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Abstract  

 

The prefrontal cortex (PFC) undergoes protracted postnatal development such that its structure and 

behavioural function may be profoundly altered by environmental factors. Here we investigate the 

effect of lactational dietary manipulations on novel object recognition (NOR) learning and PFC 

monoamine neurotransmitter metabolism in early adolescent rats. To this end, Wistar rat dams were 

fed a high caloric cafeteria diet (CD) during lactation and resultant 24-26 day old offspring exposed to 

NOR testing and simultaneous PFC dopamine and serotonin metabolism measurement. In the second 

NOR choice trial where one familiar and one novel object were presented controls explored the novel 

preferentially to the familiar object both after a 5 min (P<0.001) or 30 min (P<0.05) inter-trial intervals 

(ITI). By contrast, offspring from dams fed on lactational CD failed to show any significant preference 

for the novel object at either time point. Compared with chow fed controls, their average exploration 

ratio of the novel object was lower after the 5 min ITI (P<0.05). Following a 60 minute ITI, neither CD 

nor control offspring showed a preference for the novel object. PFC dopamine metabolism was 

significantly reduced in the CD group (P<0.001), whereas serotonin metabolism was increased 

(P<0.001). These results suggest that an obesogenic lactational diet can have a detrimental impact on 

cognition in adolescent offspring associated with aberrant PFC serotonin and dopamine metabolism. 
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1. Introduction 

 

The prefrontal cortex (PFC) in the mammalian brain is involved in executive control including a variety 

of complex behaviours such as learning and memory, and also in coding of palatability  [1-3] 2017. In 

the human brain, and in rodents, the PFC undergoes a protracted postnatal development which has 

been suggested to last until postnatal day 60 in rats [4], and  until the third decade of life in humans 

[5]. Therefore the PFC is particularly susceptible to early-life environmental factors which can result 

in either positive or detrimental consequences in the adult [6-10].  

Links between hyper-energetic diets during adolescence and PFC-dependent memory and other 

behaviours are well-established and include deficits in working memory and behavioural flexibility. 

Furthermore diet-induced alterations in PFC dopaminergic signalling may underlie diet-induced 

cognitive deficits [11, 12], review). However, less is known about dietary impacts on PFC during the 

early postnatal age.  In rats, the lactational period is particular sensitive to dietary manipulations that 

programme changes in offspring behaviour at adulthood [13-16].  Rats fed on a lactational hyper-

energetic cafeteria diet show decreased behavioural satiety, decreased anxiety and sex-dependent 

effects on object recognition memory when tested in adult age [13-15]. Although behavioural changes 

already manifest in young adolescence, where offspring from overfed dams show increased 

exploratory activity in the open field [17], it remains unknown if a hyper-energetic, high caloric 

lactational diet (CD) impacts on adolescent memory. In a novel object recognition (NOR) task, rodents 

show innate preference for a familiar over a novel object reflected by increased directed exploration 

of the novel object regarded as an index of visual recognition memory [18]. This paradigm was selected 

because of pharmacological sensitivity to drugs that modify dopaminergic activity, and established 

recognition of the translational relevance to visual learning and memory deficits seen in human CNS 

developmental disorders such as schizophrenia [19, 20]. Intact NOR requires an optimal functioning 

dopaminergic system in the PFC, as local stimulation of dopamine D1 and antagonism of dopamine D2 

or D3 receptors modify NOR memory in the rat [21-23]. Other studies evidenced the role of the 

neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in this behavioural task [24-28]   and both 

the dopaminergic and serotonergic functions in the brain can be altered by diet [29]. 5-HT and 

dopamine (DA) also impact on the development of the PFC, and they are interlinked during 

development [30, 31].  However, it remains to be investigated if an obesogenic diet influences the 

early postnatal development of these two neurotransmitter systems in the PFC.  

In the context of human obesity, early dietary exposure to obesogenic diets could pose a risk to mental 

and cognitive development in adolescence. During adolescence, the human brain is particularly 
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sensitive to adverse environmental impacts as PFC-mediated behavioural control has not matured yet 

[32-34]. Effects of a lactational CD on memory in early adolescence has not yet been reported in 

rodents. To study dietary effects on brain neurotransmitter and learning, we exposed lactating dams 

to a highly palatable cafeteria diet and tested the offspring post-weaning in an NOR task; a type of 

recognition learning that develops early in rats, being established before weaning [35]. In a second 

part of the experiment, conducted in parallel, we measured brain regional levels of the 

neurotransmitters 5-HT, DA and their major metabolites in the PFC of the offspring.  We hypothesized 

an impaired NOR performance in offspring from CD–fed dams and also aberrant DA and 5-HT 

metabolism in the PFC. 

 

2. Methods 

 

2.1 Experimental animals 

Virgin female Wistar rats (n=24; Charles River UK) were mated with male rats at 9 weeks of age. Dams 

were housed two per cage until they had reached the last four days of their gestation period when 

they were placed in individual cages. Rats were given sawdust as a cage substrate, paper strips for 

nesting and a cardboard tube for enrichment. Standard laboratory chow (Teklad Global 18% Protein 

Rodent Diet Harlan, UK) and water (filtered tap water) were available at ad libitum. The rats were 

maintained under a 12 hour light dark cycle (with 1 hour dusk and 1 hour dawn, lights on at 07:30 

hours), between 20 and 22 degrees C ° and at 55+10% relative humidity. Light intensity was 370 lx. At 

birth, litter size was adjusted to eight, 4 females and 4 males. 

All experiments were performed with approval from the University of Nottingham Animal Welfare and 

Ethical Review Body (AWERB) and in accordance with the Animals (Scientific Procedures) Act, 1986 

and ARRIVE guidelines.  

2.2 Experimental diets 

Following parturition, dams were randomly allocated to either standard laboratory chow diet (control) 

or the same chow diet in conjunction with a variety of highly palatable, energy-dense human foods 

(experimental cafeteria diet, CD). Food items consisted of shortbread, golden syrup cake, plain 

chocolate, pork pie, pâté, cocktail sausages, cheddar cheese, crisps, peanuts and strawberry jam. Of 

these items, four were provided in excess each day and placed in a bowl on the cage floor. At least 

one item was exchanged daily in order to maintain novelty and interest [36]. Food consumption of the 

dams was measured every other day during lactation. Energy intake (kJ) and macronutrient 
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consumption (carbohydrates including sugar, fat and protein) were calculated from the 

manufacturers’ data. Weight loss due to evaporation was measured in triplicate samples of each 

individual food item placed in empty cages. The average daily percentage change in the weight of 

foods ranged from 0.0 to 6·2 % and corresponded to an average overestimation of energy intake by 

2·51 % (7·5 kJ/d), which can be considered within an acceptable error of measurement [36]. On 

postnatal day 21, offspring were weaned from their dams and then housed in groups of four with 

littermates of the same sex. Weanlings were fed standard chow for the remainder of the study (Fig. 

1).  

2.3 Behavioural testing  

Novel object recognition (NOR) testing 

Behavioural testing occurred in 24 to 26 days old offspring. Two randomly selected pups of each sex 

from each litter were used for testing; N= 9-12/dietary group/test condition, being in total, 62 

offspring. Each individual was only tested once. Testing was undertaken in constant dim light (4 lux) 

between 08:30 and 13:30h. Only one male/female was used from each litter for each trial to avoid 

within-litter effects. 

The methodology used in the present study was modified from Wright et al. [15]. Briefly, rats were 

habituated to the test arena (54cm × 38cm × 40cm) in the absence of any objects for one hour the day 

before testing. On the day of testing, animals received an additional 3-minute habituation session and 

were returned to the home-cage for 1 min, before being placed into the observation arena for the 

training trial (familiarisation) with two identical objects for 3 min. In three independent experiments, 

each animal was then returned to the observation arena for 3 minutes for the test trial (choice trial) 

with one of the two objects replaced by a similar but novel object present either after a 5, 30 or 60 

min inter-trial-interval (ITI). The remaining object from the familiarisation trail was left untouched 

(familiar object). The experiment assessed three retention intervals, but in independent experiments. 

Individual rats were only tested once, and only for a single retention interval each. 

The objects were 150ml water-filled plastic bottles with three horizontal strips of either white (W) or 

black (B) 1.2 cm wide masking tape being randomly assigned for each animal during the training 

schedule. The objects were positioned 13 cm from the length side and 11 cm from the width side of 

the arena in opposite corners. Arena and objects were cleaned with 70% ethanol between 

experiments to eliminate olfactory cues.  

For both trials, object exploration was defined as sniffing the object from a distance of under 1.5 cm 

or touching the object with the forepaws or nose. Behaviour was analysed using Ethovision XT7 



6 
 

(Noldus, Netherlands). To quantify object preference during the exploration, times for each object 

from both trials were converted to an exploration ratio. This ratio represents the proportion of time 

spent exploring the novel object divided by the total object exploration time during the test trial (t 

novel/ (t novel + t familiar) [37, 38] . 

2.4 Brain neurotransmitter content and metabolism 

For monoamine neurotransmitter determination, rats exposed to lactational CD and their controls 

were culled on post-natal day 26. In total, 24 offspring were used for neurotransmitter analyses. To 

exclude any possible interference, these rats did not undergo behavioural testing. To eliminate 

circadian effects, culling occurred at the same time of day as the behavioural experiments were 

performed. Immediately after culling, brains were removed and placed upon a glass plate mounted 

on an ice-filled container. The PFC was dissected and placed in liquid nitrogen before being stored at 

a freezer at −80 °C prior to analysis. 

For sample preparation tissue was weighed and placed in a perchloric acid working solution (0.05% 

PCA, 0.02% sodium metabisulphate, 0.01% EDTA). Tissue was homogenized using a sonic probe 

(Soniprobe 150, output 20, 20–30 s). Each sample was then placed in 1.5 ml centrifuge tube and 

centrifuged at 17,500 g in a Harrier 18/80 centrifuge) at 4 °C for 20 min. Supernatant was removed 

and filtered through 0.45 μm PVDF 4 mm syringe filters immediately before analysis by 

chromatography as detailed below. 

High performance liquid chromatography with electrochemical detection was used to measure 5-HT 

and its major metabolite 5-hydroxyindolacetic acid (5-HIAA), DA and the two major dopamine 

metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) as described 

previously (Rodsiri et al., 2010). Samples were analysed using a CuO4 detector connected to a VT-03 

cell with a glassy carbon working electrode operated at a potential difference of +0.7 V vs. Ag/AgCl. 

(Antec, Netherlands), a PU980 pump (Jasco Pump PVT. Ltd., India), a Rheodyne injection valve (7125 

injection valve; IDEX Corp., USA), a 4.6 mm × 150 mm Sphereclone, 5 μm ODS(2) column 

(Phenomenex, UK) with a Chromjet integrator (Newport Spectra-Physics Ltd., UK). The mobile phase 

consisted of 0.05 M KH2PO4, 0.1 mM EDTA, 0.32 mM octane sulfonic acid and 13% methanol, adjusted 

to pH 2.8–3 with orthophosphoric acid which was run at a flow rate of 1 ml/min. Calibration standards 

of DA, DOPAC, HVA, 5-HT and 5-HIAA were run three times daily before, midway and after running 

brain samples. All chemicals and standards were obtained from Sigma (Poole, UK). 
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2.5 Statistics 

Student’s t-test was used to analyse all nutritional data. The statistical unit for macronutrient intake 

was the dam. The statistical unit for the neurochemical and behavioural analyses was the litter. 

DA, DOPAC, HVA, 5-HT and 5-HIAA concentrations were analysed using a two-way independent 

measures ANOVA (diet × sex) with post-hoc Tukey-test, or, when sphericity was not assumed, Games–

Howell test. To investigate if diet or sex impact on exploratory behaviour during the familiarisation 

trial and thus introducing a bias for NOR testing, object exploration across the three ITI was subjected 

to Two-Way ANOVA (diet, sex). 

NOR testing was powered to detect a difference of 20% for the time spent in exploration between 

groups, based upon σ=0.11 (determined from published studies) and an α-value of 0.05 at 80% power. 

One sample t-test was used to compare the discrimination ratio of each diet group with values above 

0.5 indicating a preference for the novel object and hence a learning effect [37]. Sex was not seen as 

a differential factor in NOR in agreement with evidence from previous studies [39, 40]. Object 

discrimination task data has often a small effect size and thus ANOVA would be insufficiently powered 

[35]. In addition, it is thought that different memory mechanisms underlie the separate time intervals 

[41, 42] and for these reasons data at all ITIs were analysed independently. Consequently, no offspring 

NOR data was analysed using an ANOVA and no between group comparison were made. 

All figures were created and statistical analysis was performed using GraphPad Prism version 7 

(GraphPad Software, USA). All values are shown as means + SEM. Values were considered significant 

if the P value < 0.05.  

 

3. Results  

 

3.1 Macronutrient and energy intake in dams during lactation 

Fat (t=18.45, P<0.0001) and sugar (t=15.7, P<0.0001) intake were significantly increased in lactating 

CD-fed dams (Tab. 1) which led to a higher total energy intake in these dams (t=3.9, P<0.001). The 

overall protein intake was reduced by 27% (t=5.13, P<0.0001). Despite the increased sugar intake, CD-

fed dams consumed less carbohydrates in total (t=3.8, P<0.001) (Tab. 1).  

3.2. Novel object recognition 
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No effects of diet (F (1, 66) =0.02, P=0.12) or sex (F (1, 66) =0.55, P=0.46) on the time exploring the 

objects could be observed during the familiarisation trial when rats were first exposed to the two 

identical objects (Table 2).  

During the choice trial, controls explored the novel preferentially over the familiar object after both 

the shorter 5 min (t=4.56, df=11, P<0.001) or 30 min (t=0.0129, df =10, P<0.05) ITI.  By contrast, 

offspring from dams fed on the lactational cafeteria diet did not show any significant preference for 

the novel object at any of these time points. Compared with offspring on a lactational chow, their 

average discrimination ratio of the novel object was lower after the 5 min ITI (t=2.348, df = 20, P<0.05). 

Following a 60 minute ITI, neither of the two groups showed a preference for the novel object (Fig. 2). 

3.3 Effects of diet on DA and 5-HT in the prefrontal cortex 

Feeding a lactational cafeteria diet changed prefrontal DA and 5-HT metabolism. There was a main 

effect of treatment as dopamine was significantly reduced (F (1, 20) = 4.87, P=0.0392) and so were its 

two metabolites DOPAC (F (1, 20) = 10.24, P=0.0045) and HVA (F (1, 19) = 45.54, P<0.0001) in CD 

offspring. It needs to be mentioned though, that in 8 out of 12 rats in the cafeteria diet group (but in 

not in controls) HVA was below the detection limit.  Therefore the ratio of DOPAC (instead of DOPAC 

and HVA) to DA was utilised [43] as an indicator of DA metabolism. This ratio was significantly reduced 

in the CD group (F (1, 20) = 32.89, P<0.0001). None of the measured parameters were affected by sex 

(P>0.05) (Fig. 3). 

Whereas 5-HT in the PFC was not affected by diet (P>0.05), the 5-HT metabolite 5-HIAA was increased 

following lactational exposure to CD (F (1, 20) = 11.93, P<0.01). For this parameter, there was also an 

interaction with sex (F (1, 19) = 35.5 P<0.0001) such that the 5-HIAA content was higher in female CD 

offspring (P < 0.01). 5-HT metabolism as expressed by the 5-HIAA/5-HT ratio (F (1, 20) = 21.29, 

P<0.001) was increased in the cafeteria group with no significant interaction between diet and sex 

(Fig. 4).  

 

4. Discussion 

Feeding a cafeteria diet during lactation led to maternal overconsumption of fat and sugars (though 

not total carbohydrates) and thus increased energy intake. The carbohydrate content of chow is high 

(mostly starch), but with low sugar, whereas a CD item can have less total carbohydrates (compared 

to chow) but more sugar. Therefore, despite the overconsumption of sugars, total carbohydrate intake 
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in CD fed dams can be marginally reduced. This intake pattern, alongside a slight but significant 

reduced protein intake, is consistent throughout studies in our laboratory  [36, 44-46] and does not 

lead to increased bodyweight in offspring at the time of weaning [14, 17, 44]. Feeding such a CD affects 

a variety of behaviours irrespective of whether the diet was fed either during early postnatal 

development or in adult age. Behaviours affected by CD include anxiety and exploration, memory and 

feeding behaviour itself [13-15, 47-51]. In the current study, offspring from dams fed on chow during 

lactation were able to discriminate between a familiar and novel object following both shorter 5 

minute and 30 minute ITIs, indicating that the presentation of the familiar object had remained intact 

in their memory for at least up to 30 minutes following training. This appears to be in line with results 

from earlier rodent studies that have demonstrated evidence for NOR in weanlings and adolescent 

rats after a short ITI [35, 52].  No indication of object discrimination was found following a 60 minutes 

ITI. In contrast to chow fed controls, object memory was impaired in 25 days old offspring from dams 

that have been exposed to the cafeteria diet during lactation even at 5 and 30 minutes it is suggesting 

the diet may have caused a premature forgetting of object recognition. Our sampling data shows that 

this memory impairment is not due to changes in exploratory motivation during the sampling phase 

of the task, since exploration of both objects is identical for both groups, as expected [53].  

The observed memory impairment is a significant finding because the rodent brain is still under 

development during the postnatal period, and sensitive periods in memory in adolescence have been 

reported [4, 54-58] . Of note, early life social isolation has been robustly shown to impair a similar NOR 

protocol compared to group-housed littermate controls; an effect that can be reversed by dopamine 

D3 and 5-HT6 antagonists consistent with the involvement of developmental modifications in these 

neurotransmitters [22, 24, 59].  Consequently, environmental, including nutritional, challenges during 

this time could have effects on the developing brain and behaviour lasting into adulthood. Among all 

these factors, maternal behaviour seems to play a fundamental role [60], and maternal behaviours as 

grooming, nursing and licking increase when dams are fed a hyper-energetic diet [61, 62].  Although 

not investigated in the current study, we found increased licking and grooming of the pups when 

lactating dams were fed a cafeteria diet [17] . Together these findings suggest an effect of diet on 

maternal behaviour and subsequently on offspring behaviour.  

Milk composition during lactation reflects dietary intake when exposed to CD [63]. Hence, a direct 

nutritional effect on the pups could possibly override subtle diet-induced positive changes in maternal 

behaviour. Milk consumption of pups peaks around postnatal day 15 whereas pups start feeding solid 

food around day 17 [64]. In the current study, pups were weaned on postnatal day 21, leaving not 

more than four days of direct CD intake. Given that milk consumption remains high at least to 
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postnatal day 19 [64], CD consumption by the pups would be minimal. Hence the observed effects are 

most likely mediated via maternal milk ingestion rather than a direct CD consumption.   

In the current literature, there are mixed results from studies investigating the effects of hyper-

energetic feeding on NOR. In contrast to the current findings, exposure of adult rats to a cafeteria diet 

for 20 days did not alter NOR [65, 66]. However, dietary effects on recognition memory have been 

demonstrated, when the exposure took place during lactation and the sensitivity of the lactational 

period could explain this discrepancy [13, 15]. Studies testing adult rats have also found impairments 

in NOR following feeding a high sucrose diet [67, 68], or a high fat (HF) diet [69]. On the other hand, 

adult rats fed a CD/HF diet presented with no deficits in NOR [65, 70]. It could be suggested that these 

conflicting results are attributable to the variations in macronutrient content between diets, or 

differences in experimental design, but also to the time point in postnatal development when the diet 

was fed.   

Feeding a lactational CD had significant and reciprocal effects on PFC 5-HT and DA metabolism, the 

latter being decreased. In the current study, DA metabolism was expressed as DOPAC/DA ratio and 

the DA metabolite HVA was not accounted for. DOPAC is the major DA metabolite in rat brain whereas 

HVA dominates in primates. Although the DOPAC/DA ratios in the context of feeding have been 

reported in the past [43, 71], many rodent studies present the DOPAC+HVA/DA ratio. However, in the 

present study, HVA was reduced below detection level in some rats of the CD group, and could not be 

measured in the control group. This finding adds strong support to the interpretation of an overall 

reduced DA metabolism in CD fed rats and suggests a dramatic suppressive effect of exposure to the 

lactational diet on expression of enzymes involved in the metabolism of DA to DOPAC i.e. the 

monoamine oxidase-aldehyde dehydrogenase (MAO). However, a change in reuptake via DAT 

alterations cannot be excluded since DA needs to undergo reuptake to be metabolised by MAO. 

Exposure to high fat diets [72-76], but also cafeteria diets [77-80] affects DAT expression in 

hypothalamus and midbrain, but also dopamine D2 receptor expression. Both effects could be 

indicative of diet-induced changes in DA release. Of note, a three to four weeks exposure to a cafeteria 

diet enhances D2 receptor mediated autoinhibition thus causing deficits in DA signalling [80]. 

Alternatively, DA synthesis could be affected by an obesogenic diet. In mice, fed on a high fat diet, the 

expression of midbrain tyrosine hydroxylase (TH) was reduced [81], however increased in the 

hypothalamus [76]. TH is the rate limiting enzyme in DA synthesis, and a reduced activity could 

undelay the reduced DA concentrations as observed in the present study.   
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Albeit many of the aforementioned studies were conducted in adult animals, maternal exposure to 

HF diets also alters dopaminergic brain functions [75, 82] and the   effect of a cafeteria diet can change 

fundamentally during development [77].  

A study in adolescent rats found reduced prefrontal gene expression of the dopamine degrading 

enzymes MAO and   catechol-O-methyltransferase (COMT) following exposure to a high fat and high 

sugar diet [83]. This study supports our finding that a hyper-energetic diet impacts on prefrontal 

cortical DA in adolescence. Although the study by Reichelt et al. [83] did not measure DA content or 

turnover, their data would rather predict increased PFC DA concentrations. This is would contradict 

our findings of a reduced DA activity, but due to differences in study design (e.g. age of animals, diet, 

and feeding procedure) conclusions cannot be drawn without further experimentation. 

DA plays a role in short term memory across species, although conceptual questions of memory 

models require consideration [84]. The reduced DOPAC/DA ratio could be indicative of a diminished 

release or increased presynaptic DA uptake, although changes in metabolite/neurotransmitter ratio 

do not always translate into changes in release [85] and the neurochemical data provided here cannot 

easily be related to the observed dietary effects on memory.  The functional significance of the 

observed alterations in post-mortem brain neurochemistry needs to be confirmed in further in vivo 

studies. However, pharmacological data demonstrates the involvement of DA receptors modulating 

NOR, suggesting a functional impact of the observed changes in the DA/DOPAC ratio. Thus, PFC D1 

receptor activation and D2 receptor antagonism impair NOR, whereas D3 receptor blockade improves 

NOR [21, 86].  

 

5-HT metabolism in PFC was increased in CD fed offspring and CD fed offspring showed impaired NOR 

in the current study. Thus, assuming a cafeteria diet – induced increase in serotonergic activity and 

impaired NOR would be in line with reports  demonstrating  that 5-HT6 , 5-HT7, postsynaptic  5-HT1A 

receptor antagonists as well as presynaptic 5-HT1A receptor agonists have positive effects on NOR 

[57, 87-91] . Although the serotonergic drugs were given systemically in these studies, evidence for an 

involvement PFC 5-HT in NOR exists [25, 26, 28].   However, based on focal lesions, an involvement of 

the PFC in NOR has been questioned [92], although the aforementioned pharmacological studies seem 

to contradict these earlier findings as they suggest an involvement of PFC DA and 5-HT in NOR (but 

see [93]). In addition, it is unknown if lesions to the PFC also affect NOR in very young rats. Lesion 

studies in adults established the perirhinal cortex as the main brain correlate of NOR [94, 95].  

However lesions of the perirhinal cortex do not impair NOR when the inter-trial interval is short in [94] 
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and adolescent rats seem to remember the object only for a short period of time in the current study.  

In fact, short term memory of both, hippocampus-dependent spatial tasks and NOR are impaired 

following D1 antagonism in the prelimbic cortex, further suggesting an involvement of PFC in NOR 

[96]. Thus it is quite possible that under certain conditions (age/short inter-trial interval) the PFC also 

plays a role in NOR. It has also been suggested that PFC lesions do not impact on NOR, as this relatively 

simple form of learning could be processed in other brain regions as well [96]. Although the 

hippocampus does not seem to play a dominant role in NOR (but [97, 98]), hippocampal function is 

particularly sensitive to hyperenergetic diets [99, 100] and hippocampal lesions alter the functional 

maturation of the prefrontal cortex [101]. As the prefrontal cortex in young adolescent rats is still 

developing, one could hypothesize that changes in hippocampal function could contribute to the 

observed aberrations in 5-HT and DA metabolism.  Thus, albeit indirectly, the hippocampus could 

possibly play a more prominent role in NOR when the brain is still developing. In addition, PFC 

functioning itself could be altered by diet [102-104]. Recently, a model of adolescent maturation of 

hippocampal and PFC circuity has been suggested. This model also proposes dopaminergic control 

over the developing PFC-hippocampal interactions [105]. 

Despite the fact that dopaminergic and serotonergic functions in the PFC are undergoing substantial 

postnatal development, and thus are subject to environmental factors [106], relatively little is known 

about the impact of diet on PFC functioning during early development. However, in the rat, a 5-HT 

sensitive period impact on PFC function has been established between postnatal day 2 and 11 [107]. 

The development of the dopaminergic innervation of the PFC lasts at least until postnatal day 60 which 

includes the lactational period. Both 5-HT and DA syntheses are influenced by diet [29]. However, it 

remains to be investigated if and how an obesogenic Western diet impacts on the postnatal 

development of these two neurotransmitter system in the PFC. The early postnatal period, i.e. the 

lactational period, in rodents has been related to the third semester of gestation in humans, but brain 

development in both humans and rodents is similar in that there is an increase in postnatal brain 

synaptogenesis [56]. In the rat, brain differentiation occurs mostly postpartum [58]. Given that PFC 

maturation in both rats and humans is incomplete until puberty, postnatal manipulations of diet might 

impact on brain development in both species. 

Changes in rodent PFC functioning are seen as a potential model for human PFC development [11, 

108] and the involvement of PFC 5-HT and DA has been suggested in related behavioural pathology. 

In humans, early environmental challenges can be detrimental to neurodevelopment and predispose 

to mental and behavioural disorders [32, 109]. Experimental and clinical neurobehavioural research is 

focussing on adolescence where about 50% of adult neuropsychiatric disorders emerge [7, 11, 110] 
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and where therapeutic invention could be beneficial [111]. Here we provide experimental evidence 

for a possible role of unhealthy diets in that context. 

In conclusion, we demonstrate that lactational diet impacts on PFC neurochemistry and on the 

development of NOR behaviour in the early adolescent rat.  It cannot be excluded that the early 

exposure to a cafeteria diet could possibly delay the development of this behaviour. Considering that 

psychiatric diseases are increasingly seen as developmental disorders, an early obesogenic diet could 

be a potentially under-investigated contributing factor. 
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Fig. 1 Timeline of experimental procedures. PND = postnatal day. 
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Fig. 2 Impact of lactational cafeteria diet (CD) on novel object recognition in 24-26 day old weaner 
rats. Control dams were fed on show (C). Values over 0.5 represent learning. In controls, learning 
occurred both after a 5 min (***) or 30 min (*) inter-trial interval (ITI). Learning occurred also in the 
CD group after 5 minutes (*), but was impaired when compared to control (+). Offspring from CD fed 
dams did not show memory after 30 min and no group showed memory after 60 min either. 
***P<0.001; * P<0.05; One-sample t-test. +P<0.05 Student’s t-test. N = 9-12 / group; 62 in total. 
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Fig. 3 Impact of lactational cafeteria diet (CD) on PFC dopamine (DA), homovanillic acid (HVA), 3, 4-
Dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA ratio (turnover) in 24-26 day old weaner rats. 
Control dams were fed on show (C). All parameters were reduced in offspring from dams fed on CD 
during lactation.  *P<0.05, **P<0.01, ****P<0.0001. Two-way ANOVA (diet × sex) with post-hoc 
Tukey-test. N = 6 / group; 24 in total. 

 

 

Fig. 4 Impact of lactational cafeteria diet (CD) on PFC serotonin (5-HT), 5-Hydroxyindoleacetic acid (5-
HIAA) and 5-HIAA/5-HT ratio (turnover) in 24-26 day old weaner rats. Control dams were fed on show 
(C). 5-HIAA and turnover were both increased in offspring from dams fed on CD during lactation. 
**P<0.01, ****P<0.0001. Two-way ANOVA (diet × sex) with post-hoc Tukey-test. + P < 0.05 N = 6 / 
group; 24 in total. 

 

Table 1  

Average daily energy and macronutrient intake in lactating dams  

 

Diet 

  

Energy intake 

(kJ/d) 

  

Carbohydrate 

Sucrose  

(g/d) 

  

Fat  

(g/d) 

  

Protein 

(g/d) 

 

   

Mean 

 

SEM 

  

Mean 

 

SEM 

  

Mean 

 

SEM 

  

Mean 

 

SEM 

 

Chow  755.9  34.92  25.75 1.14  

 

 3.60  0.16  10.8   0.48 

 

 

 

2.02  0.09 

Cafeteria  950.1*** 

 

 

35.38  20.13***  0.94  12.33****  

 

0.44  7.95**** 

 

0.27  

5.96 
**** 

 

0.23 

 

Data represent mean values from 12 dams/group as collected over 21 days of lactation. Student’s t-
test. ***P < 0.0001. ****P < 0.00001 vs. chow fed controls. 
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Table 2 Exploration time of the two identical objects during familiarisation 

 

 

 

 

 

 

 

 

 

Familiarisation data for each of the three experimental situations have been analysed 

separately. No significant effects of sex and diet have been observed.  

Two-Way ANOVA (diet, sex). N=4-5 / group; 62 in total. 

 

Intertrial interval 
(min) 

Diet Exploration time 
(s) during 
familiarisation 
Male offspring 

Exploration time 
(s) during 
familiarisation 
Female offspring 

  Mean      SEM Mean      SEM 

5  C 
CD 
 

88.8         12.5 
93.6          8.9 
 

97.5        9.9 
115.7      13.3 

30 C 
CD 
 

86.8         16.4 
101.3       16.7 

125.9     29.9 
99.2        9.5 

60 C 
CD 
 

79.6         13.6 
81.9          10.9 

71.8        4.4 
75.1        9.6 


