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Abstract: 

Cine cardiac MRI is generally accepted as the 'gold-standard' for functional myocardial assessment. It 

only took a few years after the development of commercial MRI systems for functional cardiac imaging 

to be developed, with ECG gated cine imaging first reported in 1988. The function of the GI tract is 

more complex to study compared to the heart. However, the idea of having a non-invasive tool to 

study the GI function that also allows the concurrent assessment of different aspects of this function 

has become more and more attractive in the gastroenterological field. This review summaries key 

literature of the last 5 years to describe the current status of MRI in respect to the evaluation of GI 

function, highlighting the gaps and challenges and the future prospects. As the clinical application of 

a new technique requires that its clinical utility is confirmed by demonstration of its ability to enable 

clinicians to make a diagnosis and/or predict the treatment response, this review also considers 

whether or not this has been achieved, and how MRI has been validated against techniques currently 

recognised as the gold standard in clinical practice. 
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INTRODUCTION 

How cine MRI entered clinical practice in the cardiac field: 

MRI has always been an attractive imaging modality for the evaluation of cardiac morphology and 

function1. Cardiac MRI has the advantage that both cardiac and respiratory motion are generally 

periodic and relatively easily monitored, albeit indirectly, through synchronisation to the subjects' 

electrocardiogram (ECG) and the use of respiratory bellows. However, it only took a few years after 

the development of commercial MRI systems for functional cardiac imaging to be developed, with 

ECG gated cine imaging first reported in 19882.  

In this context, "cine" imaging refers to the ability to acquire multiple, temporally-resolved, images 

throughout the cardiac cycle. The acquisition only allowed a single phase-encode for each temporal 

phase to be performed in each heartbeat, so images with an acceptable spatial resolution took several 

minutes to acquire. Artefacts due to respiratory motion during the acquisition were initially addressed 

using simple signal averaging techniques3 or using complicated schemes that adjusted the acquired 

phase-encoding step dependent upon the point in the respiratory cycle4. A step change in image 

quality came with the development of the necessary hardware and software to allow segmented k-

space acquisition methods5 allowing the cine cardiac acquisitions to be performed in a single breath-

hold.  

Whilst this method worked reasonably well, image contrast was dependent upon the dynamics of the 

blood flow and contrast was impaired when the imaging plane was parallel to the direction of flow, 

particularly in diastole when flow was relatively stationary. It was the emergence of what is now 

known generically as the balanced steady state free precession (bSSFP) gradient echo sequence that 

led to further improvements in image quality. The initial implementation of this sequence by Oppelt 

working for Siemens was given the name "Fast Imaging with Steady Precession" (FISP)6. However, FISP 

necessitated a static magnetic field uniformity that was not practically achievable, and the sequence 

was subtly modified to reduce its sensitivity to field uniformity, albeit at the expense of reduced 

contrast. Around the year 2000 field uniformity had improved to the point that the original 

implementation could be deployed, however since the name FISP has already been used, this original 

implementation was renamed by Siemens as True-FISP.  

The contrast in a bSSFP sequence (variously known as True-FISP, bFFE and FIESTA by the major 

manufacturers) is proportional to the ratio of the T2:T1 of tissues. Fluids, like blood, with long T1 and 

T2 relaxation times therefore yield high signals in comparison to muscle for example. Combining True-

FISP with a cine segmented k-space acquisition provides high quality functional cardiac images with 

excellent blood pool/myocardial contrast7.This is now the standard method for global and regional 

functional cardiac imaging and analysis (Figure 1). Whilst it is possible to use advanced acquisitions 

and reconstruction methods to acquire dynamic images without either cardiac or respiratory gating8, 

standard cine imaging involves data acquisition over a small number of consecutive heartbeats within 

a single breath-hold.  

Contemporaneous with the development of improved MRI system hardware and software for cardiac 

imaging was the involvement and interest of not only radiologists but also cardiologists. Market forces 

drove the manufacturers to improve their product offerings whilst the clinical end users established 

the high accuracy and reproducibility of cine MRI. These contributions led to the development of both 

European and US consensus panel reports9, 10 with bSSFP-based cine cardiac MRI becoming accepted 

as the 'gold-standard' for functional myocardial assessment. 

 



Is MRI following the same approach in the gastrointestinal (GI) field? 

The function of the GI tract is more complex to study compared to the heart. The GI tract occupies a 

larger area of the body and the function comprises motility, secretion and transit, which all interact 

with each other. Moreover, the motion is not periodic. The relevance of studying GI function (motility, 

secretion and transit) have been demonstrated to impact on many clinical conditions encompassing 

functional and organic diseases. Alterations of gut motility have been reported to play a role in the 

pathophysiology of functional bowel disorders such as irritable bowel syndrome (IBS) and functional 

dyspepsia (FD)11, 12, and also play a role in the pathophysiology of symptoms of organic diseases like 

scleroderma and inflammatory bowel disease (IBD)13, 14. Until recently, the study of GI motility, 

secretion and transit have relied on techniques with varying degrees of invasiveness. The study of gut 

motility has been based on intraluminal catheters measuring the pressure generated by gut wall15. 

This has been obtained by passing a manometry catheter through the nose to reach the oesophagus, 

stomach and proximal small bowel or inserted through the anus, after bowel preparation, to reach 

the colon. Similarly, the study of gut secretion has involved the insertion of intraluminal catheters able 

to collect fluids in the small bowel16. With regard to gut transit, relatively less invasive techniques have 

been used ranging from radiopaque markers, scintigraphy, a wireless pH and pressure recording 

capsule (SmartPill), and a telemetric capsule system (3D-Transit)15. The major limitation of all these 

techniques has been the difficulty to simultaneously evaluate different aspects of GI function.  

Therefore, the idea of having a non-invasive imaging tool that allows the concurrent assessment of 

different aspects of GI function has become more attractive in gastroenterology. This review 

summaries the last 5 years key literature describing the current status of MRI in respect to the 

evaluation of GI function, highlighting the gaps and challenges and future prospects. The clinical 

application of a new technique requires that its clinical utility is confirmed by demonstration of its 

ability to enable clinicians to make a diagnosis and/or predict the treatment response17. This review 

will discuss whether this has been achieved, and how MRI has been validated against techniques 

recognised as the gold standard in clinical practice. 

 

Evaluation of GI motility and movement of chyme by MRI 

The clinical indications to evaluate gut motility are to investigate patients with suspected small bowel 

and colonic motor disorders18, such as diagnosis of chronic intestinal pseudo-obstruction or motor 

dysfunction in patients with chronic constipation refractory to pharmacological treatments, when a 

surgical operation is considered18. The current gold standard techniques to evaluate gut motility are 

antro-duodenal manometry and colonic manometry18.  

Many advances have been made using MRI in the observation and quantification of GI motility in 

recent years mainly in the image processing and analysis domain. In terms of imaging, cine (or 

dynamic) techniques used to observe the motion of the heart, as discussed above, have been adapted 

for use in the GI tract. Whereas segmented k-space acquisitions are used to acquire images across the 

cardiac cycle during a breath-hold, in GI imaging single shot techniques are used to rapidly generate 

images which are then repeated; either during a breath hold or during free breathing to capture the 

irregular motion in the GI tract. The most widely used sequence performed to assess GI motility is the 

bSSFP acquisition19-21. Like cardiac MRI, this sequence is particularly attractive for GI motility due to 

its capability for rapid imaging with a high signal-to-noise-ratio (SNR) and excellent image contrast 

between gut wall and fluid-filled lumen, resulting in excellent quality dynamic images acquired with a 

high temporal resolution.   



Much of the research in recent years has looked to move away from time consuming observer analysis 

of data to a more automated approach using the advances in image processing and, in particular, 

image co-registration techniques to provide faster more robust analysis that are more observer 

independent20-24.  Registration of the cine data allows for regions of bowel wall to be tracked over time 

using information of the deformation parameters generated during the registration process24, 25. From 

this concept there have been two main approaches to the subsequent analysis, the first looks at 

luminal diameter changes across the region of interest of the GI tract with this information used to 

look at frequency and depth of contractions19, 22. The second approach takes the motility information 

inferred from the registration parameters to create a metric which is a surrogate of the underlying 

motion20, 21. 

The major area where these techniques have been explored in detail is the small bowel26-31. Crohn’s 

disease has been the main focus assessing motility following oral contrast agent administration and 

prior to administering hyoscine butylbromide for the traditional anatomical MRE scan. Reduced 

motility in the terminal ileum region has been a feature of several studies26, 30. Motility was found to 

be reduced in inflamed regions of the small bowel29 and researchers have also shown that there is a 

correlation between small bowel motility measurements with inflammatory markers such as C-

reactive protein and calprotectin27, histopathology of the terminal ileum28, and response to medical 

therapy21. Differences in small bowel motility have also been shown in stricturing disease where both 

the stricture site and pre-strictured bowel showed reduced motility compared with normal bowel32. 

In addition, recent papers applying cine MRI to chronic intestinal pseudo-obstruction33-35 

demonstrated that motility in these patients was reduced compared to healthy controls.   

The role of MRI in studying oesophageal motility has been looked at and compared with high 

resolution manometry to diagnose achalasia36 and observe functional and anatomical information in 

Nissen fundoplication37. Both studies had subjects swallowing liquids whilst undergoing MRI, acquiring 

images using fast spin-echo and cine bSSFP sequences. Studying eleven suspected achalasia patients 

and three control subjects, the authors concluded that MRI was safe and feasible for the diagnosis of 

achalasia36. MRI in three planes of the oesophagus and gastro-oesophageal junction at 1.5 T of 29 

Nissen fundoplication patients offered simultaneous morphological and functional imaging in one 

diagnostic method concluded the authors37 and that MR ‘fluoroscopy’ offers the possibility to identify 

the wrap position, providing detailed information for the surgeon. 

Although gastric motility was the first to utilise cine MRI38, 39 , it has not thus far been taken up in the 

clinical setting.  This may be because of time consuming data analysis. More recently there have been 

several papers looking at gastric motility23, 40-42 using more automated software for analysis and these 

improvements could offer MRI as a potential alternative to manometry and gamma scintigraphy by 

combining motility and emptying in a single examination.  

Colonic motility is the most recent area of the GI tract that cine MRI has been applied to. Unlike small 

bowel motility which can be assessed over a short breath-hold scan, motility of the colon is much more 

erratic with large time gaps between consecutive contractions. This problem has led to the 

development of further post-processing advances allowing for data collection during free breathing 

and hence longer acquisition times are possible43, 44. Despite the longer acquisition time fasting or fed 

state colon motility is still very unpredictable and therefore to provoke contractions in the colon, 

laxatives have been used to induce movement45, (Figure 2 A-B). Metrics to characterise the motility 

induced in the colon have looked at both luminal diameter changes and the same deformation metric 

used in the small bowel46. Using the luminal diameter change metric applied in constipation, 

researchers have found that different types of constipation evoke different responses to this strong 

stimulus47. 



Another technique that was originally developed for cardiac MRI is tissue tagging48. This method was 

originally developed to assess transmural motion and  allow the calculation of myocardial strain49 

(Figure 3). It has now been adapted to look at motility in the small bowel and colon50, 51. The bending 

or smearing of the tag lines have been used to assess motion in the small bowel51 and shown to differ 

pre and post administration of an anti-spasmodic agent. Mixing and movement of the colonic contents 

following a laxative stimulus (Figure 2 C-D) has also shown different responses between healthy and 

constipated subjects50. 

In terms of limitations of these techniques, the majority need a stimulus to provide both contrast 

between the GI lumen and walls, and to provoke reliable motility. As there are currently no 

recommended guidelines on which oral contrast media should be used, and the number and timing 

of scans, further research is necessary to refine protocols for wider clinical implementation. Limited 

coverage of the area can also be an issue as there is generally a trade-off between temporal resolution, 

coverage and spatial resolution. Good spatial resolution is normally needed to obtain good quality 

registration information, particularly if wall tracking analysis is required. As has happened in cardiac 

MRI, the use of multi-channel receiver coils has allowed the development of parallel imaging 

techniques52 that can be used to allow greater coverage with adequate temporal resolution to fully 

cover the small bowel. Further improvements will aid coverage in the gastric and colonic regions to 

provide a more comprehensive measurement. Work has started on developing some of the protocol 

requirements53 in terms of assessing the duration and temporal resolution needed for accurate small 

bowel motility measurements.  As with cardiac MRI, the radiographer plays a key role in the quality of 

data acquired from GI motility measurements, particularly for single slice or reduced coverage imaging 

of the segment of interest, where the angulation of the slices through the GI tract segment can 

dramatically change the images acquired.  

The lack of validation of MRI as a measure of GI motility against the recognised gold standard 

techniques is also perceived as a limitation. There are some ongoing studies which are validating the 

use of MRI against conventional antro-duodenal manometry (NCT03191045, clinicaltrials.gov) and 

high-resolution colonic manometry (NCT03226145, clinicaltrials.gov). One of these studies 

(NCT03226145, clinicaltrials.gov) and another ongoing one (ISRCTN14481560, isrctn.com) are 

evaluating the possible predictive value of motility as measured by MRI on the response to treatment 

in patients with chronic constipation and patients with Crohn’s disease. 

 

The evaluation of GI transit by MRI 

MRI has been used to study gastric and colonic transit time. The clinical indication for gastric emptying 

studies is to investigate patients with suspected gastroparesis and for colonic transit time is to 

investigate patients with constipation refractory to treatment18. In the first case MRI has been 

validated against scintigraphy54, while in the second case against radiopaque markers55.  

The MRI technique for gastric emptying involves is based on collecting a number of slices across the 

entire stomach postprandially. Multislice, bSSFP, half-fourier acquisition single shot turbo spin-echo 

(HASTE) or echo-planar (EPI) sequences can be acquired rapidly and provide adequate contrast (Figure 

4). During a breath-hold scan (to reduce motion artefacts) the volume of the entire stomach including 

test meal (positive contrast) and gas (negative contrast) are imaged. Using paramagnetic agents mixed 

into the test meal, gastric volume (defined manually or semi-automatically) can be corrected for 

gastric secretions by reference to the signal intensity of an external standard.56, 57 Plotting the changes 

in gastric volume with time allows a calculation of the time to half empty the stomach contents (t50%) 



and also the time delay after which the stomach starts emptying (also called the lag time or tlag). MRI 

correlated well against gamma scintigraphy for both liquid and mixed liquid and solid test meals, with 

the advantage of the lack of radiation dose. Other advantages of MRI include multi-slice high spatial 

resolution acquisition with no gaps between slices, providing images covering the 3D volume. From 

the images one can also investigate the intragastric distribution of components of the test meal (e.g. 

sedimentation and layering).  

MRI uses a similar approach to radiopaque markers to study the transit in the colon. Subjects swallow 

five MRI marker capsules, doped with a gadolinium-based contrast agent, before undergoing an MRI 

scan. From the MRI images, a transit score is calculated by sub-dividing the bowel into eight sections 

and each capsule is scored according to its position55. A weighted average score is then calculated to 

allow for the spread of the marker capsule positions along the gut. The transit marker technique 

requires a single appointment and a very quick MRI scanning session (about 5 minutes). The result are 

simple to analyse because of the good anatomical detail available in the images and good agreement 

between different observers has been assessed. Moreover the imaging sequences needed for the 

transit test are generally implemented on most manufacturers’ platforms. The calculation yielding the 

gut transit time in hours provides an objective measure of gut transit which is easy to interpret for the 

medical practitioners. Using these MRI marker pills, differences in transit times were observed 

between different constipated patients, with those suffering from IBS-C having a lower transit score 

compared to those with functional constipation.47 Given that a substantial proportion of patients in 

whom such tests are indicated are females of child-bearing age, MRI can overcome some of the 

limitations of scintigraphy and radiopaque markers, potentially offering a test which could be widely 

adopted and benefit from being non-invasive and avoiding ionizing radiation. 

 

The case of MRI defecography 

In clinical practice, defecography (evacuation proctography) can be conducted with fluoroscopy or 

MRI and is used to diagnose defecatory and pelvic floor dysfunction. The current gold standard for 

diagnosis of prolapse of the posterior pelvic compartment is video-fluoroscopy, in which thick barium 

paste is introduced into the rectum and cine images are obtained during straining, squeezing and 

evacuation. MRI defecography is generally conducted in the supine position, avoids radiation 

exposure, and visualizes the pelvic floor muscles, the urinary bladder, small bowel and vagina/uterus 

without adding additional contrast to these organs. MRI utilises bSSFP imaging in the sagittal plane 

and similarly to the fluoroscopic procedure, images are acquired during straining, squeezing and 

evacuation. Generally, ultrasound gel is used per-rectum as it is easily visualised on cine images. 

It has been recognised that with MRI alone, rectoceles, intussusception and perineal descent may be 

missed58 and it can be difficult to demonstrate complete emptying of the rectal ampulla, hence some 

centres perform both fluoroscopic and MRI examinations to evaluate the anatomy and function in a 

complementary fashion. It is likely that these limitations of MRI could be overcome by imaging the 

patient in a more physiological sitting position, and although there have been promising studies of 

sitting patients in open-magnet MR units59-61, the patient numbers are low and further studies are 

required. 

Until recently a robust characterization of anorectal motion in asymptomatic people with MRI was 

lacking. As MRI defecography is useful for diagnosing defecatory disorders, particularly when other 

tests are normal, a comparison with healthy people is necessary to determine the utility of the 

technique for diagnosing defecatory disorders. The recent publication of a large study of 113 



asymptomatic healthy women which provides normal values for anal sphincter and pelvic floor 

anatomy and function (Figure 5)62, and of a validated semi-automated program to measure anorectal 

parameters to reduce observer errors63 are likely to facilitate the future application of this technique 

in clinical practice. Similar data are needed for healthy males and for patients in the sitting position. 

 

Additional insights in gastrointestinal pathophysiology 

The advances in rapid imaging and range of image contrast available have in turn opened the 

possibility to investigate with MRI, parameters of gastrointestinal pathophysiology that were not 

previously available. These are unprecedented insights including gastrointestinal fluid distribution, 

colonic volumes and bowel gas volumes. The following paragraphs review these new developments. 

 

The evaluation of GI water content by means of MRI 

The evaluation of GI water content is normally not considered in clinical practice. The bowel handles 

many litres of fluid per day. Physiological responses to food and pathological differences with disease 

and treatment can cause marked differences, however quantifying bowel fluid volumes has always 

been difficult. MRI provides a novel application in this field. Freely mobile water is seen particularly 

well in heavily T2 weighted, ‘cholangiopancreatography-like’ sequences; as the long T2 of the free 

water maintains a high signal whereas less mobile/bound water decays away. Previous work has 

validated thresholding methods to quantify the fluid volumes64. The MRI images provide a ‘snapshot’ 

of the fluid volume which is a combination of transit, secretion and absorption.  

The effect of different foods has been studied, showing large changes in small bowel water content 

induced by different carbohydrates in healthy volunteers65 and patients66, and also the effect of 

changing the physical characteristics of fat emulsions67 or rates of nasogastric feeding68. It has been 

shown that oral laxatives can dramatically increase small bowel fluid volumes69 as well as secretin 

stimulated pancreatic secretion in chronic pancreatitis70, 71 and cystic fibrosis72. The effect of stress on 

small bowel water has been studied73, 74 and some initial applications to peritoneal dialysis and chronic 

kidney disorder have been reported75, 76. The MRI measurements of bowel fluids have also caught the 

attention of the pharmaceutical sciences concerned with drug dissolution. Recent publications looked 

at the distribution of fluid in the small bowel (Figure 6) quantifying the volumes and distribution of 

water pockets77 and also assessing the response to ingestion of different fluids78. Similar methods have 

been extended to freely mobile colonic water pockets79.  

 

The evaluation of colon volumes using MRI 

The evaluation of gut volumes is not something that is normally required in clinical practice. Non-

invasive assessment of the volume of the undisturbed colon is a more recent application of MRI, 

aiming to investigate the effect of feeding and disease on organ volumes and symptoms. This is 

another unique advantage of MRI with previous reports based only on post-mortem or abdominal 

computed tomography scan which provide the subjects a considerable radiation dose. The methods 

used vary between different groups. From laborious, manual segmentation of moderately T1 

weighted dual-echo fast field echo sequences80 to semi-automated segmentation methods using T2 

weighted single shot fast spin echo sequences81. The latter method is used to propagate the colon 

segmentation to a corresponding set of water only images; it has low variability between operators 



and changes in the sigmoid/rectum segment correlated well with true faecal volume after 

defecation82. Others have also used semi-automated, region-growing algorithms to segment the colon 

using T2 and T1 weighted MRI sequences83. Colonic volume measures were elegantly validated by 

measuring colon volume decreases against corresponding volume of stool defecated, and also volume 

increases against a corresponding volume of air infused intrarectally83. Colorectal length has also been 

estimated from the segmentation84. 

The study of colonic volumes has provided novel insights on the effect of feeding poorly absorbed 

carbohydrates in healthy volunteers65 and patients66. Colon volumes in healthy volunteers were also 

shown to increase unexpectedly by 27% upon 2 days of feeding gluten free bread compared to bread 

with a normal gluten content85. The effect of gastrointestinal formulation such as polyethylene glycol 

(PEG) ingestion has been studied too, showing that a single large dose of PEG can double the volume 

of the colon47, 69. Opioid induced constipation significantly increases in colonic volume of healthy 

volunteers after treatment with oxycodone86 . 

 

The evaluation of intestinal gas by MRI 

Gas is present in various sections of the GI tract and some studies have suggested its possible role in 

the induction of symptoms in functional bowel disorders87. As in the case of water content, the 

evaluation of gas content of the gut is not used in clinical practice, even though physiological 

responses to food and diseases can cause marked differences, which are difficult to quantify in a non-

invasive way. On proton MR images GI gas pockets appear black as they provide no signal, which allows 

measurement of their volumes against the boundaries of the bowel wall and chyme. Gas presence in 

the stomach, particularly after feeding, has long been recognised and its volume quantified. Recently 

however attempts have been made to measure bowel gas volumes. One report quantified small bowel 

gas volumes to be of the order of median 49 mL (IQR 44-52mL), the measurements carried out by 

using region growing techniques in each slice with a semi-automatic method88. Others have used 

subtraction of T1 weighted from T2 weighted images to determine colonic gaseous content83. 

Histogram analysis can also be used to integrate the signal distribution of the chyme from black to a 

manually determined threshold based on signal from visible gas65. Recent applications demonstrated 

an increase of over 100mL of gas following an inulin drink in healthy volunteers65 and patients66. 

Conclusion 

The development and clinical use of cardiac cine MRI has been driven by both improvements in 

scanner hardware and its adoption by the wider cardiac imaging community. Technical developments 

have resulted in better magnetic field uniformity, and improved gradient performance that allows 

shorter sequence repetition times. These features have allowed the development of sequences such 

as bSSFP that provide the capability for dynamic imaging with a high SNR and excellent image contrast. 

The development of (semi-) automated commercially-available analysis tools allowing quantitative 

measurements of both global and regional myocardial function has also increased the diagnostic 

efficacy of the technique. Clinically the contribution of both radiologists and cardiologists in the 

validation of the technique has driven it to become the ‘gold-standard’. The emerging application of 

MRI to GI imaging leverages many of these developments. 

MRI enables the concurrent evaluation of the different functions of the gut as summarised in Table 1. 

This is particularly relevant to the evaluation of food or drugs expecting to simultaneously modify gut 

secretion, physical characteristics of intraluminal content, motility, volume and transit. Studies 

conducted so far have just explored, in an inconsistent way, the potential application of this technique 



in different fields and diseases of gastroenterology. It is now necessary to validate the techniques 

against gold standard measurements and to standardise the protocols across different centres in a 

similar way in which cardiac MRI has evolved over recent years. As reported above, there are many 

studies currently ongoing with the aim of achieving these goals in IBD, functional bowel disorders and 

pharmaceutical applications. In particular the application of MRI to the defecation process in patients 

with defecatory and pelvic floor disorders seem to be the techniques closer to wide clinical 

applications. It has indeed been already endorsed by the American College of Gastroenterology89. 

Recognising the gaps in current literature will help refine the technique and when possible overcome 

its limitations. This currently includes a lack of commercially available software to analyse the data, 

although this is now starting to be addressed for motility data. It is quite clear that the potential of 

MRI in gastroenterology is huge and we have just started to follow in many of the footsteps of cardiac 

MRI. 

However it is clear that if MRI of GI function is to follow the route of cardiac MRI, gastroenterologists 

need to start working more closely with radiologists and validate the technique to measure what is 

clinically relevant. At the moment the community of functional gastroenterology has shown interest 

in this but it is probably waiting for the results of the ongoing studies to appraise whether they will 

demonstrate the clinical utility of MRI in this field. 

 

Future developments 

The next step for the development of cine cardiac imaging is the extension to 4D, i.e. three spatial plus 

one temporal dimension. This effectively means the acquisition of multiple, temporally-resolved, 3D 

volumes throughout the cardiac cycle. This obviates the current need for multiple breath-hold 

acquisitions in different scan planes. However, the challenge is the extended acquisition periods 

required to acquire volumetric data covering the whole heart. Initial studies used both spatial and 

temporal parallel-imaging based acquisition and reconstruction techniques to acquire 3D cine imaging 

in a breath-hold albeit with anisotropic spatial resolution.90 Other methods have utilised the concept 

of “self-gating” where the respiratory-induced cardiac motion is directly estimated from the acquired 

data.91 Recently advanced acceleration techniques such as compressed sensing have allowed further 

reductions in acquisition time to a single breath-hold with near-isotropic coverage of the left ventricle 

in approximately 19s.92 A good review of the various methods used to accelerate MRI for the 

assessment of cardiac function can be found in the article by Axel and Otazo.93 These 4D advances 

would also be of utility to the motility applications of GI MRI allowing full coverage of stomach and 

colon whilst maintaining good temporal resolution and in the small bowel allowing for a reduction in 

the number of breath-holds needed to cover the abdomen. 
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TABLE LEGEND 

Table 1. Summary MRI measurements of the GI tract, detailing current standard and advantages and 

limitations of the MRI technique. 

 

 

FIGURE LEGENDS 

Figure 1. Example of functional cardiac analysis for the quantitative assessment of global left 

ventricular function. 

Figure 2. Example bSSFP images of the ascending colon (AC) in a single healthy volunteer. (A, B) 

Different time frames from a cine acquisition following oral administration of a laxative. White arrows 

show the colonic contraction in the AC. (C, D) Single time frame from a tagged CINE acquisition. (C) No 

movement or distortion of the tag lines are seen for the scan acquired at baseline. (D) Smearing effects 

and tag line distortions are visible following oral administration of a laxative. 

Figure 3. Ten phases from a myocardial tagging acquisition in the short axis. In the first image the 

regular tag lines are applied immediately following the cardiac trigger. The tag lines then deform with 

the cardiac motion clearly showing transmural motion. Note how the tag lines fade throughout the 

cardiac cycle due to T1 relaxation of the tagged magnetisation. 

Figure 4. Two axial bSSFP images through the stomach at different times following a nutrient liquid 

meal. (A) Immediately after the meal has been ingested. (B) 75 minutes after the meal has been 

ingested, showing a reduction in the stomach volume.  The thin white arrows highlight the negative 

contrast of gas in the stomach and the thick black lines the positive contrast of the meal, allowing for 

both meal, gas and total volume to be easily measured and hence gastric half emptying times to be 

calculated. 

Figure 5. Examples of anorectal motion during rest, squeeze, and defecation in a younger women aged 

34 years (upper panel) and an older women aged 63 years (lower panel). The pubococcygeal line and 

the perpendicular extending from this line to the anorectal junction are marked in black. The 

boundaries of the anorectal angle are shown in white. Compared to the younger woman, the anorectal 

junction at rest and during squeeze was lower in the older woman, in whom the angle change during 

squeeze was also more pronounced. Reprinted from 62. 

Figure 6. (A) Axial, moderately T2 weighted image of a 240 mL water drink inside the stomach. (B) 

Coronal heavily T2 weighted image of the abdomen. (C) Individual small bowel water pockets coloured 

individually in this maximum intensity projection. Reprinted from 77. 

 

 


