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Abstract

Previous studies on wave inspection in different propagation directions have focussed on the anal-

ysis of wave propagation and wave scattering from various types of joints in two-dimensional

monolayered structures. In this work, a Finite Element (FE) based numerical scheme is presented

for quantifying wave interaction with localised structural damage within two-dimensional layered

composite structures having arbitrary layering, complexities and material characteristics. The

scheme discretise a damaged structural medium into a system of N healthy substructures (waveg-

uides) connected through a joint which bears the localised structural damage/discontinuity. Wave

propagation constants along different propagation directions of the substructures are sought by

combining Periodic Structure Theory (PST) and the FE method. The damaged joint is modelled

using standard FE approach, ensuring joint-substructures mesh conformity. This is coupled to the

obtained wave propagation constants in order to determine scattering coefficients for the wave in-

teraction with damage in different propagation directions within the structure. Wave interaction

coefficients for different damage types and structural parameters are analysed in order to establish

an optimum basis for detecting and identifying damage, as well as assessing the orientation and

extent of the detected damage. The main advantage of this scheme is precise predictions at a very

low computational cost.
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Nomenclature

a Wave amplitude

c Wave scattering coefficient

D,D Dynamic stiffness matrices of the waveguide and the coupling joint

fe Vector of forces applied to the coupling joint at its interface with connected waveg-

uides

k Wavenumber

K,M,C Stiffness, mass and damping matrices of a waveguide’s modelled segment

q, f Physical displacement and forcing vectors for a waveguide

R Rotation matrices of the system’s waveguides

S Wave scattering matrix

T Wave propagation transfer matrix

z Physical displacement vector for the coupling joint

φ,Φ Eigenvector and grouped eigenvector

λ Propagation constant and eigenvalue of the wave propagation eigenproblem

K,M,C Stiffness, mass and damping matrices of the coupling joint

RT, R∗
T

Transformation matrix for the coupling joint’s displacement and force vectors

ω Circular frequency
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ℜ Real operator

ε, µ Wave propagation constants for the waveguide and the coupling joint

b, h width and depth of a cross-section

E,G, ν, ρ Elastic modulus, shear modulus, Poisson’s ratio and density of an elastic waveguide

i Imaginary unit

j Number of DoF on each periodic cross-section of the waveguide’s segment, along

the axis in which wave properties are sought

L Length

n Number of periodic layers along the axis of wave imposition

RT , R∗T Transformation matrix for the waveguide’s displacement and force vectors

Subscripts

i, n property of interface and non-interface nodes of the coupling joint with the waveg-

uides

J,J Property of a coupling joint

k, n Waveguide indices

L,R, I Left, right sides and interior indices

LT, IT,RT, LI, I,RI, LB, IB,RB left top, internal top, right top, left internal, internal, right

internal, left base, internal base and right base of a modelled segment

N Waveguide indices and total number of waveguides existing in the considered system

q, f Displacement and forcing indices
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w,W Wave eigenvector index and total number of waves accounted for in the waveguide

x, y Direction of propagating wave

Superscripts

inc, ref Positive and negative going waves properties

g Global coordinate index

s Periodic segment positioning index

1. Introduction

Composite structures, in recent years, have seen growing applications in the automotive, con-

struction and aerospace industries mainly due to their great mechanical characteristics over other

material structures. As result of the increased applications, inspection of the structures to ensure

continuous use has also received great interest. Most composite structures such as plates and

shells can be regarded as two-dimensional structures due to the propagation behaviour of waves

travelling through them. In these structures, waves travel in two directions, and when they interact

with any form of discontinuity (such as damage or change in cross-section) within the structure,

they transmit through or reflect from the discontinuity also in two directions. This therefore gives

rise to the need for studying wave interaction with damage in every propagation direction of the

structure.

Typically, cost of inspecting and repairing damage in aircraft structures amounts to about one-

third of its lifecycle [1]. Offline inspection could lead to a significant financial loss due to massive

unavailability of the structure during the inspection process. As a result of this, Non-Destructive

Evaluation (NDE) techniques for monitoring and evaluation of damage have thus become impor-

tant for low-cost and efficient inspection of in-service structures. Various techniques have been

developed and implemented towards that goal. Of these techniques, the vibration-based meth-

ods are among the most widely employed due to their comparative advantages [2, 3]. They are
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based on extraction of vibration response to determine damage parameters. For instance, In [4],

vibration-based methodology is developed which calculates damage index based on the analysis

of Poincare maps to determine presence and the location of a damage within plates. Theoretically,

changes in structural properties, due to damage for example, will lead to changes in the modal

properties such as natural frequencies [5, 6], mode shapes [7] and stiffness [8] of the structure. A

major limitation of this approach is that it is mostly effective in detecting the presence of damage

while determining the mode, location and extent of damage is a difficult (if not impossible) pro-

cess at best. However, localising damage is prevalent and critical in structural integrity evaluation.

Of all the NDE techniques, such as electromagnetic testing, laser testing, thermal testing, etc. [9],

suitable for detecting localised damage, the ultrasonic testing is of great interest due to its ability to

induce accurate localised damage detection at high frequencies. When a wave propagates through

a medium encounters a damage, it is reflected, or transmitted. The reflection and transmission

coefficients (known as the scattering coefficients) obtained from the wave-damage interaction is

an underlying parameters for damage detection in ultrasonic testing [10]. As established in [11–

13], the scattering coefficients greatly depend on damage type. Hence, wave interaction scattering

coefficients can be utilised for damage identification, as will be demonstrated in this study.

Advancements in computational tools development has resulted in significant increase in the

application of model-based approaches to detect, analyse and classify damage in structures. Im-

plementing a suitable modelling technique for this purpose has hence become an important aspect

of Structural Health Monitoring (SHM). The Finite Element (FE) method is one of the most com-

monly employed modelling techniques. However, to detect small sized damage, especially at high

frequency, a very fine mesh density is needed which results into a very large sized model. This

makes FE method computationally expensive for this purpose. Wave-based modelling techniques

are computationally affordable, especially for simple structures, because they require low compu-

tational resources. Thus, they are preferred for problems where FE method becomes computation-

ally large. For arbitrarily complex structures, such as composite structures or structural networks,

a Wave Finite Element (WFE) approach was introduced in [14, 15]. The approach combines the

periodic structure theory (PST) with FE to obtain wave propagation constants within a broad fre-

quency range. WFE is extended to two-dimensional structures in [16]. It has been applied to a
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variety of structural situations, such as flat [17], curved [18] and stiffened [19] structures, under

free [15, 20], forced [21–23] and simply supported [24] boundary conditions. It has also been

applied to obtain wave scattering properties in cylindrical pipes with defects [25], structures with

different types of joints [26–28] and damaged stiffened panels [29]. The approach has recently

found applications in predicting the vibroacoustic and dynamic performance of composite panels

[30, 31]. The variability of vibroacoustic transmission through layered structures [32] as well as

structural identification [33] have been investigated through the same methodology.

WFE method has shown great efficiency and versatility in its applications to various structural

problems. However, very few of these applications considered two-dimensional structures. Wave

propagation in two-dimensional structures using the WFE method was introduced in [16]. It was

extended in [27], using the hybrid WFE-FE approach [26], to compute wave scattering from dif-

ferent joints in a coupled monolayered structures. In order to implement damage and compute

wave scattering from the damage, the coupled structures have to be multilayered.

The principal contribution of this work is development of a WFE based numerical scheme

for quantifying wave interaction with localised structural damage within two-dimensional multi-

layer composite structures having arbitrary layering, complexities and material characteristics.

The scheme discretises a damaged structural medium into a system of N healthy substructures

(waveguides) connected through a joint which bears the localised structural damage/discontinuity.

Wave propagation constants along different directions of the substructures are sought by combin-

ing periodic structure theory with the FE method. The damaged joint is modelled using a stan-

dard FE approach, ensuring joint-substructures mesh conformity. This is coupled to the obtained

wave propagation constants in order to determine scattering coefficients of the wave interaction

with damage in different propagation directions of the structure. Wave interaction coefficients for

different damage types and parameters are analysed in order to establish an optimum basis for

detecting and identifying damage, as well as assessing the orientation and extent of damage.

The remainder of this article is organized as follows: In Sec. 2, the computation of wave prop-

agation constants in two-dimensional layered waveguide is presented. Sec. 3 presents numerical

methodologies for damage implementation in structural segment. Wave interaction with structural

damage and the computation of the interaction coefficients are presented in Sec. 4. Sec. 5 presents

6



numerical case studies and concluding remarks on the presented work are given in Sec. 6.

2. Wave propagation in two-dimensional composite structure

2.1. Statement of the problem

Elastic wave propagation is considered in the x and y directions of an arbitrarily layered com-

posite waveguide (Fig. 1). A segment of the waveguide is modelled using a commercial FE

software.

[Figure 1 about here.]

The stiffness, mass and damping matrices of the segment K, M and C are extracted using classi-

cal FEM algorithm and the nodal displacements vector q is reordered according to a predefined

sequence such as

q = {qLT qIT qRT qLI1 qI1 qRI1 qLI2 qI2 qRI2 qLB qIB qRB}
⊤ (1)

where I corresponds to internal, LI,RI the interface edge and LT, RT, LB, RB the interface corner

indices.

2.2. PST formulation of the waveguide’s equation of motion

The time harmonic equation of motion of the modelled segment, assuming uniform and struc-

tural damping for all the DoFs, can be written as

[K + iωC − ω2M]q = f (2)

where ω is the circular frequency and f is the nodal forces vector. The dynamic stiffness matrix

can then be expressed as

D = K + iωC − ω2M (3)

The equation of motion (Eq. (2)) is therefore expressed as
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Dq = f (4)

A practical procedure for extracting the wave propagation characteristics of the segment is inject-

ing a set of assumed propagation constants εx or εy. The set of these constants can be chosen

in relation to the direction of propagation towards which the wavenumbers are to be sought and

according to the desired resolution of the wavenumber curves. In this study, propagation constants

are injected along y axis and propagation characteristics are sought along x axis by transforming

Eq. (4) into a standard eigenvalue problem with x as the direction of wave propagation.

Applying the Bloch’s theorem under the assumption of a time harmonic response, the dis-

placements at each periodic edge along the axis of wave injection (y axis) can be expressed as a

function of the displacements at one edge. Using the edge with indices LB, IB and RB as the edge

of reference, then

qLT =e−iεyqLB, qIT =e−iεyqIB, qRT =e−iεyqRB

qLI1 =e−i 2
3
εyqLB, qI1 =e−i 2

3
εyqIB, qRI1 =e−i 2

3
εyqRB

qLI2 =e−i 1
3
εyqLB, qI2 =e−i 1

3
εyqIB, qRI2 =e−i 1

3
εyqRB

(5)

Using same theorem, the corresponding force vectors can be expressed as

fLT =e−iεyfLB, fIT =e−iεyfIB, fRT =e−iεyfRB

fLI1 =e−i 2
3
εyfLB, fI1 =e−i 2

3
εyfIB, fRI1 =e−i 2

3
εyfRB

fLI2 =e−i 1
3
εyfLB, fI2 =e−i 1

3
εyfIB, fRI2 =e−i 1

3
εyfRB

(6)

where εy, the propagation constant in the y direction, is directly related to the wavenumber ky

through the relation

εy = kyLy (7)

Expressing Eq. (5) in tensorial form gives

q = RT {qLB qIB qRB}
⊤ (8)
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where

RT =
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(9)

with

λy =e−iεy (10)

RT is the transformation matrix for expressing the displacements at each periodic edge as a func-

tion of the displacements at the reference edge.

Assuming equilibrium along the reference edge, Eq. (6) can also be expressed in tensorial

form as

R∗T f = {fLB fIB fRB}
⊤ (11)

where R∗T, which is a Hermitian transpose of RT, is the transformation matrix for the forces vector.

Substituting Eqs. (8) and (11) into Eq. (4) gives a reformulated standard equation of motion as

[R∗
T
KRT + iωR∗

T
CRT − ω

2R∗
T
MRT]


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The modelled periodic segment, as shown in Fig. 1, has three periodic segments along the axis of

wave injection (i.e. y axis). Generally, for a periodic segment with n periodic layers along the axis

of wave injection, the transformation matrix is expressed as

RT =
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2.3. Formulation of eigenvalue problem

The standard eigenvalue relation for the equation of motion (Eq. 12) is hereby formulated

using a WFE approach which couples the periodic structure theory with the FE method.

In Eq. (12), x is the direction along which propagation characteristics are sought when wave

properties along y are known and imposed as earlier informed. Hence, the dynamic stiffness matrix

of the segment can be partitioned with regard to its left LB (denoted as L), right RB (denoted as R)

and internal IB (denoted as I) DoF as
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It is assumed that no external forces are applied on the internal nodes, fI = 0. Applying a dynamic

condensation technique on the internal nodes DoF, Eq. (14) can be expressed as
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with

D11 = DLL − DLID
-1
II DIL, D12 = DLR − DLID

-1
II DIR

D21 = DRL − DRID
-1
II DIL, D22 = DRR − DRID

-1
II DIR

(16)

As earlier stated, it is assumed that no external forces are applied on the segment. As a result

of this, the displacement continuity and equilibrium of forces equations at the interface of two

consecutive periodic segments s and s + 1 are given as

qs+1
L = qs

R

fs+1
L = −fs

R

(17)

Combining Eqs. (15) and (17), the relation of the displacements and forces of the two consecutive

periodic segments can be expressed in the form
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and the expression of the symplectic transfer matrix T is defined as

T =
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(19)

where 2 j is the number of DoF on each periodic cross-section (along y-axis) of the periodic waveg-

uide’s segment (Fig. 1).

As previously stated, propagation characteristics along y direction are assumed known. The

unknown propagation constant along x direction λx =e−ikx Lx relates the right and left nodal dis-

placements and forces according to Bloch’s theorem as
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qs
R = λxqs

L

fs
R = −λxfs

L

(20)

Substituting Eqs. (17) and (20) in Eq. (18), the free wave propagation is described by the eigen-

problem
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





qs
L

fs
L



















= T



















qs
L

fs
L



















(21)

whose eigenvalues λx(ω, ky) and eigenvectors φ(ω, ky) =





















φq

φ f





















[2 j×2 j]

solution sets provide a com-

prehensive description of the propagation constants and the wave mode shapes for each of the

elastic waves propagating in the structural waveguide at a specified circular frequency, ω and

wavenumber along y, ky. Both positive going (with λinc
x and φinc) and negative going (with λref

x and

φref) waves are sought through the eigensolution. Positive going waves are characterised [15] by

|λinc
x | ≤ 1,

ℜ(iωφ
inc⊺

f
φinc

q ) < 0, if |λinc
x | = 1

(22)

which states that when a wave is propagating in the positive x direction, its amplitude should be de-

creasing, or that if its amplitude is constant (in the case of propagating waves with no attenuation),

then there is time average power transmission in the positive direction. Then the wavenumbers

of the waves (at a specified circular frequency and ky) in the positive kinc
x and the negative kref

x

directions can be determined from the propagation constants as

kinc
x (ω, ky) = −

ln (λinc
x )

iLx

kref
x (ω, ky) = −

ln (λref
x )

iLx

(23)

3. Finite element modelling of structural damage

Wave interaction with structural damage in layered structures is considered in this study. This

section presents the finite element methodologies for some common damage in composite struc-
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tures. Composite structures are subject to a number of damage types which range from micro-

scopic fibre faults to large, gross impact damage. Among these failure modes, notch, crack, de-

lamination and fibre breakage are common failure modes found in composites [34, 35].

FE methods are used to describe the effect of damage on the mechanical behaviour of the

coupling joint. This is implemented in the FE model of the coupling joint. Some of these meth-

ods include stiffness reduction, element deletion, duplicate node and kinematics based methods.

Descriptions of each of these methods and their applicability are given in the following sections.

3.1. Stiffness reduction method

It is a known fact that structural defects contribute to a reduction in the overall stiffness proper-

ties of the structural segment. In this method, the stiffness loss is incorporated in the FE modelling

of the structural segment by multiplying the material property of the structure by a reduction factor

β as

P = βP0, 0 < β ≤ 1 (24)

where P is the reduced material property, P0 the original magnitude of the property (which can be

elastic modulus, shear modulus or density). β being the reduction factor, equals unity for a pristine

structure. This method is applicable to model cracks and delamination, but it is limited to wave

interaction problem where mode conversion is not expected.

3.2. Element deletion method

This method is mainly applicable for modelling notches such as holes (fibre fractures) and

rectangular notches in composites. Here, an element or a number of elements along the axis of the

defect is/are deleted from the structure to simulate the effect of the defect. This leads to a reduction

in the overall mass and stiffness of the structure. It is one of the simplest FE damage modelling

methods as it doesn’t require mesh modification.

3.3. Node duplication method

The node duplication method is applicable for modelling various damage types such as single

and multiple delamination and cracks, and fibre breakages.

13



In this method, nodes along axis of damage, within the structural segment, are disconnected

by adding duplicate nodes, which have the same nodal coordinates but different nodes numbers,

to the nodes being disconnected. Each duplicate node is assigned to an adjacent element such that

when a tensile force is applied, the nodes along the damage front are separated. In this respect, if

the original nodes are connected to the left side elements, the duplicate nodes will be connected to

the elements on the right side.

An illustration of this method is presented for a structural segment with a through-width dam-

age as presented in Appendix A.

3.4. Kinematics based method

This approach has a lot of similarities to the node duplication method. It involves enforcing

kinematics to the nodes surrounding damage. The structural segment is segmented into multiple

domains along damage front. The stiffness and mass matrices of each domain are generated and

coupled to obtain the overall matrices of the structural segment. More details on the approach can

be found in [36]. The method is applicable to model delamination, cracks and fibre breakages.

4. Wave interaction with structural damage in 2D layered structures

A system of N healthy waveguides connected through a structural coupling joint, which exhibit

arbitrarily complex mechanical behaviour such as localised damage, is hereby considered (Fig. 2).

The waveguides and the joint are arbitrarily complex and periodic. The coupling joint is fully FE

modelled while the propagation constants for the elastic waves travelling within the waveguides

are sought through the PST-FE scheme as presented in Section 2.

[Figure 2 about here.]

As earlier stated, each waveguide can be different and hence can support a different number of

propagating waves, W, at a given frequency, ω and ky. However the cross-sections at the interface

of each waveguide and the coupling joint must be similar as shown in Fig. 2.
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4.1. PST formulation of the coupling joint’s equation of motion

Consider a typical coupling joint along which a wave propagates in the x and y directions. The

PST formulation of the joint’s fully FE-modelled segment is presented in Fig. 3.

[Figure 3 about here.]

The equation of motion for the fully FE-modelled coupling joint can be written as

Mz̈ + Cż + Kz = fe (25)

where K,C and M are stiffness, damping and mass matrices of the coupling joint. z is the physical

displacement vector of the coupling joint and fe is the set of elastic forces applied to the coupling

joint at its interface with connected waveguides.

As in the case of the waveguides, propagation constants are injected along the y axis and

propagation characteristics are sought along the x direction. Hence, displacements and forces

vectors are expressed as function of the displacements and forces at a chosen reference edge along

the axis of wave injection. As demonstrated in Sec. 2.2, the edge with indices LB, IB and RB is

used as the reference edge. The segment’s displacements are expressed as

zLT =e−iµyzLB, zIT =e−iµyzIB, zRT =e−iµyzRB

zLI1 =e−i 2
3
µyzLB, zI1 =e−i 2

3
µyzIB, zRI1 =e−i 2

3
µyzRB

zLI2 =e−i 1
3
µyzLB, zI2 =e−i 1

3
µyzIB, zRI2 =e−i 1

3
µyzRB

(26)

and forces expressed as

fe
LT
=e−iµyfe

LB
, fe

IT
=e−iµyfe

IB
, fe

RT
=e−iµyfe

RB

fe
LI1
=e−i 2

3µyfe
LB
, fe

I1
=e−i 2

3µyfe
IB
, fe

RI1
=e−i 2

3µyfe
RB

fe
LI2
=e−i 1

3
µyfe

LB
, fe

I2
=e−i 1

3
µyfe

IB
, fe

RI2
=e−i 1

3
µyfe

RB

(27)

with

µy = kyLJy (28)
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Expressing Eqs. (26) and (27) in tensorial forms gives

z = RT {zLB zIB zRB}
⊤

R

∗
T

fe =
{

fe
LB

fe
IB

fe
RB

}⊤ (29)

where RT is the transformation matrix for the displacements and R∗T, which is the Hermitian of RT,

is the transformation matrix for the forces. Generally, for a coupling joint of n periodic layers along

the axis of wave injection (y axis in this case), the transformation matrix based on the predefined

sequence (Fig. 3) can be expressed as

RT =




















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


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
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
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
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
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
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


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























































γ
n
n
y I 0 0

0 γ
n
n
y I 0

0 0 γ
n
n
y I

γ
n−1

n
y I 0 0

0 γ
n−1

n
y I 0

0 0 γ
n−1

n
y I

γ
n−2

n
y I 0 0

0 γ
n−2

n
y I 0

0 0 γ
n−2

n
y I

...
. . .

...

γ
0
n
y I 0 0

0 γ
0
n
y I 0

0 0 γ
0
n
y I






















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
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
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




















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






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













































































(30)

with

γy =e−iµy (31)

Substituting Eq. (29) into Eq. (25) gives a reformulated equation of motion for the joint as
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[R∗
T
KRT + iωR∗

T
CRT − ω

2
R

∗
T
MRT]



































zLB

zIB

zRB



































=



































fe
LB

fe
IB

fe
RB



































(32)

In the reformulated equation of motion, the segment is partitioned with regards to its left LB,

right RB and internal IB DoF which are denoted as i1, i2 and n as shown in Fig. 3. The circular

frequency (ω) and ky dependent DSM of the joint can then be expressed as

D = R∗TKRT + iωR∗TCRT − ω
2
R

∗
TMRT (33)

It is assumed that all connected waveguides are considered to be purely elastic and that no external

force is applied at the non-interface nodes of the joint. As a result of this, the DSM of the joint

is partitioned with regards to the interface (i1 and i2 as shown in Fig. 3) DoF, denoted as i, and

non-interface DoF, denoted as n, of the joint with the waveguides as


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













D

ii
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D
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nn
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


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






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





z
i

z
n



















=



















fe
i

fe
n



















(34)

Applying dynamic condensation on the non-interface DoF (fe
n

= 0), Eq. (34) can be expressed as

D

J

z
i

= fe
i

(35)

with

D

J

= [D
ii

− D
in

D

-1
nn

D

ni

][ jN× jN] (36)

4.2. Calculation of wave scattering coefficients

Each supported wavemode w with w ∈ [1 · · · W] for waveguide n with n ∈ [1 · · · N] in the

system (Fig. 2) can be grouped as
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Φ
inc
n,q
=

[

φinc
q,1 φ

inc
q,2 · · · φ

inc
q,W

]

[ j×W]

Φ
inc
n,f
=

[

φinc
f ,1 φ

inc
f ,2 · · · φ

inc
f ,W

]

[ j×W]

Φ
ref
n,q
=

[

φref
q,1 φ

ref
q,2 · · · φ

ref
q,W

]

[ j×W]

Φ
ref
n,f
=

[

φref
f ,1 φ

ref
f ,2 · · · φ

ref
f ,W

]

[ j×W]

(37)

The wavemodes of the entire waveguides in the system, at each specified circular frequency, ω and

ky, can be grouped as

Φ
inc
q (ω, ky) =


















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






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





Φ
inc
1,q 0 · · · 0

0 Φ
inc
2,q · · · 0

· · · · · · · · · · · ·

0 0 · · · Φinc
N,q




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[ jN×WN]

(38)

with respective expressions for Φinc
f , Φref

q , and Φref
f . For each waveguide, the local coordinate

system is defined such that the waveguide’s axis is directed towards the joint as shown in Fig.

2. The rotation matrix Rn transforms the DoFs of each waveguide from the local to the global

coordinates of the system as

Φ
g,inc
q = RΦinc

q (39)

with respective similar expressions forΦ
g,inc

f
,Φ

g,ref
q andΦ

g,ref

f
. g denotes the global coordinates in-

dex and R represents the rotation matrices of the system’s waveguides, grouped in a block diagonal

matrix as

R =
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(40)

The equilibrium of forces at the coupling joint interfaces with the waveguides is expressed as
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fe
i

− Rf = 0 (41)

where f is the set of forces applied by the waveguides connected to the joint. The continuity

conditions for the joint give

z
i

= Rq (42)

with

q = [q1 q1 · · ·qN]
⊺

[jN×1]
(43)

As shown in Fig. 2, waves of amplitudes ainc
n are impinging on the coupling joint from the nth

waveguide will give rise to reflected waves of amplitudes aref
n in the nth waveguide and transmitted

waves of amplitudes aref
k

in the kth waveguide (and vice versa). The reflected and transmitted

waves amplitudes are related to the reflection cn,n and transmission ck,n coefficients of the scattered

waves as

aref
n = cn,nainc

n

aref
k = ck,nainc

n

(44)

Hence, the incident waves amplitudes can be related to the amplitudes of the scattered waves as

aref = Sainc (45)

where ainc
[WN×1] is the vector containing the amplitudes of the incident waves moving towards the

coupling joint and aref
[WN×1] the vector containing the amplitudes of the reflected and transmitted

scattered waves. The wave scattering matrix S whose diagonal and off-diagonal elements respec-

tively represent the reflection and transmission coefficients of the scattered waves can be expressed

in the form
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S =



































































c1,1 · · · c1,W · · · c1,WN

· · · · · · · · · · · · · · ·

cW,1 · · · cW,W · · · cW,WN

· · · · · · · · · · · · · · ·

cWN,1 · · · cWN,W · · · cWN,WN



































































[WN×WN]

(46)

In order to calculate the scattering matrix, an expression is defined for the motion in the waveguides

between the physical domain, where the motion is described in terms of q and f and the wave

domain, where the motion is described in terms of waves of amplitudes ainc and aref travelling in

the positive and negative directions respectively as

qn = Φ
inc
n,qainc

n +Φ
ref
n,qaref

n

fn = Φ
inc
n,f a

inc
n +Φ

ref
n,fa

ref
n

(47)

and by concatenating the corresponding vectors and matrices, the general expressions for q and f

for the system’s waveguides can be expressed as

q = Φinc
q ainc

n +Φ
ref
q aref

n

f = Φinc
f ainc

n +Φ
ref
f aref

n

(48)

Then substituting Eq. 35 into the equilibrium equation (Eq. 41) and the continuity equation (Eq.

42) into the resulting expression gives

D

J

Rq = Rf (49)

Substituting Eqs. 39 and 48 in Eq. 49 and express the resulting equation in the form of Eq. 45

gives the wave interaction scattering matrix (at a specified circular frequency, ω, and imposed

wave constant along y, ky) as

S(ω, ky) = −[Φ
g,ref

f
− D

J

Φ
g,ref
q ]−1[Φ

g,inc

f
− D

J

Φ
g,inc
q ] (50)
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5. Numerical case studies

This section presents numerical case studies to demonstrate the validity and applicability of

the developed methodology. The case examples are divided into two parts, namely validation

and test case studies. In the first part, structural model whose wave dispersion and scattering

properties can easily be obtained theoretically is presented. The theoretical results are compared

to the numerical results obtained through the presented scheme in order to demonstrate the validity

of the scheme. The second part, test case studies, presents the application of the scheme to quantify

wave interaction with defects in damaged layered structures, and characterise damage types based

on calculated wave interaction coefficients.

In all the example cases, FE mesh size of a structural segment is chosen based on the theoretical

dispersion curves for the segment. This is to ensure that the mesh density is fine enough to rep-

resent the structure accurately at a reasonable computational time. All properties and dimensions

are in SI units, unless otherwise stated.

5.1. Validation case studies

The first illustrative example of the presented computational scheme is a cracked aluminium

beam system (Fig. 8). The configuration comprises two healthy waveguides connected through

a coupling joint within which crack is implemented. The three waveguides in the system can in

general have different material characteristics however in this case they are assumed to be made

of aluminium with material properties E = 70 × 109 Pa, ρ = 2600 kg/m3 and ν = 0.3. The entire

beam has a uniform cross section with L1 = L2 = 0.2 m, LJ = 0.05 m, b = 0.001 m and h = 0.003

m.

The Euler-Bernoulli beam supports longitudinal, torsional and bending waves whose respec-

tive wavenumbers kl, kt and kb can be obtained analytically as
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kl = ω

√

ρ(1 − ν2)

E

kt = ω

√

ρ

G

kb =
4

√

ω2ρh

D

(51)

where G = E/2(1+ ν) is the shear modulus and D = Eh3/12(1− ν2) is the bending stiffness of the

beam.

Since kx = k cos θ, ky = k sin θ for a wave travelling at an angle θ to x-direction, and hence,

k2 = k2
x + k2

y , the analytical wavenumber of the wave along x and y directions are defined as

k2
x = k2 − k2

y

k2
y = k2 − k2

x

(52)

A segment of each waveguide is modelled using SOLID185 finite element of length ∆ = 0.001

in ANSYS. The coupling joint is modelled using similar segment length as the waveguides. Crack

within the coupling joint is modelled using the stiffness reduction method with reduction factors

ranging from β = 0.01 to 0.09. This corresponds to damage severity ratio ranging from 0.1 to 0.9

respectively.

In order to validate the presented approach, the results derived through Eq. (21) for the

wavenumbers and through Eq. (50) for the wave reflection and transmission coefficients are com-

pared against the analytical results. Analytical wave reflection and transmission coefficients for

this particular problem can be obtained as in [37, 38].

[Figure 4 about here.]

[Figure 5 about here.]

Results for the dispersion curves using both approaches are presented in Figs. 4 and 5. Excel-

lent agreement is observed, which establishes the validity of the scheme. Fig. 4 presents dispersion

curves in the (ω,kx) plane for different imposed wave values. For imposed wave ky = 0, every wave

cuts on at circular frequency ω = 0 as expected. This is synonymous to one dimensional wave

22



propagation with waves propagating only in the x-direction. Cut on frequencies of the waves are

observed to increase as ky value increases. Fig. 5 presents dispersion curves in the (kx,ky) plane

for different circular frequency values. As observed, the contour curves are independent of propa-

gation direction. This is due to the isotropic nature of the beam under consideration, in which it is

expected that material properties will be independent of direction.

[Figure 6 about here.]

[Figure 7 about here.]

Figs. 6 and 7 present the reflection and transmission efficiencies for the three wave modes

present in the beam. Excellent agreement is observed between the analytical results [37, 38] and

that of the present scheme. As a conservation of energy, the reflection and transmission efficiencies

of a wave propagating through an undamped system should sum up to unity. This is observed

for both sets of results presented in Fig. 6. Fig. 7 presents the dependence of wave reflection

coefficients on damage severity for each wave mode. It is observed that the coefficient magnitude

increases as damage becomes more severe.

5.2. Test case studies

5.2.1. Orthotropic beam

An arbitrarily layered orthotropic beam having a uniform cross-sectional area (b = 0.01 m and

h = 0.01 m) is considered. The beam is defined as a system of two pristine beams (L1 = L2 = 0.2

m) connected through a damaged beam (LJ = 0.01 m) as shown in Fig. 8. Each beam comprises

ten layers of glass-epoxy composite material whose material properties are Ex = 45.6 × 109 Pa,

Ey = Ez = 16.2 × 109 Pa, Gxy = Gxz = 5.83 × 109 Pa, Gyz = 5.79 × 109 Pa, νxy = νxz = 0.278,

νyz = 0.4 and ρ = 2000 kg/m3.

[Figure 8 about here.]

A segment (of length∆ = 0.001 m) of each waveguide is modelled in ANSYS with 100 SOLID185

finite elements using cubed sized elements of length 0.001 m. Dispersion curves for the waveg-

uides are obtained by solving Eq. (21) within frequency range ω = (1.0 × 102 − 6.0 × 104) Hz.

23



Three propagating modes are obtained within the frequency range. The dispersion curves for these

waves in the (ω,kx) and (ky,kx) axes, for ky = 10 m−1 and ω= 50 kHz respectively, are presented in

Fig. 9.

[Figure 9 about here.]

As expected, for an orthotropic beam, the dispersion property of the beam depends on the propaga-

tion direction of the waves. As shown in Fig. 9, it is observed that the cut-on frequency of a wave

propagating in the x direction greatly depends on the imposed wavenumber in the y direction, ky.

The higher the imposed ky, the higher the cut-on frequencies of the propagating waves. It is also

observed that at a given frequency, the wavenumbers of the waves propagating along x direction

reduce with respect to ky.

Wave interaction properties of the beam for different failure modes within the coupling joint of

the beam are studied in the next sections. Dependence of the waves reflection coefficients on the

severities of the failure modes are analysed in order to establish optimal parameters for detecting

and identifying damage types analysed.

In each case, the coupling joint is modelled using similar element size as the waveguides.

Hence, the coupling joint is modelled with 1000 SOLID185 finite elements. Damage parameters

depend on damage type being analysed as presented in next sections. In each case, Eq. (50) is

solved for the wave interaction coefficients from the damaged coupling joint. Generally, notches

are modelled using the element deletion method while cracks and delaminations are modelled

using the node duplication approach.

5.2.1.1 Dependence of wave interaction coefficient on crack within the orthotropic beam

In this case, wave reflection from zero-width crack within the beam’s coupling joint, as shown in

Fig. 8, is considered. The crack is situated at mid length of the joint, and runs transversely through

the breadth of the joint. In order to analyse the dependence of the wave reflection coefficient on

the severity of crack, several crack depths are considered. Crack depths within the range (0.001

0.009) m, which correspond to ratios (0.1 0.9) of the beam’s thickness, are analysed.
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[Figure 10 about here.]

[Figure 11 about here.]

Fig. 10 shows the variations of the bending wave reflection coefficient with frequency as well

as with ky for different crack depths. It is observed that the nature of frequency and ky depen-

dence of the reflection coefficient is closely similar for the various crack depths. With respect

to frequency, the reflection coefficient have a minimum, beyond which the reflection coefficient

increases with frequency and before which it decreases. The frequency bandwidth, at which the re-

flection coefficient reaches a minimum increases inversely with crack depth. That is, lower depth

crack will exhibit wider bandwidth. On the other hand, the reflection coefficient changes very

slightly with respect to ky for the various crack depths. This trend is analogous to that obtained for

the bending wave’s dispersion curve ky versus kx as shown in Fig. 9.

Fig. 11 presents the longitudinal reflection coefficient as a function of frequency and ky at var-

ious crack depths. In relation to frequency, the reflection coefficient magnitude increases steadily,

though not linear especially for deeper crack, until it becomes plateaued. On the other hand, with

respect to ky, the reflection magnitude decreases very slightly over low to mid ky range, then re-

duces rapidly towards zero. This is also in similar fashion to the trend obtained for the longitudinal

wavenumber against ky (9).

5.2.1.2 Dependence of wave interaction coefficient on notch within the orthotropic beam

In this case, wave reflection from 1 mm wide notch within the beam’s coupling joint, as shown in

Fig. 8, is considered. The notch is situated at mid length of the joint, and runs transversely through

the breadth of the joint. In order to analyse the dependence of the wave reflection coefficient on

the severity of notch, notch depths, within the range (0.001 0.009) m, which correspond to ratios

(0.1 0.9) of the beam’s thickness are analysed.

[Figure 12 about here.]

[Figure 13 about here.]
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Reflection coefficient results with respect to frequency as well as ky for different notch depths

are presented in Figs. 12 and 13. With respect to frequency, the reflection coefficient of the bending

wave has a minimum, beyond which the reflection coefficient increases with frequency and before

which it decreases. The frequency at which the reflection coefficient reaches a minimum increases

inversely with crack depth. Reflection coefficient of the longitudinal wave increases steadily until

it becomes plateaued. With respect to ky, reflection coefficient of the bending wave changes very

slightly with respect to ky for the various crack depths while that of the longitudinal wave decreases

very slightly over low to mid ky range, then reduces rapidly towards zero.

5.2.1.3 Dependence of wave interaction coefficient on delamination within the orthotropic beam

Wave reflection from interlaminar delamination within the beam’s coupling joint (Fig. 8) is con-

sidered in this case. The delamination is situated at mid layer (between the fifth and sixth plies) of

the joint, and runs transversely through the breadth of the joint. Delamination widths in the range

(0.001 0.009) m are considered. These correspond to ratios (0.1 0.9) of the beam’s thickness.

[Figure 14 about here.]

[Figure 15 about here.]

Reflection coefficient results with respect to circular frequency as well as ky for different notch

depths are presented in Figs. 14 and 15. With respect to circular frequency, reflection coefficient

of the bending wave increases until it becomes plateaued. Reflection coefficient of the longitudinal

wave also increases with circular frequency, but only slightly. With respect to ky, reflection coef-

ficient of the bending wave decreases slightly over low to mid ky range, then, beyond this range,

reduces rapidly. Reflection coefficient of the longitudinal wave increases very slightly until high

ky range, then increases more significantly.

5.2.1.4 Comparison of wave interaction coefficient for the different damage types within the

orthotropic beam

Having computed wave interaction characteristics for different damage types in the orthotropic

beam, it is essential to evaluate the sensitivity of each damage type to wave reflection in order
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to establish optimal parameter for detecting and identifying damage type based on their wave

interaction properties.

[Figure 16 about here.]

[Figure 17 about here.]

Figs. 16 and 17 present wave reflection coefficient against damage severity for the various

damage types considered above. As observed, crack and notch are more sensitive to reflection

compared to delamination. However, the sensitivity of delamination to bending wave reflection is

higher compared to that of longitudinal wave reflection. Though, reflection coefficient from crack

and notch are both highly significant for the two wave modes, it can be observed that reflection

from both damage types are observed to be more significant for the longitudinal wave compared

to the bending wave. Also, at each damage severity, reflection from crack is higher than that of

notch by about 5%.

From these observations, it therefore follows that bending wave is the proper wave mode to

detect interlaminar delamination within the orthotropic beam while either bending or longitudinal

is good for detecting crack and notch within the beam though longitudinal mode is more recom-

mended. Applying the trend equations indicated on the Figures, for a particular damage severity,

applicable damage type can be identified using the wave interaction coefficient.

5.2.2. Sandwich laminate

A sandwich laminate, made of a foam core sandwiched between two skin laminae, is consid-

ered. The upper and lower skin laminae each consists of one orthotropic layer of glass-epoxy of

material properties: ρ = 2000 kg/m3, Ex = Ey = 54 × 109 Pa, Ez = 48 × 109 Pa, Gxy = 3.16 × 109

Pa, Gyz = Gxz = 1.78 × 109 Pa, νxy = 0.06, νyz = νxz = 0.313, hs1 = hs2 = 0.001 m. The foam core

consists of eight layers of honeycomb material of properties: E = 18 × 107 Pa, ρ = 110 kg/m3,

ν = 0.28, hc = 0.008 m.

[Figure 18 about here.]
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The laminate system is discretised as two healthy waveguides (L1 = L2 = 0.2 m) coupled through

a damaged joint (LJ = 0.01 m) as shown in Fig. 18. The laminate’s cross-section (b = 0.01 m,

h = 0.01 m) is constant throughout and are fixed at both ends.

A segment (of length ∆ = 0.001 m) of each waveguide is modelled in ANSYS with 100

SOLID185 finite elements (10 for each skin and 80 for the core) using cubed sized elements of

length 0.001 m. Dispersion curves for the waveguides are obtained by solving Eq. (21) within

frequency range ω = (1.0× 102 − 6.0× 104) Hz. Three propagating modes are obtained within the

frequency range. The dispersion curves for these waves in the (ω,kx) and (ky,kx) axes, for ky = 2

m−1 and ω= 30 kHz respectively, are presented in Fig. 19.

[Figure 19 about here.]

As in the orthotropic beam, the dispersion property of the sandwich laminate depends on the

propagation direction of the waves. As shown in Fig. 9, it is observed that the cut-on frequency

of a wave propagating in the x direction greatly depends on the imposed wavenumber in the y

direction, ky. The higher the imposed ky, the higher the cut-on frequencies of the waves. It is also

observed that at a given frequency, the wavenumbers of the waves propagating along x direction

reduce with respect to ky.

Wave reflection coefficient from the coupling joint, with different damage types, are calculated

using Eq. (50). Dependence of the reflection properties on the severities of the failure modes are

analysed in order to establish basis for detecting and identifying a specific damage type based on

its wave reflection characteristics.

In each damage type case, the coupling joint is modelled with similar element size used for

the waveguides. Hence, the joint consists of 1000 SOLID185 finite elements. As presented in

next sections, damage parameters depends on damage type being analysed. Generally, notches are

modelled using the element deletion method while cracks and delaminations are modelled using

the node duplication approach.
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5.2.2.1 Dependence of wave interaction coefficient on crack within the sandwich laminate

In this case, wave reflection from zero-width crack within the laminate’s coupling joint, as shown

in Fig. 18, is considered. The crack is situated at mid length of the joint, and runs transversely

through the breadth of the joint. In order to analyse the dependence of the wave reflection coeffi-

cient on the severity of crack, several crack depths are considered. Crack depths within the range

(0.001 - 0.009) m, which correspond to ratios (0.1 - 0.9) of the laminate’s thickness, are analysed.

Variations of the bending and longitudinal waves reflection coefficients with frequency as well as

with ky for different crack depths are presented in Figs. 20 and 21.

[Figure 20 about here.]

[Figure 21 about here.]

With respect to circular frequency, the bending wave reflection coefficient exhibits a sinusoidal-

type of relationship. The reflection coefficient increases to a maximum then reduces to a mini-

mum, then increases back to a maximum and so on. Generally, the reflection coefficient, at a given

frequency, increases linearly with crack severity. The longitudinal wave reflection coefficient gen-

erally increases with respect to circular frequency. And at a given frequency, it directly increases

with regards to crack severity.

In relation to ky, the bending wave reflection coefficient changes very slightly until a consid-

erably higher value of ky. At a given value of ky, the reflection coefficient varies directly with

the severity of crack. Similar variation is observed for the longitudinal wave reflection coeffi-

cient. However, at a given value of ky, change in the wave reflection magnitude, per 0.1 change

in crack severity ratio, is more uniform in the longitudinal wave compared to the bending wave.

For the longitudinal wave, a uniform average change of about 0.1 is observed. While an average

change of about 0.005 and 0.02, are observed for the bending wave at low and high severity range

respectively.
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5.2.2.2 Dependence of wave interaction coefficient on notch within the sandwich laminate

In this case, wave reflection from 1 mm wide notch within the laminate’s coupling joint, as shown

in Fig. 18, is considered. The notch is situated at mid length of the joint, and runs transversely

through the breadth of the joint. In order to analyse the dependence of the wave reflection coeffi-

cient on the severity of notch, notch depths, within the range (0.001 0.009) m, which correspond

to ratios (0.1 0.9) of the laminate’s thickness are analysed. Variations of the bending and longi-

tudinal waves reflection coefficients with frequency as well as with ky for different notch severity

ratios are presented in Figs. 22 and 23. Results obtained for wave reflection from notch within the

laminate follow similar trend as those obtained for wave reflection from crack.

[Figure 22 about here.]

[Figure 23 about here.]

As a function of frequency, bending wave reflection from notch exhibits a sinusoidal-type of rela-

tionship while longitudinal wave reflection generally increases as frequency increases. At a given

circular frequency, the bending wave reflection coefficient varies directly with notch severity. Sim-

ilar trend is observed for the longitudinal wave reflection. With respect to ky, reflection coefficient

magnitudes of the waves change very slightly until a considerably higher value of ky. At a given

value of ky, the reflection coefficient of both wave modes varies directly with the severity of notch.

However, there is an average of 0.1 increase in the longitudinal wave reflection coefficient per 0.1

change of notch severity ratio. Changes in the bending wave reflection coefficient per 0.1 change

of notch severity ratio is not uniform; an average change of about 0.02 is observed at low severity

ratio while an average change of about 0.25 is observed at higher severity ratio.

5.2.2.3 Dependence of wave interaction coefficient on skin-core interlaminar delamination within

the sandwich laminate

Wave reflection from skin-core interlaminar delamination within the laminate’s coupling joint, as

shown in Fig. 18, is considered in this case. The delamination, situated at the skin-core interface,
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runs transversely through the breadth of the joint. In order to analyse the dependence of the wave

reflection coefficient on the severity of delamination, several lengths are considered. Delamination

lengths within the range (0.001 - 0.009) m, which correspond to ratios (0.1 - 0.9) of the laminate’s

thickness, are analysed. Variations of the bending and longitudinal waves reflection coefficients

with frequency as well as with ky for different skin-core delamination severities are presented in

Figs. 24 and 25.

[Figure 24 about here.]

[Figure 25 about here.]

With respect to circular frequency, reflection coefficient of the bending wave increases as fre-

quency increases. Reflection coefficient of the longitudinal wave also increases with circular fre-

quency, but only slightly. With respect to ky, reflection coefficient of the bending wave changes

very slightly over the considered ky range. Reflection coefficient of the longitudinal wave increases

very slightly until high ky range, then increases more significantly. Generally, reflection coefficient

of the waves increases with increase in delamination severity ratio.

5.2.2.4 Dependence of wave interaction coefficient on core interlaminar delamination within the

sandwich laminate

Wave reflection from core interlaminar delamination within the laminate’s coupling joint, as shown

in Fig. 18, is considered in this case. The delamination, situated at the mid-height of the joint,

runs transversely through the breadth of the joint. In order to analyse the dependence of the wave

reflection coefficient on the severity of delamination, several lengths are considered. Delamination

lengths within the range (0.001 - 0.009) m, which correspond to ratios (0.1 - 0.9) of the laminate’s

thickness, are analysed. Variations of the bending and longitudinal waves reflection coefficients

with frequency as well as with ky for different core delamination severities are presented in Figs.

26 and 27.

[Figure 26 about here.]
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[Figure 27 about here.]

Results obtained follow similar trend as the skin-core delamination. However, the reflection coef-

ficient magnitude are higher in this case.

5.2.2.5 Comparison of wave interaction coefficient dependence on different damage types within

the sandwich laminate

The sensitivity of each damage type to wave reflection in the sandwich laminate, in order to estab-

lish optimal parameter for detecting and identifying damage type based on their wave interaction

properties, is evaluated hereby.

[Figure 28 about here.]

[Figure 29 about here.]

Figs. 28 and 29 present wave reflection coefficient against damage severity for the various damage

types within the sandwich laminate. As observed, crack is much more sensitive to longitudinal

wave reflection compared to bending wave reflection with an average difference of about 72%.

Notch is highly sensitive to both wave modes, but more sensitive to longitudinal wave with an

average difference of about 19%. Compared to crack and notch, low reflections are generally

observed for the two delamination modes considered. However, the sensitivity of delaminations

to bending wave reflection is much more significant compared to that of longitudinal wave.

From these observations, it therefore follows that bending wave is recommended for detect-

ing interlaminar delaminations within the sandwich laminate while either bending or longitudinal

mode is good for detecting crack and notch within the laminate though longitudinal mode is more

recommended. Based on this recommendation and that made for the orthotropic beam, general

recommendation can be reached for horizontally and vertically oriented damage within composite

structural media.

Outcome of this analysis is also applicable for predicting and identifying specific damage type

within the structural media using the wave interaction coefficient trend equations.
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6. Concluding remarks

An FE-based methodology for numerical quantification of wave interaction with localised

damage in two-dimensional periodic structures is presented in this study. The presented scheme

can be applied to structures of arbitrary layering, complexities and material characteristics due

to the FE discretisation being employed. The scheme discretises a damaged structural medium

into a system of N healthy substructures connected through a joint which bears the structural

damage/discontinuity. Wave propagation constants along different propagation directions of the

substructures are sought by coupling Periodic Structure Theory with FE. The damaged joint is

modelled using standard FE approach, ensuring joint-substructures meshes conformity. This is

coupled with the obtained wave propagation constants in order to compute the scattering coeffi-

cients of the wave interaction with damage.

The main outcomes of the work can be summarised as:

(a) The presented scheme is validated against theoretical predictions using a cracked aluminium

beam. A very good correlation is observed between the two sets of results.

(b) The scheme is able to quantify wave interaction with localised damage in arbitrarily multi-

layered two-dimensional structures, which may be difficult to solve using the convectional

FE method and at a computational time faster than the conventional FE transient approach.

(c) Wave interaction characteristics for different damage types and parameters are analysed in

order to establish an optimal basis for detecting and identifying damage, as well as assessing

the orientation and extent of damage.

Further work focusses on extending the scheme to efficient damage identification and structural

health diagnosis and prognosis using the presented methodology. This will expand the applicabil-

ity of the presented scheme.

7. Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as

the data also forms part of an ongoing study. They will be made available upon request.
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Appendix A. Illustrative example for the node duplication method

As an illustration of this method, a structural segment with a through-width damage is consid-

ered. The segment is meshed using 80 3D solid finite elements as shown in Fig. 30. Elements and

nodes numbering of the segment are as shown in Fig. 30. Nodes and elements arrangements are

based on the nodes and elements connectivities for 3D SOLID185 elements [39]. For the damage

depth considered, nodes 100, 101, 102, 103, 104, 105, 106, 107 and 108, which are along the

damage path, are respectively disconnected by adding duplicate nodes 163, 164, 165, 166, 167,

168, 169, 170 and 171 of same respective nodal coordinates.

[Figure 30 about here.]

In a pristine state of the segment, the nodal connectivities of elements 45, 46, 47 and 48 are

[73, 100, 101, 74, 76, 103, 104, 77], [74, 101, 102, 75, 77, 104, 105, 78], [76, 103, 104, 77, 79,

106, 107, 80] and [77, 104, 105, 78, 80, 107, 108, 81] respectively. That of elements 61, 62, 63 and

64 are respectively [100, 127, 128, 101, 103, 130, 131, 104], [101, 128, 129, 102, 104, 131, 132,

105], [103, 130, 131, 104, 106, 133, 134, 107] and [104, 131, 132, 105, 107, 134, 135, 108]. But,

in a damaged state, the nodal connectivities of elements 45, 46, 47 and 48 remain unchanged while

that of elements 61, 62, 63 and 64 become [163, 127, 128, 164, 166, 130, 131, 167], [164, 128,

129, 165, 167, 131, 132, 168], [166, 130, 131, 167, 169, 133, 134, 170] and [167, 131, 132, 168,
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170, 134, 135, 171] respectively. In this sense, the duplicates nodes are attributed to the elements

on the right side of the damage axis such that when a tensile force is applied, elements 61, 62, 63

and 64 will be separated from elements 45, 46, 47 and 48 thereby simulating the damage.
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Figure 1: Periodic FE-modelled segment of an arbitrarily layered composite structure

40



Figure 2: Periodic waveguides connected through a coupling joint which carries localised damage. A positive going

wave of amplitude ainc
n impinging on the joint from nth waveguide will give rise to wave of reflection coefficient cn,n

in the nth waveguide and wave of transmission coefficient ck,n in the kth waveguide
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Figure 3: PST formulation of a typical fully FE-modelled coupling joint
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(-), Euler-Bernoulli analytical results (. . . )
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Figure 11: Longitudinal wave reflection coefficient from the cracked orthotropic beam’s joint. Crack severity ratios:
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Figure 12: Bending wave reflection coefficient from the orthotropic laminate with notch, for various severity ratios of

notch 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9 (-)
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Figure 13: Longitudinal wave reflection coefficient from the orthotropic laminate with notch, for various severity

ratios of notch 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9 (-)
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Figure 14: Bending wave reflection coefficient from the orthotropic laminate with interlaminar delamination, for

various severity ratios of delamination 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9

(-)
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Figure 15: Longitudinal wave reflection coefficient from the orthotropic laminate with interlaminar delamination, for
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Figure 16: Bending wave reflection coefficient as a function of damage severity (for different damage types) within

the orthotropic beam
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Figure 17: Longitudinal wave reflection coefficient as a function of damage severity (for different damage types)

within the orthotropic beam

56



x

z

y

Waveguide 1 Waveguide 2Joint  

�� ����

����

����

����

Through-width 
transverse crack 

Through-width 
skin delamination

Through-width 
notch

Through-width 
skin-core delamination

�

���

�� 

�!

Figure 18: Schematic of a sandwich laminate defined as two healthy substructures coupled through a damaged sub-

structure. Different damage types considered are illustrated

57



0 5 10 15 20 25 30 35 40 45

Frequency [kHz]

0

50

100

150

200

250

300

350

k x
 
[
1
/
m
]

(a) (ω,kx) plane

0 10 20 30 40 50 60 70 80 90

k
y
 [1/m]

0

50

100

150

200

250

k x
 
[
1
/
m
]

(b) (ky,kx) plane

Figure 19: Dispersion curves for the sandwich laminate: bending mode (-.), torsional mode (- -) and longitudinal

mode (-)
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Figure 20: Bending wave reflection coefficient from the sandwich laminate with crack, for various severity ratios of

crack 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9 (-)
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Figure 21: Longitudinal wave reflection coefficient from the sandwich laminate with crack, for various severity ratios

of crack 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9 (-)
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Figure 22: Bending wave reflection coefficient from the sandwich laminate with notch, for various severity ratios of

notch 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9 (-)
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Figure 23: Longitudinal wave reflection coefficient from the sandwich laminate with notch, for various severity ratios

of notch 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9 (-)
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Figure 24: Bending wave reflection coefficient from the sandwich laminate with skin-core interlaminar delamination,

for various severity ratios of delamination 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and

0.9 (-)
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Figure 25: Longitudinal wave reflection coefficient from the sandwich laminate with skin-core interlaminar delami-

nation, for various severity ratios of delamination 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (-

-) and 0.9 (-)
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Figure 26: Bending wave reflection coefficient from the sandwich laminate with core interlaminar delamination, for

various severity ratios of delamination 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and 0.9

(-)
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Figure 27: Longitudinal wave reflection coefficient from the sandwich laminate with core interlaminar delamination,

for various severity ratios of delamination 0.1 (-*), 0.2 (-∆), 0.3 (-+), 0.4 (-o), 0.5 (-x), 0.6 (-.), 0.7 (. . . ), 0.8 (- -) and

0.9 (-)
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(d) skin-core interlaminar delamination

Figure 28: Bending wave reflection coefficient as a function of damage severity (for different damage types) within

the sandwich laminate
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Figure 29: Longitudinal wave reflection coefficient as a function of damage severity (for different damage types)

within the sandwich laminate
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Figure 30: Finite element modelling of damage using the node duplication method: (a) damaged structural segment,

(b) node duplication model
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