n∑
i=1

T∑
t=1

ū2it

+
(
β̂ − β

)2 1

nT 2

n∑
i=1

T∑
t=1

x̄2it +
2

n

n∑
i=1

[
(βi − β)

(
1

T 2

T∑
t=1

x̄itūit

)]

−
(
β̂ − β

) 2

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄itūit

)
−
(
β̂ − β

) 2

n

n∑
i=1

[
(βi − β)

(
1

T 2

T∑
t=1

x̄2it

)]
− 1

n

n∑
i=1

σ̃2
e,i

6

}

= ∆−1σ {A1 +A2 +A3 +A4 +A5 +A6 +A7} . (7.1)

Consider A1. We can write

A1 = σ2
β γ̂3 −

1

n

n∑
i=1

[
(βi − β)

2 − σ2
β

]( 1

T 2

T∑
t=1

x̄2it

)
= A1,1 +A1,2.

By construction, γ̂−13 A1,1 = σ2
β . As regards A1,2, by the independence of the βis, its variance is

n−2
∑n
i=1 E

[
(βi − β)

2 − σ2
β

]2
E
(
T−2

∑T
t=1 x̄

2
it

)2
. By Assumption 3, E

[
(βi − β)

2 − σ2
β

]2
< ∞; fur-

ther, by Assumptions 2(i) and similar arguments as in the proof of (8.17), it can be shown that

E
(
T−2

∑T
t=1 x̄

2
it

)2
<∞, so that putting all together, γ̂3A1 = σ2

β + dσOp
(
n−1/2

)
. Consider A2 +A7; it
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holds that

A2 +A7

=
1

n

n∑
i=1

(
1

T 2

T∑
t=1

ū∗2it

)
− 1

6n

n∑
i=1

σ̃2
e,i +Op

(
1√
T

)

=
1

n

bnλc∑
i=1

(
1

T 2

T∑
t=1

ē∗2λ,it −
σ2
e,i

6

)
+

1

nT

n∑
i=bnλc+1

(
1

T

T∑
t=1

ū∗21−λ,it

)
+

1

6n

n∑
i=1

(
σ̃2
e,i − σ2

e,i

)
+ (1− d0)Op

(
1√
T

)
+ (1− d1)Op

(
1

T 3/2

)
= A2,1 +A2,2 +A2,3 + (1− d0)Op

(
1√
T

)
+ (1− d1)Op

(
1

T 3/2

)
,

where the Op
(
T−1/2

)
term in the second line is the error term coming from the BN decomposition,

similarly to the proof of Lemma 1. Consider A2,1, and let X1iT =
(
T−2

∑T
t=1 ē

∗
λ,it

)2
− σ2

e,i/6. The

sequence X1iT is independent across i; by direct calculation, it can be shown that E (X1iT ) = O
(
T−1

)
;

further, by similar (indeed, easier) passages as in the proofs of (8.16) and (8.17), it holds that E
(
X2

1iT

)
<

∞; thus, E
[∑bnλc

i=1 (X1iT − E (X1iT ))
]2

= O (n), whence A2,1 = (1− d0)
[
Op
(
n−1/2

)
+Op

(
T−1

)]
.

Consider now A2,2; by Assumption 2, it follows immediately that A2,2 = (1− d1)Op
(
T−1

)
. Finally,

consider A2,3; by having assumed E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

)
, it follows that A2,3 = Op (T−η). Thus,

putting all together, we have A2 + A7 = (1− d0) Op
(
n−1/2

)
+ Op (T−η). As regards A3, it is of the

same order as
(
β̂ − β

)2
, so that, by Proposition 1, A3 = Op

(
φ−2nT

)
. Turning to A4, it is bounded by the

square root of its variance, given by n−2σ2
β

∑n
i=1 E

(
T−2

∑T
t=1 x̄itūit

)2
. By using the proof of (8.16),

this term is shown to be O
(
n−1

)
for the units that are spurious regressions; as regards the units that

cointegrate, we have E
(
T−2

∑T
t=1 x̄itūit

)2
= O

(
T−2

)
, which is shown in the proof of Proposition 2 in

Trapani (2013). Thus, putting all together, A4 = dσ Op
(
n−1/2

)
[(1− d0) Op (1) + (1− d1)Op

(
T−1

)]
.

As regards A5, note that

1

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄itūit

)
=

1

n

bnλc∑
i=1

(
1

T 2

T∑
t=1

x̄∗itē
∗
λ,it

)
+

1

nT

n∑
i=bnλc+1

(
1

T

T∑
t=1

x̄∗itū
∗
1−λ,it

)

+ (1− d0)Op

(
1√
T

)
+ (1− d1)Op

(
1

T 3/2

)
;

again, the terms of order Op
(
T−1/2

)
and Op

(
T−3/2

)
arise from the BN decomposition. By the cross-

sectional independence of ē∗λ,it, it can be shown that the first term is Op
(
n−1/2

)
; the second one is

Op
(
T−1

)
by (8.9), so that A5 = (1− d0)Op

(
φ−1nT

)
+ (1− d1)Op

(
T−1

)
. Finally, turning to A6, the

variance of n−1
∑n
i=1

[
(βi − β)

(
T−2

∑T
t=1 x̄

2
it

)]
is given by σ2

β n−2
∑n
i=1 E

[(
T−2

∑T
t=1 x̄

2
it

)2]
=

O
(
n−1

)
; hence, A6 = dσOp

(
n−1/2φ−1nT

)
. Putting all together, the Theorem follows. Note that the

convergence rate for the case λ = σ2
β = 0 can be derived following the same passages as above, and
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recalling that β̂ − β = Op
(
T−1

)
by Proposition 1.

Proof of Theorem 2. We start by considering the case λ > 0. Based on the proof of Theorem 1, under

the null that σ2
β = 0, the term that dominates in (7.1) is γ̂−13 (A2 +A7), which is Op

(
n−1/2

)
. We have

√
n (A2 +A7) =

1√
n

bnλc∑
i=1

[
1

T 2

T∑
t=1

ē∗2λ,it −
1

6
σ2
e,i

]
+Op

(√
n

T η

)
+ op (1)

=
1√
n

bnλc∑
i=1

YaiT +Op

(√
n

T η

)
+ op (1) .

By direct calculation it follows that E (YaiT ) is Op
(
T−1

)
. Consider the sequence ȲaiT = YaiT − E (YaiT );

by virtue of Assumption 1(i), this is an i.i.d. sequence across i. Further, by direct calculation (see also

Baltagi et al., 2008), it holds that E
(
Ȳ 2
aiT

)
=

σ4
e,i

45 . Also, it can be shown that E
∣∣ȲaiT ∣∣2+δ < ∞, by

similar passages as in (8.16) and (8.17). This entails that equation (3.20) in Phillips and Moon (1999)

holds; thus, by Theorem 2 of Phillips and Moon (1999), as (n, T )→∞ with n
T 2η → 0,

(∑bnλc
i=1

σ4
e,i

45

)−1/2
∑bnλc
i=1 ȲaiT

d→ N (0, 1). The consistency of V̂σ holds by construction: since E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

)
with σ2

e,i = 0 for i = bnλc+ 1 , ..., n, we have

V̂σ =
1

45n

bnλc∑
i=1

σ4
e,i +Op

(
T−2η

)
. (7.2)

Putting all together, (3.9) follows. Consider now the limiting distribution when σ2
β > 0. The passages

above can be readily adapted to show that, in such case,
√
nσ̂2

β =
√
nσ2

β + Op (1) + Op (
√
nT−η), so

that

√
nV̂ −1/2σ (A1,1 +A2 +A7) =

√
nγ3V

−1/2
σ σ2

β +
1√
n

bnλc∑
i=1

ȲaiT +Op

(√
n

T η

)
. (7.3)

By construction, the random variable γ3 is positive almost surely, so that S
(σ)
nT

p→∞ when
√
nσ2

β →∞.

This holds for any value of λ ∈ [0, 1].

Finally, consider the behaviour of S
(σ)
nT under the null when λ = 0. In this case, by Theorem 1, σ̂2

β

= Op (T−η); also, by (7.2), under the assumption that E
∣∣σ̃2
e,i − σ2

e,i

∣∣2 = O
(
T−2η

′
)

, we have V̂σ =

Op

(
T−2η

′
)

, so that V̂
−1/2
σ = Op

(
T η
′
)

. Therefore, S
(σ)
nT = Op

(√
nT η

′−η
)

; thus, by (7.3), S
(σ)
nT → ∞

when σ2
β > 0 and (n, T )→∞ with

√
n

Tη′−η
→ 0; therefore P

[
S
(σ)
nT > cα

]
= 1 for any cα <∞.

Proof of Theorem 3. The proof is similar to that of Theorem 1, and therefore passages will be omitted

when possible to save space. We have

λ̂ = 6

{
1

nT 2

n∑
i=1

T∑
t=1

(
ūit
σ̂e,i

)2

+
1

n

n∑
i=1

(
βi − β
σ̂e,i

)2
(

1

T 2

T∑
t=1

x̄2it

)
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+
(
β̂ − β

)2 1

n

n∑
i=1

1

σ̂2
e,i

(
1

T 2

T∑
t=1

x̄2it

)
+ 2

(
β̂ − β

) 1

n

n∑
i=1

(
βi − β
σ̂e,i

)(
1

T 2

T∑
t=1

x̄2it

)

+2
(
β̂ − β

) 1

n

n∑
i=1

1

σ̂e,i

(
1

T 2

T∑
t=1

x̄it
ūit
σ̂e,i

)

−2
1

n

n∑
i=1

(
βi − β
σ̂e,i

)(
1

T 2

T∑
t=1

x̄it
ūit
σ̂e,i

)
− σ̂2

β

1

n

n∑
i=1

1

σ̂2
e,i

(
1

T 2

T∑
t=1

x̄2it

)}

= ∆−1λ {B1 +B2 +B3 +B4 +B5 +B6 +B7} . (7.4)

Consider B1

B1 =
1

nT 2

n∑
i=1

T∑
t=1

(
ū∗it
σ̂e,i

)2

+ (1− d0)Op

(
1√
T

)
+ (1− d1)Op

(
1

T 3/2

)

=
1

nT 2

bnλc∑
i=1

T∑
t=1

(
ē∗λ,it
σ̂e,i

)2

+
1

nT 2

n∑
i=bnλc+1

T∑
t=1

(
ū∗1−λ,it
σ̂e,i

)2

+ (1− d0)Op

(
1√
T

)
+ (1− d1)Op

(
1

T 3/2

)
= B12,1 +B12,2 + (1− d0)Op

(
1√
T

)
+ (1− d1)Op

(
1

T 3/2

)
,

where the term (1− d0) Op
(
T−1/2

)
+ (1− d1) Op

(
T−3/2

)
is the remainder from the BN decomposition.

Consider B12,1; it holds that

B12,1 =
1

nT 2

bnλc∑
i=1

T∑
t=1

(
ē∗λ,it
σe,i

)2

+Op

(
1

T ε

)
. (7.5)

In order to explain the presence of the Op (T−ε) term in (7.5), let M be a constant and note that

E

∣∣∣∣∣∣ 1n
bnλc∑
i=1

[
1

T 2

T∑
t=1

(
ē∗λ,it
σ̂e,i

)2
]
− 1

n

bnλc∑
i=1

[
1

T 2

T∑
t=1

(
ē∗λ,it
σe,i

)2
]∣∣∣∣∣∣

≤ M
1

n

bnλc∑
i=1

(
σ2
e,i − σ̂2

e,i

σ4
e,i

)(
1

T 2

T∑
t=1

ē∗2λ,it

)
+ op

(
T−ε

)

≤ M
1

n

bnλc∑
i=1

E(σ2
e,i − σ̂2

e,i

σ4
e,i

)2
1/2 E( 1

T 2

T∑
t=1

ē∗2λ,it

)2
1/2

= Op
(
T−ε

)
Op (1) ,
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by using the Cauchy-Schwartz inequality, and the fact that E
∣∣σ̂2
e,i − σ2

e,i

∣∣2 = O
(
T−2ε

)
. Hence

B12,1 =
λ

6
− 1

n

bnλc∑
i=1

[
1

T 2

T∑
t=1

(
ē∗λ,it
σe,i

)2

− 1

6

]
+Op

(
1

T ε

)
=
λ

6
+Op

(
1√
n

)
+Op

(
1

T ε

)
;

where the Op
(
n−1/2

)
term follows from the proof of Theorem 1. Therefore, 6×B12,1 = λ + Op

(
n−1/2

)
+ Op (T−ε). As regards B12,2, passages are very similar and therefore omitted when possible. Using the

Cauchy-Schwartz inequality

E

[
1

T 2

T∑
t=1

(
ū∗1−λ,it
σ̂e,i

)2
]
≤ T ε+H

T

E
( 1

T ε+H σ̂2
e,i

)2


1/2E
( 1

T

T∑
t=1

ū∗21−λ,it

)2


1/2

; (7.6)

by Assumption 2(i) and by the fact that T ε+H σ̂2
e,i →∞ as T →∞ for any arbitrarily small H > 0, is

op
(
T ε+H−1

)
. Thus, B12,2 = (1− d1) op

(
T ε+H−1

)
. Turning to B2 + B7, let Z1iT = T−2

∑T
t=1 x̄

2
it; we

have:

B2 +B7 =
1

n

bnλc∑
i=1

[
(βi − β)

2 − σ2
β

](Z1iT

σ̂2
e,i

)
+
(
σ̂2
β − σ2

β

) 1

n

bnλc∑
i=1

(
Z1iT

σ̂2
e,i

)

+
T ε+H

n

n∑
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[
(βi − β)

2 − σ2
β

]( Z1iT

T ε+H σ̂2
e,i

)
+
(
σ̂2
β − σ2

β

) T ε+H
n

n∑
i=bnλc+1

(
Z1iT

T ε+H σ̂2
e,i

)
= B2,1 +B2,2 +B2,3 +B2,4.

Consider B2,1; in the proof of Theorem 1, the same term (modulo the presence of σ̂2
e,i) is called A1,2, and

we show that it is dσ (1− d0) Op
(
n−1/2

)
. As far as B2,2 is concerned, its order of magnitude is the same

as that of σ̂2
β−σ2

β , whence we write compactly B2,2 = (1− d0) Op

(∣∣∣σ̂2
β − σ2

β

∣∣∣). Similar passages, in light

of (7.6), yield B2,3 = dσ (1− d1) op
(
T ε+Hn−1/2

)
and B2,4 = (1− d1) op

(
T ε+H

)
Op

(∣∣∣σ̂2
β − σ2

β

∣∣∣). There-

fore B2 = dσ Op
(
n−1/2

)
[Op (1) + op

(
T ε+H

)]
+ Op

(∣∣∣σ̂2
β − σ2

β

∣∣∣) [Op (1) + op
(
T ε+H

)]
. Considering B3,

similar considerations as for B2, and Proposition 1, entail B3 = [(1− d0)Op (1) + (1− d1) op
(
T ε+H

)]
Op
(
φ−2nT

)
. Turning toB4, define Z2iT = (βi − β)

(
T−2

∑T
t=1 x̄

2
it

)
; then 1

2B4 = n−1
(
β̂ − β

)∑bnλc
i=1

1
σ̂e,i

Z2iT

+ n−1
(
β̂ − β

) ∑n
i=bnλc+1

1
σ̂e,i

Z2iT = B4,1 +B4,2. By the cross sectional independence holding by As-

sumption 3, the variance of B4,1 is
bnλc∑
i=1

1

σ2
e,i

EZ2
2iT + o (1) ,

so that B4,1 = dσ (1− d0) Op
(
n−1/2φ−1nT

)
. Also, B4,2 is bounded by the square root of

(
β̂ − β

)
T
ε+H

2

n−1
∑n
i=bnλc+1 E

∣∣∣∣ 1

T
ε+H

2 σ̂e,i
Z2iT

∣∣∣∣. Given that E

∣∣∣∣ 1

T
ε+H

2 σ̂e,i
Z2iT

∣∣∣∣ ≤ [E (T ε+H σ̂2
e,i

)−1]1/2 [
E (Z2iT )

2
]1/2

= op (1), we have B4,2 = dσ (1− d1) Op
(
n−1/2T (ε+H)/2φ−1nT

)
, whence B4 = dσ [(1− d0)Op (1) +

(1− d1) op
(
T (ε+H)/2

)]
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(
n−1/2φ−1nT

)
. As regards B5, let Z3iT = T−2

∑T
t=1 x̄itūit. As shown in The-
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orem 1, in view of Assumption 1 and Lemma 1, it holds that E (Z3iT ) = O
(
T−1/2

)
for i = 1, ..., bnλc

and E (Z3iT ) = O
(
T−3/2

)
for i = bnλc + 1, ..., n. Thence, 1

2B5 = n−1
(
β̂ − β

) ∑bnλc
i=1

1
σ̂2
e,i
Z3iT + n−1(

β̂ − β
) ∑n

i=bnλc+1
1
σ̂2
e,i
Z3iT = B5,1 +B5,2. Consider B5,1:
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)
n
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1
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(
β̂ − β

)
n
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1
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E (Z3iT ) +

(
β̂ − β

)
n

bnλc∑
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(
1
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By the cross sectional independence of the eλ,its (Assumption 1), it follows that B5,1,1 = (1− d0)

Op
(
n−1/2φ−1nT

)
; moreover,B5,1,2 ≤

(
β̂ − β

)
max1≤i≤bnλc |E (Z3iT )| n−1

∑bnλc
i=1

1
σ2
e,i

= (1− d0)Op
(
T−1/2φ−1nT

)
.

Finally, B5,1,3 is bounded by
(
β̂ − β

) [
|E (Z3iT )|2

]1/2 [
E
∣∣σ̂2
e,i − σ2

e,i

∣∣2]1/2 = (1− d0) Op
(
T−εφ−1nT

)
;

thus, B5,1 = (1− d0) Op
(
φ−1nT

) [
Op
(
n−1/2

)
+Op (T−ε)

]
. As regards B5,2, similar arguments as in the

proof of B3,2 yield that B5,2 is bounded by(
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)
n
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E

∣∣∣∣∣ 1
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n
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whence B5,2 = (1− d1) op
(
T ε+H−1φ−1nT

)
. Thus, B5 = (1− d0) Op
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Op
(
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)
. Essentially the same passages yield B6 = dσ [(1− d0)Op (1) +
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T ε+H

)]
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(
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)
. Putting all together, the results follow.

Proof of Theorem 4. Consider the expansion of λ̂† − b̂SλnT
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)
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= C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 + C11. (7.7)

The proof of the theorem is based on very similar arguments as in the previous proofs, and pas-

sages are omitted where possible. By (8.6), C1 = Op
(
T−2

)
. As regards C2, note that (nT )

−1 ∑n
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−1 ∑n
i=1 σ̂

2
u,i = (nT )

−1 ∑n
i=1

(
T−1

∑T
t=1 ū
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. Therefore,
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. By construction, C5 = 0. Essentially the same arguments as in the proofs of the previ-
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. Thus, the

asymptotic distribution of
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(n, T )→∞,
∑n
i=1 E

[
(βi − β)

2 − σ2
β

]2
EF

(
Z2
4iT

)
> 0 almost surely. The proof is now almost identical

to that of Proposition 1: a conditional version of the Lindeberg CLT can be applied with

1√
n

∑n
i=1

[
(βi − β)

2 − σ2
β

]
Z4iT√(

κβ − σ4
β

)
1
n

∑n
i=1EF (Z2

4iT )

d→ Z, (7.8)

where Z ∼ N (0, 1) independent of F ; the definition of Vλ comes directly from (7.8). Under H0, the βis
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are estimated superconsistently for each i, and σ̂2
β is consistent by Theorem 1; thus, after very similar

passages as in the rest of the paper (particularly, see the proof of equation (8.13)), it can be shown that

V̂λ
p→ Vλ. The desired result follows from putting everything together.

If σ2
β = 0, in (7.7) it holds that C3 = C4 = C6 = C7 = C9 = C10 = 0; also, recall that when λ = σ2

β = 0,

we have β̂−β = Op
(
T−1

)
by Proposition 1; combining this with the same arguments as in the proof of

Theorem 3, we have C5 = C8 = C11 = Op
(
T−2

)
. These results and the previous ones entail that when

λ = σ2
β = 0, it holds that λ̂†− b̂SλnT = Op

(
T−2

)
. Recalling that, when λ = σ2

β = 0, σ̂2
β = Op (T−η), it can

be readily shown that V̂λ is bounded by Op
(
T−2η

)
. Therefore, under λ = σ2

β = 0, S̃
(λ)
nT =

√
n Op

(
T−2

)
Op (T η) = op (1) as (n, T ) → ∞ and

√
n

T 2−η → 0. This entails that, for any cα > 0, P
[
S̃
(λ)
nT > cα

]
= 0

under H0.

Under the alternative, similar passages as in the proof of Theorem 3 and of Proposition 1 yield that the

term that dominates is
√
nλ
(
γ2
6 σ

2
e − γ1γ3

)
V
−1/2
λ +

√
n (C3 + C4), whence (3.18).
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8. Appendix B: further proofs and results

We start by reporting two preliminary Lemmas.

Lemma 1. Let Assumptions 1 and 2 hold. As (n, T )→∞, it holds that:

1

nT 2

n∑
i=1

T∑
t=1

x̄2it =
1

nT 2

n∑
i=1

T∑
t=1

x̄∗2it +Op

(
1√
T

)
= Op (1) , (8.1)

1

nT 4

n∑
i=1

(
T∑
t=1

x̄2it

)2

=
1

nT 4

n∑
i=1

(
T∑
t=1

x̄∗2it

)2

+Op

(
1√
T

)
(8.2)

= Op (1) ,

1

(nλ)T 2

bnλc∑
i=1

T∑
t=1

ū2λ,it =
1

(nλ)T 2

bnλc∑
i=1

T∑
t=1

ē∗2λ,it +Op

(
1√
T

)
(8.3)

= Op (1) ,

1

[n (1− λ)]T 2

n∑
i=bnλc+1

T∑
t=1

ū21−λ,it = Op

(
1

T

)
, (8.4)

1

(nλ)T 4

bnλc∑
i=1

(
T∑
t=1

x̄itūλ,it

)2

=
1

(nλ)T 4

bnλc∑
i=1

(
T∑
t=1

x̄∗itē
∗
λ,it

)2

+Op

(
1√
T

)
(8.5)

= Op (1) ,

1

[n (1− λ)]T 4

n∑
i=bnλc+1

(
T∑
t=1

x̄itū1−λ,it

)2

= Op

(
1

T 2

)
, (8.6)

1

nT 2

n∑
i=1

(
T∑
t=1

g′ih̄t

)2

= Op

(
1

T

)
, (8.7)

1

nT 4

n∑
i=1

(
T∑
t=1

x̄itg
′
ih̄t

)2

= Op

(
1

T 2

)
. (8.8)

Proof of Lemma 1. Equation (8.1) follows, under Assumption 2, by the proof of Lemma 13 in Phillips

and Moon (1999), where, lettingRiT = T−2
(∑T

t=1 x̄
2
it −

∑T
t=1 x̄

∗2
it

)
, it is shown that E |RiT |=O

(
T−1/2

)
for each i; Assumption 2(i) also ensures that E

(
T−2

∑T
t=1 x̄

∗2
it

)
= O (1). Equation (8.2) follows from

the same logic.

Turning to (8.3), note that, for all i = 1, ..., bnλc, T−2
∑T
t=1 [ūλ,it]

2 − T−2
∑T
t=1 [ēλ,it]

2
= T−2∑T

t=1

(∑+∞
j=−∞ cij∆xit+j

)2
+ 2T−2

∑T
t=1 ēλ,it

(∑+∞
j=−∞ cij∆xit+j

)
= I + II. As regards I, it is

bounded by T−2
∑T
t=1

(∑+∞
j=−∞ c2ij

)
E (∆xit+j)

2
= O

(
T−1

)
for each i, by Assumption 2(i) and

2(iii). Similarly, using the Cauchy-Schwartz inequality, II is bounded by
{
T−2

∑T
t=1E (ēλ,it)

2
}1/2

{
T−2

∑T
t=1E

(∑+∞
j=−∞ cij∆xit+j

)2}1/2

. Similarly to (8.1), Assumption 2 yields E
∣∣∣T−2∑T

t=1E
(
ē2λ,it

)
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− T−2
∑T
t=1E

(
ē∗2λ,it

)∣∣∣ = O
(
T−1/2

)
; by virtue of Assumption 2(i), E

(
ē∗2λ,it

)
= O (t), whence T−2

∑T
t=1E

(
ē∗2λ,it

)
= O (1). Hence, T−2

∑T
t=1E

(
ē2λ,it

)
= O (1). Also, as shown above, T−2

∑T
t=1 E

(∑+∞
j=−∞ cij∆xit+j

)2
= O

(
T−1

)
, which entails that E (II) = O

(
T−1/2

)
; this is not the sharpest bound, but it suffices for

our purposes. Putting all together, (8.3) follows.

As regards (8.4), by stationarity and Assumption 2(i) we have T−1
∑T
t=1E

(
ū21−λ,it

)
= O (1) for all i,

from which the desired result follows. Considering (8.5), note first that, for all i, T−4
(∑T

t=1 x̄itūλ,it

)2
−

T−4
(∑T

t=1 x̄itēλ,it

)2
= T−4

[∑T
t=1 x̄it

(∑+∞
j=−∞ cij∆xit+j

)]2
+ 2T−4

(∑T
t=1 x̄itēλ,it

)∑T
t=1 x̄it

(∑+∞
j=−∞ cij∆xit+j

)
= I + II. Consider I; using the Cauchy-Schwartz inequality, (8.2) and the proof of (8.3), it follows

that E (I) = O
(
T−1/2

)
. Also, considering II, E

∣∣∣T−4 (∑T
t=1 x̄itēλ,it

) ∑T
t=1 x̄it

(∑+∞
j=−∞ cij∆xit+j

)∣∣∣
≤
{
E
(
T−2

∑T
t=1 x̄itēλ,it

)2}1/2 {
E
[
T−2

∑T
t=1 x̄it

(∑+∞
j=−∞ cij∆xit+j

)]2}1/2

. Assumption 2 entails

E

∣∣∣∣(T−2∑T
t=1 x̄itēλ,it

)2
−
(
T−2

∑T
t=1 x̄

∗
itē
∗
λ,it

)2∣∣∣∣=O
(
T−1/2

)
. Also, by using Assumption 2(iv), E

∣∣∣∣(T−2∑T
t=1 x̄

∗
itē
∗
λ,it

)2∣∣∣∣
≤ T−2

∑T
t=1 E (x̄∗it)

2
E
(
ē∗λ,it

)2
. Given that, by Assumption 2(i), E

(
x̄∗2it
)

and E
(
ē∗2λ,it

)
are both O (t),

it follows that E
∣∣∣(T−2∑T

t=1 x̄∗itē
∗
λ,it

)2∣∣∣∣ = O (1). Therefore, E (II) = O
(
T−1/2

)
. Hence, (8.5) follows.

Turning to (8.6), Assumption 2 implies E
∣∣∣(T−1∑T

t=1 x̄itū1−λ,it

) 2

−
(
T−1

∑T
t=1 x̄

∗
itū
∗
1−λ,it

)2∣∣∣∣=O
(
T−1/2

)
.

Further, E
(
T−1

∑T
t=1 x̄

∗
itū
∗
1−λ,it

)2
= T−2

∑T
t=1

∑T
s=1 E (x̄∗itx̄

∗
is) E

(
ū∗1−λ,itū

∗
1−λ,is

)
= T−2

∑T
t=1

E
(
x̄∗2it
)
E
(
ū∗21−λ,it

)
= O (1). Hence, (8.6) follows. Finally, (8.7) and (8.8) can be shown using the

same approach as for (8.4) and (8.6) respectively.

Lemma 2. Let Assumptions 1-3 hold. As (n, T )→∞, it holds that:

n∑
i=bnλc+1

T∑
t=1

x̄itū1−λ,it = Op (nT ) , (8.9)

n∑
i=1

T∑
t=1

x̄itg
′
ih̄t = Op (nT ) , (8.10)

n∑
i=1

T∑
t=1

x̄it [(βi − β) x̄it + ūλ,itdλ,i] = (dσ + 1− d0)Op
(√
nT 2

)
(8.11)

+ (1− d0)Op

(
nT 3/2

)
.

Proof of Lemma 2. Consider (8.9). By the proof of (8.6), it follows that E
∣∣∣T−2∑T

t=1 x̄itū1−λ,it

∣∣∣ =

O
(
T−1

)
, which yields (8.9). The same logic yields (8.10). Turning to (8.11),

∑n
i=1

∑T
t=1 x̄it [(βi − β) x̄it

+ ūλ,itdλ,i] =
∑n
i=1 (βi − β)

(∑T
t=1 x̄

2
it

)
+
∑n
i=1

∑T
t=1 x̄itūλ,itdλ,i = I + II. Consider I; using Assump-

tion 3, it is bounded by the square root of T 4
∑n
i=1 E

[
(βi − β)

2
]
E

[(
T−2

∑T
t=1 x̄

2
it

)2]
. Equation (8.2)
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entails E
(
T−2

∑T
t=1 x̄

2
it

)2
= O (1) for each i, so that I = Op

(√
nT 2dσ

)
. Considering II, note that, by

(8.5) and (8.6), II =
∑bnλc
i=1

∑T
t=1 x̄

∗
itē
∗
λ,it + Op

[
nT 3/2 (1− d0)

]
+ Op (nT ). By Assumption 1(i), the

first term is bounded by the square root of
∑bnλc
i=1 E

(∑T
t=1 x̄

∗
itē
∗
λ,it

)2
; since E

(∑T
t=1 x̄

∗
itē
∗
λ,it

)2
= O

(
T 2
)

for every i in view of (8.5),
∑bnλc
i=1

∑T
t=1 x̄

∗
itē
∗
λ,it = Op

(√
nT 2

)
. Putting all together, (8.11) follows.

Proof of Proposition 1. We start by reporting a result on the rate of convergence of β̂ when
(
λ, σ2

β

)
6=

(0, 0). Recall that β̂ − β =
[∑n

i=1

∑T
t=1 x̄

2
it

]−1 {∑n
i=1

∑T
t=1 x̄it [ūit + (βi − β) x̄it]

}
. By equation (8.1),∑n

i=1

∑T
t=1 x̄

2
it = Op

(
nT 2

)
; also, by Lemma 2,

∑n
i=1

∑T
t=1 x̄it [ūit + (βi − β) x̄it] = Op

(√
nT 2

)
+

Op
(
nT 3/2

)
when either λ or σ2

β are different from zero. Thus

β̂ − β = Op

(
1√
n

)
+Op

(
1√
T

)
= Op

(
φ−1nT

)
. (8.12)

In order to prove (2.6) and (2.7), we start by showing that, as (n, T )→∞

1

nT 2

n∑
i=1

T∑
t=1

x̄2it −
1

n

n∑
i=1

EF

(∫
W̄ 2
xi

)
= op (1) . (8.13)

The proof is based on the same logic as in Phillips and Moon (1999), with the only difference that in our

context the xits are not independent, but conditionally independent. As a preliminary result, recall that,

by (8.1),
(
nT 2

)−1 ∑n
i=1

∑T
t=1 x̄

2
it =

(
nT 2

)−1 ∑n
i=1

∑T
t=1 x̄

∗2
it + op (1) and let Q0iT = T−2

∑T
t=1 x̄

∗2
it .

Conditional on F , this is an independent sequence across i for all T . As T → ∞, Assumption 2

and the Continuous Mapping Theorem entail that Q2
0iT

d→ Q2
0i =

(∫
W̄ 2
xi

)2
(see e.g. Phillips and

Durlauf, 1986). Also, based on Assumption 2(i), it can be verified by direct calculation that E
(
Q2

0iT

)
→ E

(
Q2

0i

)
as T → ∞. This entails that Q0iT is uniformly square integrable in T (see Theorem 5.4 in

Billingsley, 2013). By adapting, to the conditional case, the definition of joint convergence in probability

(see Phillips and Moon, 1999), Q0nT = n−1
∑n
i=1Q0iT converges jointly in probability to µQ = n−1∑n

i=1EF (Q0i) conditional on F if and only if P [ |Q0nT − µQ| > ε| F ] = 0 almost surely as (n, T )→∞
for an arbitrary F -measurable random variable ε, positive almost surely. By Chebychev’s inequality,

it suffices to show that EF (Q0nT − µQ)
2 → 0 almost surely. Let µQ,T = n−1

∑n
i=1EF (Q0iT ); we

have EF (Q0nT − µQ)
2 ≤ 2EF (Q0nT − µQ,T )

2
+ 2 (µQ,T − µQ)

2
= I + II. Consider I; by conditional

independence, I = n−2
∑n
i=1EF (Q0iT − EF (Q0iT ))

2
; since E

(
Q2

0iT

)
< ∞ (see the proof of (8.17)

below), EF (Q0iT − EF (Q0iT ))
2

is finite almost surely, so that it can be shown that I → 0 almost

surely. Also, by the square integrability of Q0iT (and, therefore, of EF (Q0iT )), it follows that II → 0

almost surely.
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We now turn to proving (2.6) and (2.7). Considering the numerators of the two expressions, we have

1

nT 4

n∑
i=1

(
T∑
t=1

x̄itv̂it

)2

=
1

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄itūit

)2

+
1

n

n∑
i=1

(βi − β)
2

(
1

T 2

T∑
t=1

x̄2it

)2
+

(
β̂ − β

)2 1

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄2it

)2

+2
1

n

n∑
i=1

[
(βi − β)

(
1

T 2

T∑
t=1

x̄2it

)(
1

T 2

T∑
t=1

x̄itūit

)]
− 2

(
β̂ − β

) 1

n

n∑
i=1

(βi − β)

(
1

T 2

T∑
t=1

x̄2it

)2


−2
(
β̂ − β

) 1

n

n∑
i=1

[(
1

T 2

T∑
t=1

x̄2it

)(
1

T 2

T∑
t=1

x̄itūit

)]
(8.14)

= a1 + a2 + a3 + a4 + a5 + a6,

and

1

nT 2

n∑
i=1

T∑
t=1

v̂2it

=
1

n

n∑
i=1

T∑
t=1

ū2it +
1

nT 2

n∑
i=1

[
(βi − β)

2

(
1

T 2

T∑
t=1

x̄2it

)]
+
(
β̂ − β

)2 1

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄2it

)

+2
1

n

n∑
i=1

[
(βi − β)

(
1

T 2

T∑
t=1

x̄itūit

)]
− 2

(
β̂ − β

) 1

n

n∑
i=1

(
1

T 2

T∑
t=1

x̄itūit

)

−2
(
β̂ − β

) 1

n

n∑
i=1

[
(βi − β)

(
1

T 2

T∑
t=1

x̄2it

)]
(8.15)

= b1 + b2 + b3 + b4 + b5 + b6.

Consider (8.14). We have

a1 =
1

nT 4

bnλc∑
i=1

[
T∑
t=1

x̄it
(
ūλ,it + g′ih̄t

)]2
+

1

nT 4

n∑
i=bnλc+1

[
T∑
t=1

x̄it
(
ū1−λ,it + g′ih̄t

)]2
= a1,1 + a1,2.

By (8.5), (8.6) and (8.8), a1,1 = Op (1) and a1,2 = Op
(
T−2

)
. As regards the limit of a1,1, it can be

derived by using similar arguments as in the proof of (8.13). The term that dominates is n−1
∑bnλc
i=1(

T−2
∑T
t=1 x̄

∗
itē
∗
λ,it

)2
. Let Q1iT =

(
T−2

∑T
t=1 x̄

∗
itē
∗
λ,it

)2
; conditional on F , this is an independent

sequence across i for all T . As T →∞, Assumption 2 entails that Q2
1iT

d→ Q2
1i =

(∫
W̄xiW̄ei

)4
(see e.g.

Phillips and Durlauf (1986)). Assumption 2(i) and standard calculations yield E
(
Q2

1iT

)
→ E

(
Q2

1i

)
as

T →∞. This entails that Q1iT is a uniformly square integrable sequence in T . Using the same passages

as in the proof of (8.13), it follows that



L. Trapani/Heterogeneity and cointegration in panels 36

a1,1 −
1

n

bnλc∑
i=1

EF

(∫
W̄xiW̄ei

)2

= op (1) .

Consider now a2; the term that dominates is Q2iT = (βi − β)
2
(
T−2

∑T
t=1 x̄

∗2
it

)2
. Conditional on F ,

Q2iT is independent across i with finite, nonzero mean as long as σ2
β 6= 0, for all T . By Assumptions 2

and 3, Q2
2iT

d→ Q2
2i = (βi − β)

2 (∫
W̄ 2
xi

)2
; further, standard calculations yield E

(
Q2

2iT

) d→ E
(
Q2

2i

)
, so

that Q2iT is a uniformly square integrable sequence in T . Again, by the same logic as for the proof of

(8.13), a2 − σ2
β n
−1 ∑n

i=1EF
(∫
W̄ 2
xi

)2
= op (1). Turning to a3, by (8.2) and (8.12), a3 = Op

(
φ−2nT

)
. As

regards a4, let a4 = n−1
∑n
i=1Q3iT ; by Assumption 3, E (Q3iT ) = 0 and E (Q3iTQ3jT ) = 0 for all i 6= j.

Therefore, E
[(
n−1

∑n
i=1Q3iT

)2]
= n−2

∑n
i=1E

[
(Q3iT )

2
]
. It holds that E

[
(Q3iT )

2
]
< ∞; the proof

follows similar lines as that of (8.16)-(8.17) below for details on how to prove this. Thus, a4 = Op
(
n−1/2

)
.

Similar passages yield a5 = Op
(
n−1/2φ−1nT

)
. Finally, turning to a6, by by (8.1), (8.5), (8.6) and (8.8)

we have a6 = n−1
∑n
i=1Q4iT + Op

(
T−1/2

)
, with Q4iT =

(
T−2

∑T
t=1 x̄

∗2
it

) (
T−2

∑T
t=1 x̄

∗
itē
∗
λ,it

)
. By

Assumptions 1 and 2(i), E (Q4iT ) = 0 and E (Q4iTQ4jT ) = 0 for all i 6= j, whence similar passages as

for a4 yield a6 = Op
(
φ−2nT

)
. Putting all together, (2.6) is verified.

Turning to (2.7), passages are fairly similar to those for the proof of (2.6) and omitted when possible.

Consider (8.15); we have

b1 =
1

nT 4

bnλc∑
i=1

T∑
t=1

(
ūλ,it + g′ih̄t

)2
+

1

nT 4

n∑
i=bnλc+1

T∑
t=1

(
ū1−λ,it + g′ih̄t

)2
= b1,1 + b1,2.

As (n, T ) → ∞, (8.4) and (8.7) entail b1,2 = Op
(
T−1

)
. As regards b1,1, by (8.3) and (8.7) the term

that dominates is n−1
∑bnλc
i=1 T−2

∑T
t=1

(
ē∗λ,it

)2
. Under Assumption 2, Lemma 13 in Phillips and Moon

(1999) can be applied directly, with b1,1
p→ λ limn→∞ (nλ)

−1 ∑bnλc
i=1 σ2

e,i/6. Similar passages as for

a2 entail b2 − σ2
β n−1

∑n
i=1EF

(∫
W̄ 2
xi

)
= op (1). Equations (8.1) and (8.12) entail b3 = Op

(
φ−2nT

)
.

As regards b4, b5 and b6, the same arguments as above yield b4 = Op
(
n−1/2

)
, b5 = Op

(
φ−2nT

)
and

b6 = Op
(
n−1/2φ−1nT

)
. Putting all together, (2.7) follows.

Finally, we turn to proving (2.8). The denominator is studied in (8.13). As regards the numera-

tor, by (8.9) and (8.10),
(√
nT 2

)−1 ∑n
i=1

∑T
t=1 x̄it [ūit + (βi − β) x̄it] =

(√
nT 2

)−1 ∑n
i=1

∑T
t=1 x̄it

[(βi − β) x̄it + ūλ,itdλ,i] + Op

(√
n
T

)
; also, by similar arguments as in the proof of Lemma 1,

(√
nT 2

)−1∑n
i=1

∑T
t=1 x̄it [(βi − β) x̄it + ūλ,itdλ,i] =

(√
nT 2

)−1∑n
i=1

∑T
t=1 x̄

∗
it

[
(βi − β) x̄∗it + ē∗λ,itdλ,i

]
+Op

(√
n
T

)
.

Let Q5iT = T−2
∑T
t=1 x̄

∗
it

[
(βi − β) x̄∗it + ē∗λ,itdλ,i

]
. We prove a conditional CLT for the sequence Q5iT ;

this is based on following the same passages as in the proof of Theorem 2 in Phillips and Moon (1999),

with the only difference of having a conditional version of the Lindeberg condition. First, by Assump-

tions 1-3, E (Q5iT ) = 0 and the Q5iT s are independent across i for all T conditional on F . Further, a

Liapunov condition holds conditionally on F ; indeed, for every i, EF |Q5iT |2+δ ≤ 21+δ E |βi − β|2+δ

EF

∣∣∣T−2∑T
t=1 x̄

∗2
it

∣∣∣2+δ + 21+δ EF

∣∣∣T−2∑T
t=1 x̄

∗
itē
∗
λ,it

∣∣∣2+δ, after using the Cr-inequality, the Cauchy-
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Schwartz inequality and Assumption 3, which also ensures that E |βi − β|2+δ <∞. For every i

E

∣∣∣∣∣ 1

T 2

T∑
t=1

x̄∗itē
∗
λ,it

∣∣∣∣∣
2+δ

≤

[
1

T 3+δ

T∑
t=1

E |x̄∗it|
4+2δ

]1/2 [
1

T 3+δ

T∑
t=1

E
∣∣ē∗λ,it∣∣4+2δ

]1/2
, (8.16)

by convexity and the Cauchy-Schwartz inequality. By Assumption 2(i), E
∣∣∣ē∗λ,it∣∣∣4+2δ

= O
(
t2+δ

)
, whence

T−(3+δ)
∑T
t=1E

∣∣∣ē∗λ,it∣∣∣4+2δ

< ∞; also, for every i

1

T 3+δ

T∑
t=1

E |x̄∗it|
4+2δ ≤

(
E |li|4+2δ

) 21+δ

T 3+δ

T∑
t=1

E
∣∣f̄∗t ∣∣4+2δ

+
21+δ

T 3+δ

T∑
t=1

E |w̄∗it|
4+2δ

= I + II; (8.17)

again, both I and II can be shown to be finite on account of Assumption 2(i), in the same way as

(8.16). Equations (8.16) and (8.17) entail that EF

∣∣∣T−2∑T
t=1 x̄

∗2
it

∣∣∣2+δ and EF

∣∣∣T−2∑T
t=1 x̄

∗
itē
∗
λ,it

∣∣∣2+δ are

both finite almost surely. Finally, Assumption 2(ii) ensures that EF
(
Q2

5iT

)
> 0 almost surely for all i,

uniformly in T , so that
∑n
i=1EF

(
Q2

5iT

)
> 0 almost surely for large n. Thus, the conditional version

of the Lindeberg version of the CLT can be applied (see Billingsley, 2008, Theorem 27.2, for a proof of

the Lindeberg CLT; see also Theorem 7 in Rao, 2009, and the comments thereafter for the conditional

version of the CLT); the only difference is that limits are taken as (n, T ) → ∞, with T → ∞ being

incidental to the main argument of the proof. Hence, as (n, T )→∞

1√
n

∑n
i=1Q5iT√

1
n

∑n
i=1EF (Q2

5iT )

d→ Z,

with Z ∼ N (0, 1) independent of F . By the proof of (2.6), as (n, T )→∞, we have

1

n

n∑
i=1

EF
(
Q2

5iT

)
−

λ 1

nλ

bnλc∑
i=1

EF

[(∫
W̄xiW̄ei

)2
]

+ σ2
β

1

n

n∑
i=1

EF

[(∫
W̄ 2
xi

)2
] = op (1) ,

which completes the proof of (2.8). Finally, when
(
λ, σ2

β

)
= (0, 0), β̂− β = Op

(
T−1

)
by virtue of (8.9),

(8.10) and (8.13).

Proof of Theorem 6. . The consistency (and the speed of convergence) of λ̆ can be shown in the same

way as in the proof of Theorem 3, after showing the corresponding results for Σ̆β . In turn, the only part

of the proof of this which differs from Theorem 1 is to show that Γ̂v1 = Γv1 +Op (T−η), where Γv1 is the

limit of n−1
∑n
i=1EF

(∫
W̄xiW̄ei

) (∫
W̄xiW̄ei

)′
dλ,i. Letting Gi,T = T−2

∑T
t=1 x̄itū

∗
it, we have

1

n

n∑
i=1

σ̃2
e,iGi,TG

′
i,T =

1

n

n∑
i=1

σ2
e,iGi,TG

′
i,T dλ,i +

1

n

n∑
i=1

(
σ̃2
e,i − σ2

e,i

)
Gi,TG

′
i,T ,
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and by the same arguments as above, we have that

1

n

n∑
i=1

(
σ̃2
e,i − σ2

e,i

)
Gi,TG

′
i,T = d0Op

(
T−η

)
.

Also
1

n

n∑
i=1

σ2
e,iGi,TG

′
i,T dλ,i

d→ 1

n

n∑
i=1

σ2
e,iEF

(∫
W̄xiW̄

∗
ui

)(∫
W̄xiW̄

∗
ui

)′
dλ,i,

where W ∗ui is the Brownian motion associated to u∗it. Conditional on F , it holds that
∫
W̄xiW̄eidλ,i has

the same distribution as σe,i
∫
W̄xiW̄

∗
uidλ,i, so that

1

n

n∑
i=1

σ2
e,iGi,TG

′
i,T dλ,i

d→ 1

n

n∑
i=1

EF

(∫
W̄xiW̄ei

)(∫
W̄xiW̄ei

)′
dλ,i

obtains immediately. The desired result now follows from adapting the proof of Theorem 1.

Limiting distribution of σ̂2
β and λ̂

We present two ancillary results that complement the consistency results in Theorems 1 and 3: the

limiting distributions of σ̂2
β (Theorem 7) and of λ̂ (Theorem 8).

Theorem 7. Let Assumptions 1-3 hold. As (n, T )→∞ with n
T 2η → 0, it holds that, for σ2

β > 0

√
n
(
σ̂2
β − σ2

β

) d→ γ−13 × V 1/2
σβ × Z, (8.18)

where Vσβ = Vσ + (1− d0) Vσβ,1, with Vσ defined in (3.8) and

Vσβ,2 =
(
κβ − σ4

β

)
γ2 + 4σ2

βγ1,

κβ = E
[
(βi − β)

4
]
, and Z ∼ N (0, 1) independent of F .

Theorem 8. Let the assumptions of Theorem 3 hold. As (n, T ) → ∞ with n
T 2ε → 0, it holds that, for

σ2
β = 0 and having set λhc = 0 in (3.10)

√
n
(
λ̂− λ

)
d→ N

(
0,

4

5
λ

)
. (8.19)

In both cases, results are presented for the unrestricted case. However, the two parameters are restricted,

since σ2
β ≥ 0 and λ ∈ [0, 1]. Thus, we propose the following truncated estimators: σ̂2

β,trunc = σ̂2
β ×

I[0,+∞)

(
σ̂2
β

)
and λ̂trunc = λ̂ × I[0,1]

(
λ̂
)

. Let v2σ and v2λ denote the asymptotic variances defined in

(8.18) and (8.19) respectively. Under the assumptions of the two Theorems, the densities of the two
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limiting distributions are given by

fσ̂2
β

(x) =

√
n

2πv2σ

[
1− Φ

(
−
√
nσ2

β

vσ

)]−1
exp

−1

2

n
(
x− σ2

β

)2
v2σ

 I[0,+∞) (x) ,

fλ̂ (x) =

√
n

2πv2λ

[
Φ

(√
n (1− λ)

vλ

)
− Φ

(
−
√
nλ

vλ

)]−1
exp

{
−1

2

n (x− λ)
2

v2λ

}
I[0,1] (x) ,

where Φ denotes the cumulative distribution of the standard normal - see e.g. Johnson et al. (1995).

Proof of Theorem 7. Based on (7.1) and the passages thereafter, as (n, T ) → ∞ with n
T 2η → 0, the

terms that dominate have magnitude Op
(
n−1/2

)
, and they are A1, A2 +A7, and A4; thus, the limiting

distribution of
√
n
(
σ̂2
β − σ2

β

)
is given by γ−13 n−1/2

∑n
i=1

(
ȲaiT + YbiT + YciT

)
+ Op

(√
n

Tη

)
, where

YbiT = 2 (βi − β)

(
1

T 2

T∑
t=1

x̄∗itē
∗
λ,it

)
,

YciT =
[
(βi − β)

2 − σ2
β

]( 1

T 2

T∑
t=1

x̄∗2it

)
,

and ȲaiT is defined in the proof of Theorem 2. In order to prove a CLT for
√
n
(
σ̂2
β − σ2

β

)
, let YβiT =

φaȲaiT + φbYbiT + φcYciT for some nonzero φa, φb and φc.and consider n−1/2
∑n
i=1 YβiT . The sequence

YβiT has mean zero and is independent across i, conditional on F , for all T . Also, a Liapunov condition

holds conditional on F . This can be shown by noting that E |YβiT |2+δ ≤ 21+δ
(
|φa|2+δ E

∣∣ȲaiT ∣∣2+δ
+ |φb|2+δ E |YbiT |2+δ + |φc|2+δ E |YciT |2+δ

)
. In the proof of Theorem 2, it is shown that E

∣∣ȲaiT ∣∣2+δ <
∞; by Assumption 3 and (8.16)-(8.17), it can similarly be shown that E |YbiT |2+δ <∞ and E |YciT |2+δ <
∞; hence, E |YβiT |2+δ < ∞ almost surely. Finally, as in the previous proofs, Assumption 2(ii) ensures

that the asymptotic variance is non zero. Thus, as (n, T )→∞ under n
T 2η → 0

1√
n

∑n
i=1 YβiT√
Vσβ,abc

d→ Z, (8.20)

where Z ∼ N (0, 1) independent of F and

Vσβ,abc =
1

n

n∑
i=1

EF
[
φ2aȲ

2
aiT + (1− d0)

(
φ2bY

2
biT + φ2cY

2
ciT

)]
+2 (1− d0)

1

n

n∑
i=1

EF
(
φaφcȲaiTYciT + φaφbȲaiTYbiT + φbφbYbiTYciT

)
.

By Assumption 3, EF
(
ȲaiTYbiT

)
= EF

(
ȲaiTYciT

)
= 0. Also, Assumption 2(iv) entails that EF (YbiTYciT )

= 0. Putting all together, (8.18) follows.
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We now analyse the asymptotic bias of σ̂2
β . Among the higher order terms in (7.1), there are some terms

of order Op
(
n−1

)
, namely A3 and A6. Consider the following component of A3 +A6

−γ̂−23

[
1

n

n∑
i=1

(βi − β)

(
1

T 2

T∑
t=1

x̄∗2it

)]2
= −γ−23

[
1

n

n∑
i=1

(βi − β)

(
1

T 2

T∑
t=1

x̄∗2it

)]2
+ op

(
1

n

)
;

we have

EF

 1

γ23

[
1

n

n∑
i=1

(βi − β)

(
1

T 2

T∑
t=1

x̄∗2it

)]2
=

1

γ23
EF

γ−23

1

n2

n∑
i=1

n∑
j=1

(βi − β) (βj − β)

(
1

T 2

T∑
t=1

x̄∗2it

)(
1

T 2

T∑
t=1

x̄∗2jt

)
=

1

n2γ23

n∑
i=1

EF

(βi − β)
2

(
1

T 2

T∑
t=1

x̄∗2it

)2


=

(
σ2
β

nγ23

)
1

n

n∑
i=1

EF

( 1

T 2

T∑
t=1

x̄∗2it

)2
 ;

this can be estimated by n−1σ̂2
β γ̂2γ̂

−2
3 , whence the bias correction.

Proof of Theorem 8. Passages are similar to those in the proof of Theorem 7, and thus we only outline

the main idea of the proof. Consider (7.4); when σ2
β = 0 and σ̂2

β is set to zero, the only terms that are

present are B1 and B5 (which is dominated). Thus, the asymptotics of
√
n
(
λ̂− λ

)
is governed by

√
n
(
λ̂− λ

)
= 6

1√
n

bnλc∑
i=1

[
1

T 2

T∑
t=1

(
ē∗λ,it
σe,i

)2

− 1

6

]
+Op

(√
n

T ε

)
.

We have

1√
n

bnλc∑
i=1

[
1

T 2

T∑
t=1

(
ē∗λ,it
σe,i

)2

− 1

6

]
=
√
λ

1√
nλ

bnλc∑
i=1

[
1

T 2

T∑
t=1

(
ē∗λ,it
σe,i

)2

− 1

6

]
d→
√
λ×N

(
0,

1

45

)
,

which follows from the same passages as in the proof of Theorem 2. Putting all together, the theorem

follows.
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(0.184)

−0.095
(0.231)

−0.082
(0.181)

−0.076
(0.177)

−0.083
(0.198)

0.75
−0.007
(0.184)

0.033
(0.238)

0.024
(0.233)

0.000
(0.200)

−0.018
(0.194)

−0.020
(0.293)

−0.008
(0.187)

−0.004
(0.217)

−0.022
(0.269)

0
−0.255
(0.260)

−0.253
(0.258)

−0.256
(0.265)

−0.189
(0.193)

−0.187
(0.192)

−0.185
(0.198)

−0.152
(0.155)

−0.154
(0.159)

−0.146
(0.163)

(0, 0.75) 0.25
−0.162
(0.197)

−0.151
(0.192)

−0.149
(0.205)

−0.118
(0.167)

−0.118
(0.165)

−0.122
(0.227)

−0.103
(0.153)

−0.103
(0.161)

−0.102
(0.173)

0.50
−0.072
(0.174)

−0.054
(0.173)

−0.073
(0.227)

−0.049
(0.164)

−0.065
(0.166)

−0.058
(0.207)

−0.060
(0.152)

−0.062
(0.171)

−0.047
(0.183)

0.75
0.025

(0.189)
0.030

(0.206)
0.034

(0.254)
0.009

(0.186)
−0.003
(0.196)

−0.001
(0.244)

−0.018
(0.178)

−0.003
(0.209)

−0.011
(0.262)

0
−0.287
(0.293)

−0.285
(0.291)

−0.291
(0.305)

−0.207
(0.211)

−0.205
(0.210)

−0.204
(0.217)

−0.163
(0.166)

−0.163
(0.168)

−0.163
(0.169)

(0,−0.75) 0.25
−0.184
(0.219)

−0.178
(0.219)

−0.187
(0.235)

−0.132
(0.173)

−0.134
(0.181)

−0.139
(0.189)

−0.114
(0.165)

−0.118
(0.161)

−0.099
(0.183)

0.50
−0.087
(0.182)

−0.080
(0.190)

−0.082
(0.236)

−0.077
(0.166)

−0.068
(0.178)

−0.072
(0.205)

−0.052
(0.164)

−0.066
(0.172)

−0.064
(0.186)

0.75
0.019

(0.171)
0.020

(0.205)
0.013

(0.268)
0.019

(0.186)
0.019

(0.201)
−0.001
(0.247)

−0.005
(0.182)

−0.016
(0.202)

−0.007
(0.239)

Table 3a: bias and RMSE for σ̂2
β,bc
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(n, T ) (50, 50) (50, 100) (50, 200) (100, 200)

σ2
β σ2

β σ2
β σ2

β
(ρ, θ) λ 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50 0 0.25 0.50

0
−0.165
(0.167)

−0.166
(0.168)

−0.165
(0.170)

−0.162
(0.163)

−0.160
(0.161)

−0.164
(0.167)

−0.117
(0.118)

−0.118
(0.120)

−0.116
(0.122)

−0.095
(0.116)

−0.096
(0.117)

−0.096
(0.123)

(0, 0) 0.25
−0.078
(0.101)

−0.077
(0.104)

−0.075
(0.118)

−0.090
(0.110)

−0.092
(0.114)

−0.082
(0.131)

−0.067
(0.093)

−0.073
(0.099)

−0.069
(0.115)

−0.054
(0.078)

−0.054
(0.082)

−0.054
(0.088)

0.50
0.027

(0.089)
0.028

(0.104)
0.017

(0.138)
−0.024
(0.097)

−0.019
(0.098)

−0.015
(0.110)

−0.019
(0.094)

−0.025
(0.101)

−0.012
(0.109)

−0.011
(0.065)

−0.009
(0.068)

−0.009
(0.084)

0.75
0.109

(0.161)
0.113

(0.165)
0.109

(0.176)
0.042

(0.120)
0.048

(0.130)
0.055

(0.162)
0.027

(0.109)
0.033

(0.123)
0.016

(0.141)
0.015

(0.086)
0.021

(0.094)
0.014

(0.111)

0
−0.165
(0.167)

−0.166
(0.168)

−0.165
(0.170)

−0.162
(0.163)

−0.160
(0.161)

−0.164
(0.167)

−0.117
(0.118)

−0.118
(0.120)

−0.116
(0.122)

−0.095
(0.116)

−0.096
(0.117)

−0.096
(0.123)

(0.75, 0) 0.25
−0.148
(0.162)

−0.147
(0.165)

−0.143
(0.172)

−0.196
(0.208)

−0.198
(0.211)

−0.188
(0.216)

−0.162
(0.175)

−0.167
(0.181)

−0.166
(0.190)

−0.145
(0.162)

−0.135
(0.164)

−0.135
(0.167)

0.50
−0.022
(0.102)

−0.022
(0.100)

−0.011
(0.128)

−0.083
(0.127)

−0.091
(0.132)

−0.083
(0.164)

−0.081
(0.120)

−0.077
(0.123)

−0.081
(0.137)

−0.057
(0.101)

−0.060
(0.104)

−0.059
(0.111)

0.75
0.079

(0.134)
0.088

(0.151)
0.089

(0.171)
0.017

(0.111)
0.009

(0.122)
0.014

(0.144)
0.000

(0.109)
−0.002
(0.117)

−0.002
(0.137)

0.001
(0.081)

0.002
(0.079)

0.005
(0.099)

0
−0.228
(0.230)

−0.230
(0.233)

−0.230
(0.235)

−0.234
(0.236)

−0.235
(0.238)

−0.234
(0.241)

−0.175
(0.176)

−0.176
(0.178)

−0.172
(0.180)

−0.164
(0.195)

−0.165
(0.196)

−0.165
(0.200)

(0, 0.75) 0.25
−0.124
(0.141)

−0.121
(0.142)

−0.120
(0.148)

−0.149
(0.163)

−0.153
(0.170)

−0.148
(0.171)

−0.117
(0.134)

−0.107
(0.127)

−0.118
(0.143)

−0.098
(0.117)

−0.095
(0.117)

−0.097
(0.123)

0.50
−0.016
(0.095)

−0.012
(0.092)

−0.009
(0.108)

−0.047
(0.101)

−0.060
(0.113)

−0.060
(0.139)

−0.046
(0.102)

−0.048
(0.106)

−0.042
(0.133)

−0.039
(0.077)

−0.038
(0.079)

−0.035
(0.102)

0.75
0.102

(0.152)
0.094

(0.153)
0.094

(0.174)
0.022

(0.111)
0.028

(0.118)
0.030

(0.144)
0.018

(0.109)
0.026

(0.130)
0.011

(0.142)
0.011

(0.080)
0.017

(0.088)
0.010

(0.117)

0
−0.288
(0.291)

−0.288
(0.291)

−0.283
(0.290)

−0.267
(0.269)

−0.268
(0.270)

−0.267
(0.273)

−0.191
(0.193)

−0.193
(0.194)

−0.192
(0.197)

−0.180
(0.211)

−0.179
(0.210)

−0.178
(0.211)

(0,−0.75) 0.25
−0.172
(0.184)

−0.170
(0.185)

−0.169
(0.195)

−0.175
(0.181)

−0.174
(0.188)

−0.164
(0.198)

−0.121
(0.134)

−0.128
(0.145)

−0.124
(0.161)

−0.110
(0.129)

−0.110
(0.130)

−0.112
(0.136)

0.50
−0.046
(0.099)

−0.040
(0.107)

−0.041
(0.131)

−0.071
(0.119)

−0.067
(0.114)

−0.073
(0.150)

−0.053
(0.110)

−0.051
(0.116)

−0.055
(0.127)

−0.044
(0.082)

−0.038
(0.082)

−0.043
(0.095)

0.75
0.083

(0.135)
0.074

(0.135)
0.090

(0.174)
0.021

(0.116)
0.021

(0.115)
0.018

(0.143)
0.007

(0.112)
0.009

(0.117)
0.021

(0.150)
0.005

(0.079)
0.008

(0.087)
0.009

(0.099)

Table 3b: bias and RMSE for σ̂2
β,bc
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(n, T ) (20, 100) (20, 200) (20, 400)

λ λ λ

(ρ, θ) σ2
β 0 0.25 0.75 0 0.25 0.75 0 0.25 0.75

0
0.334

(0.334)
0.205

(0.211)
−0.044
(0.077)

0.226
(0.226)

0.118
(0.126)

−0.076
(0.098)

0.166
(0.166)

0.076
(0.085)

−0.092
(0.106)

(0, 0) 0.25
0.325

(0.326)
0.201

(0.207)
−0.050
(0.081)

0.221
(0.221)

0.108
(0.118)

−0.077
(0.098)

0.160
(0.160)

0.068
(0.081)

−0.097
(0.107)

0.50
0.314

(0.314)
0.133

(0.154)
−0.067
(0.096)

0.200
(0.210)

0.099
(0.110)

−0.092
(0.115)

0.144
(0.144)

0.063
(0.076)

−0.130
(0.147)

0
0.495

(0.496)
0.339

(0.342)
0.018

(0.068)
0.344

(0.345)
0.218

(0.221)
−0.035
(0.066)

0.265
(0.265)

0.155
(0.158)

−0.055
(0.072)

(0.75, 0) 0.25
0.489

(0.490)
0.332

(0.336)
0.009

(0.065)
0.339

(0.340)
0.210

(0.213)
−0.034
(0.063)

0.260
(0.260)

0.150
(0.153)

−0.061
(0.077)

0.50
0.477

(0.478)
0.293

(0.299)
−0.002
(0.068)

0.323
(0.324)

0.202
(0.205)

−0.068
(0.095)

0.247
(0.247)

0.141
(0.144)

−0.082
(0.098)

0
0.331

(0.331)
0.221

(0.223)
−0.029
(0.062)

0.223
(0.223)

0.127
(0.131)

−0.062
(0.078)

0.164
(0.164)

0.081
(0.085)

−0.083
(0.093)

(0, 0.75) 0.25
0.326

(0.326)
0.215

(0.218)
−0.033
(0.068)

0.218
(0.218)

0.123
(0.126)

−0.062
(0.081)

0.160
(0.160)

0.078
(0.082)

−0.092
(0.101)

0.50
0.302

(0.303)
0.209

(0.212)
−0.052
(0.087)

0.213
(0.214)

0.099
(0.107)

−0.076
(0.098)

0.148
(0.148)

0.064
(0.069)

−0.104
(0.115)

0
0.346

(0.347)
0.235

(0.237)
−0.018
(0.057)

0.232
(0.232)

0.136
(0.139)

−0.058
(0.078)

0.170
(0.170)

0.085
(0.089)

−0.084
(0.093)

(0,−0.75) 0.25
0.341

(0.342)
0.230

(0.232)
−0.023
(0.063)

0.228
(0.228)

0.134
(0.137)

−0.068
(0.086)

0.166
(0.166)

0.080
(0.083)

−0.091
(0.101)

0.50
0.327

(0.328)
0.217

(0.220)
−0.045
(0.081)

0.213
(0.214)

0.122
(0.125)

−0.080
(0.097)

0.151
(0.152)

0.080
(0.084)

−0.104
(0.113)

Table 4a: bias and RMSE for λ̂
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(n, T ) (50, 50) (50, 100) (50, 200) (100, 200)

λ λ λ λ

(ρ, θ) σ2
β 0 0.25 0.75 0 0.25 0.75 0 0.25 0.75 0 0.25 0.75

0
0.429

(0.430)
0.257

(0.259)
−0.044
(0.066)

0.313
(0.313)

0.188
(0.190)

−0.064
(0.074)

0.220
(0.220)

0.114
(0.117)

−0.078
(0.086)

0.215
(0.215)

0.110
(0.112)

−0.074
(0.075)

(0, 0) 0.25
0.429

(0.429)
0.249

(0.251)
−0.048
(0.070)

0.310
(0.310)

0.185
(0.187)

−0.068
(0.078)

0.217
(0.217)

0.111
(0.114)

−0.080
(0.087)

0.214
(0.214)

0.107
(0.108)

−0.074
(0.078)

0.50
0.421

(0.422)
0.241

(0.244)
−0.050
(0.074)

0.299
(0.300)

0.177
(0.180)

−0.071
(0.083)

0.214
(0.214)

0.088
(0.094)

−0.079
(0.086)

0.210
(0.210)

0.108
(0.110)

−0.079
(0.083)

0
0.568

(0.569)
0.389

(0.391)
0.013

(0.049)
0.460

(0.460)
0.299

(0.300)
−0.021
(0.042)

0.333
(0.333)

0.203
(0.204)

−0.047
(0.056)

0.332
(0.332)

0.197
(0.198)

−0.053
(0.057)

(0.75, 0) 0.25
0.567

(0.567)
0.383

(0.385)
0.006

(0.047)
0.458

(0.458)
0.297

(0.298)
−0.108
(0.039)

0.331
(0.331)

0.199
(0.200)

−0.046
(0.057)

0.331
(0.331)

0.196
(0.197)

−0.053
(0.057)

0.50
0.560

(0.562)
0.376

(0.378)
0.001

(0.058)
0.448

(0.449)
0.286

(0.288)
−0.025
(0.047)

0.329
(0.329)

0.190
(0.192)

−0.052
(0.061)

0.327
(0.327)

0.194
(0.195)

−0.054
(0.059)

0
0.422

(0.422)
0.273

(0.275)
−0.023
(0.051)

0.312
(0.312)

0.200
(0.202)

−0.049
(0.059)

0.215
(0.215)

0.122
(0.123)

−0.062
(0.069)

0.211
(0.211)

0.123
(0.124)

−0.060
(0.064)

(0, 0.75) 0.25
0.421

(0.421)
0.272

(0.274)
−0.021
(0.048)

0.311
(0.312)

0.200
(0.201)

−0.048
(0.058)

0.214
(0.214)

0.121
(0.122)

−0.065
(0.072)

0.210
(0.210)

0.121
(0.122)

−0.060
(0.063)

0.50
0.414

(0.415)
0.261

(0.263)
−0.027
(0.060)

0.304
(0.304)

0.197
(0.198)

−0.056
(0.066)

0.209
(0.209)

0.115
(0.117)

−0.073
(0.079)

0.206
(0.206)

0.120
(0.121)

−0.064
(0.068)

0
0.447

(0.447)
0.299

(0.300)
−0.006
(0.046)

0.327
(0.327)

0.212
(0.213)

−0.039
(0.054)

0.225
(0.225)

0.130
(0.131)

−0.062
(0.069)

0.221
(0.221)

0.130
(0.131)

−0.055
(0.059)

(0,−0.75) 0.25
0.445

(0.446)
0.296

(0.297)
−0.004
(0.046)

0.326
(0.326)

0.212
(0.213)

−0.042
(0.055)

0.223
(0.223)

0.127
(0.128)

−0.060
(0.067)

0.219
(0.219)

0.129
(0.130)

−0.057
(0.061)

0.50
0.437

(0.438)
0.292

(0.295)
−0.015
(0.056)

0.320
(0.320)

0.208
(0.210)

−0.053
(0.067)

0.213
(0.214)

0.123
(0.125)

−0.069
(0.077)

0.217
(0.217)

0.126
(0.126)

−0.058
(0.063)

Table 4b: bias and RMSE for λ̂



L
.
T
ra
pa

n
i/
H
eterogen

eity
a
n
d
co
in
tegra

tio
n
in

pa
n
els

4
8

λ (n, T ) (20, 100) (20, 200) (20, 400) (50, 50) (50, 100) (50, 200) (100, 200)
(ρ, θ)

0.25 0.095 0.073 0.067 0.061 0.055 0.058 0.060
(0, 0) 0.50 0.066 0.054 0.061 0.056 0.050 0.050 0.043

0.75 0.059 0.060 0.055 0.063 0.058 0.053 0.045

0.25 0.097 0.079 0.065 0.060 0.059 0.055 0.060
(0.75, 0) 0.50 0.071 0.053 0.055 0.063 0.052 0.053 0.051

0.75 0.052 0.055 0.052 0.057 0.057 0.058 0.055

0.25 0.096 0.072 0.062 0.063 0.055 0.054 0.059
(0, 0.75) 0.50 0.064 0.056 0.060 0.059 0.058 0.053 0.058

0.75 0.056 0.055 0.048 0.048 0.056 0.051 0.051

0.25 0.095 0.072 0.061 0.061 0.058 0.040 0.042
(0,−0.75) 0.50 0.064 0.055 0.061 0.047 0.060 0.060 0.056

0.75 0.056 0.059 0.058 0.044 0.050 0.049 0.047

Table 5: size for H0 : σ2
β = 0
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λ (n, T ) (20, 100) (20, 200) (20, 400) (50, 50) (50, 100) (50, 200) (100, 200)
(ρ, θ)

0.25
0.958
1.000
1.000

0.935
1.000
1.000

0.907
1.000
1.000

1.000
1.000
1.000

0.999
1.000
1.000

0.998
1.000
1.000

1.000
1.000
1.000

(0, 0) 0.50
0.602
0.998
1.000

0.611
0.974
1.000

0.650
0.981
1.000

0.909
1.000
1.000

0.916
1.000
1.000

0.964
1.000
1.000

0.983
1.000
1.000

0.75
0.355
0.973
1.000

0.312
0.963
1.000

0.348
0.963
1.000

0.612
1.000
1.000

0.615
1.000
1.000

0.754
1.000
1.000

0.868
1.000
1.000

0.25
0.505
1.000
1.000

0.705
1.000
1.000

0.632
1.000
1.000

1.000
1.000
1.000

1.000
1.000
1.000

0.994
1.000
1.000

1.000
1.000
1.000

(0.75, 0) 0.50
0.502
1.000
1.000

0.234
0.994
1.000

0.504
1.000
1.000

0.945
1.000
1.000

0.949
1.000
1.000

0.961
1.000
1.000

0.991
1.000
1.000

0.75
0.430
0.825
1.000

0.548
1.000
1.000

0.649
0.981
1.000

0.669
1.000
1.000

0.746
1.000
1.000

0.719
1.000
1.000

0.948
1.000
1.000

0.25
0.865
1.000
1.000

0.742
1.000
1.000

0.851
0.999
1.000

1.000
1.000
1.000

0.986
1.000
1.000

0.945
1.000
1.000

1.000
1.000
1.000

(0, 0.75) 0.50
0.507
1.000
1.000

0.497
0.997
1.000

0.535
0.999
1.000

0.985
1.000
1.000

0.934
1.000
1.000

0.948
1.000
1.000

0.997
1.000
1.000

0.75
0.552
0.968
1.000

0.510
0.996
1.000

0.465
0.998
1.000

0.667
1.000
1.000

0.762
1.000
1.000

0.748
1.000
1.000

0.959
1.000
1.000

0.25
0.954
1.000
1.000

0.940
1.000
1.000

0.913
0.999
1.000

1.000
1.000
1.000

0.976
1.000
1.000

1.000
1.000
1.000

1.000
1.000
1.000

(0,−0.75) 0.50
0.413
0.966
1.000

0.427
0.996
1.000

0.425
0.999
1.000

0.978
1.000
1.000

0.911
1.000
1.000

0.899
1.000
1.000

0.987
1.000
1.000

0.75
0.276
1.000
1.000

0.316
0.996
1.000

0.395
0.997
1.000

0.678
1.000
1.000

0.629
1.000
1.000

0.677
1.000
1.000

0.940
1.000
1.000

Table 6: power for H0 : σ2
β = 0 (simulated under HA : σ2

β = 0.5). The three figures reported for each value of λ correspond to σ2
e ∈ {0.5, 1, 2} respectively.
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σ2
β (n, T ) (20, 100) (20, 200) (20, 400) (50, 50) (50, 100) (50, 200) (100, 200)

(ρ, θ)

0.25 0.034 0.039 0.043 0.024 0.043 0.037 0.039
(0, 0) 0.50 0.053 0.045 0.047 0.046 0.047 0.053 0.045

0.75 0.048 0.047 0.045 0.043 0.043 0.048 0.047

0.25 0.038 0.039 0.040 0.028 0.041 0.040 0.040
(0.75, 0) 0.50 0.054 0.044 0.051 0.059 0.053 0.049 0.041

0.75 0.046 0.043 0.050 0.052 0.047 0.042 0.039

0.25 0.039 0.037 0.041 0.024 0.039 0.039 0.038
(0, 0.75) 0.50 0.058 0.048 0.049 0.053 0.050 0.057 0.044

0.75 0.047 0.047 0.043 0.046 0.049 0.044 0.049

0.25 0.037 0.041 0.039 0.022 0.038 0.038 0.042
(0,−0.75) 0.50 0.046 0.047 0.049 0.054 0.043 0.059 0.048

0.75 0.053 0.045 0.048 0.047 0.044 0.043 0.041

Table 7. Size for H0 : λ = 0, based on S̃
(λ)
nT .
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σ2
β (n, T ) (20, 100) (20, 200) (20, 400) (50, 50) (50, 100) (50, 200) (100, 200)

(ρ, θ)

0.25
0.489
0.743
0.806

0.407
0.788
0.903

0.452
0.803
0.851

0.592
0.893
0.976

0.543
0.903
0.954

0.576
0.965
0.968

0.803
0.999
0.998

(0, 0) 0.50
0.145
0.408
0.713

0.106
0.502
0.801

0.123
0.543
0.764

0.346
0.803
0.972

0.403
0.834
0.923

0.482
0.856
0.943

0.603
0.802
0.993

0.75
0.079
0.482
0.701

0.064
0.372
0.734

0.098
0.451
0.786

0.106
0.668
0.934

0.182
0.573
0.884

0.199
0.584
0.879

0.293
0.781
0.997

0.25
0.346
0.798
0.894

0.404
0.832
0.898

0.398
0.856
0.912

0.685
0.899
0.999

0.704
0.972
0.989

0.728
0.998
0.993

0.894
1.000
1.000

(0.75, 0) 0.50
0.274
0.701
0.843

0.306
0.679
0.871

0.341
0.743
0.873

0.408
0.805
0.984

0.461
0.798
0.973

0.462
0.781
0.988

0.603
0.816
0.990

0.75
0.204
0.532
0.698

0.308
0.497
0.716

0.294
0.523
0.773

0.342
0.561
0.914

0.401
0.487
0.871

0.399
0.563
0.904

0.502
0.538
0.911

0.25
0.396
0.803
0.879

0.431
0.856
0.932

0.427
0.823
0.872

0.714
0.876
0.899

0.723
0.836
0.934

0.841
0.875
0.978

0.932
1.000
0.999

(0, 0.75) 0.50
0.302
0.516
0.887

0.333
0.476
0.894

0.351
0.502
0.888

0.503
0.696
0.962

0.562
0.773
0.988

0.515
0.699
0.966

0.589
0.734
0.961

0.75
0.201
0.356
0.684

0.234
0.416
0.703

0.241
0.442
0.698

0.406
0.401
0.901

0.451
0.602
0.932

0.376
0.702
0.915

0.528
0.773
0.998

0.25
0.216
0.814
0.833

0.381
0.825
0.900

0.451
0.873
0.888

0.667
0.993
0.981

0.698
0.968
0.974

0.682
0.974
0.996

0.703
0.998
0.995

(0,−0.75) 0.50
0.378
0.614
0.687

0.333
0.781
0.764

0.327
0.798
0.800

0.478
0.903
0.887

0.561
0.942
0.923

0.588
0.896
0.955

0.758
0.993
1.000

0.75
0.305
0.781
0.853

0.274
0.689
0.899

0.342
0.782
0.784

0.516
0.831
0.924

0.588
0.918
0.873

0.617
0.936
0.922

0.754
0.935
1.000

Table 8. Power for λ = 0 (under HA : λ = 0.5), based on S̃
(λ)
nT . The three figures reported for each value of σ2

β correspond to the power of the test for σ2
e = {0.5, 1, 2}

respectively.
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Individual specific results Panel-based results

Country t-stat p-value β̂i

Austria −2.72 0.006∗ 0.783 Kao’s (1999) test test stat. p-value
Belgium −3.78 0.002∗ 0.785 −1.329 0.092
Canada −2.33 0.019∗ 0.945
Denmark −2.04 0.039∗ 0.926 Estimation
Finland −1.60 0.102 1.057
France −2.71 0.007∗ 0.880 σ̂β 0.594
Germany −2.42 0.015∗ 0.695 σ̂β,bc 0.624

Greece −2.11 0.033∗ 1.062 λ̂ 0.213

India −2.63 0.008∗ 2.580 st. dev. of individual β̃is 0.584
Ireland −2.50 0.001∗ 0.997
Italy −3.36 0.008∗ 1.621 Testing test stat. p-value
Japan −1.79 0.067 0.401
Korea −2.38 0.017∗ 1.533 H0 : σβ = 0 5.24 0.000∗

Netherlands −2.01 0.042∗ 0.582 H0 : λ = 0 2.21 0.014∗

Norway −1.95 0.048∗ 1.208
Portugal −1.44 0.138 1.130
South Africa −1.18 0.217 3.412
Spain −2.07 0.036∗ 1.675
Sweden 0.087 0.703 1.385
Switzerland −2.07 0.036∗ 0.761
UK −0.81 0.361 1.176

Table 9. Cointegration tests and estimation of βi for the unit specific equations lnEit = αi + βi ln
PUSt
Pit

+ uit; the values reported are the Engle-Granger based

t-ADF statistics (and the associated p-values) for a unit root test on residuals; a “∗” next to the p-value indicates rejection of the null of no cointegration at the 5%
level. Data have been downloaded from the Federal Reserve Economic Data (FRED). In the table, we report Kao’s (1999) test for the null of no cointegration;
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