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Abstract. This paper details the conversion of mature machine vision technology 

from a fixed position automation line based device to a handheld technology and 

addresses the problems associated with maintaining a consistent camera distance 

and light source by using 3D printed hand tools. Specifically, the problem of gap 

measurement within aircraft wing assembly is used as an example application, 

however, the wider opportunities and functionalities associated with industry 4.0 

are demonstrated and briefly discussed. 
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1 Introduction 

1.1 Industry 4.0 and smart tools 

Industry 4.0, often termed the “smart factory” is defined as the next industrial revolu-

tion utilizing the latest groups of cyber-physical systems such as cloud computing, in-

ternet of things and cognitive computing [1]. It is based on a trend of increasing auto-

mation and data exchange where the physical manufacturing process is monitored ana-

lyzed and optimized with minimal engineering input. 

 

In order for the optimization process to take place, the system must have accurate quan-

titative, digitized data from the process. This is often difficult to achieve in an aerospace 

manufacturing production environment where many tasks are performed manually us-

ing traditional hand tools or human inspection. This currently relies heavily on opera-

tors recording the value manually to a database system. This is time consuming, sub-

jective, error prone, and provides no direct infallible record of the product.  

 

The scientific field for machine vision inspection and associated algorithms is mature 

and well developed [2]. Various functions and methods for detecting features such as 

geometry and faces are well developed specialist subjects, for instance several papers 

focus specifically on edge detection functions used in this development [3,4,5]. Com-

mercially available technology is also widespread and is accompanied by software sup-

port with extensive functions for the detection of a multitude of features [6]. However, 
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such systems are typically expensive £4k – 15k, require the use of a microcomputer 

with significant processing power, and are intended to be permanently positioned on a 

production line where conditions such as lighting and camera position remain con-

sistent.  

 

Hand tools with data driven functions are recently becoming more available and widely 

accepted. They can automatically record data about the process, such as the torque of 

fasteners, connect wirelessly and save process data to a central database. These tools 

are commonly termed “smart hand tools” as they perform some type of process data 

management in addition to completing the engineering task [7]. They may also be aware 

of the process and product context, via RFID, Bar or QR codes on components, and 

have the ability to adjust settings accordingly to suit the assembly component or the 

task at the point of use [8]. 

 

 

Fig. 1. An example of a “smart tool” for tightening of fasteners to controlled torque values with 

process data logging capability [7]. 

The ability to significantly reduce the cost and mobility of machine vision technology 

without compromising reliability would dramatically widen its application. The aim of 

this development determines the ability and reliability of the technology when used 

with the latest low-cost portable microprocessors such as MyRIO and to show that 

lighting conditions and camera positions can be controlled via the use of bespoke rapid 

prototype hand held tools to maintain the reliability of the technology. The paper also 

highlights how the productivity of the manual worker, when using such a handheld 

device, can be increased with greater integration into the factory 4.0 data network. 

1.2 Hand held machine vision application; Gap measurement in aerospace 

In aerospace assembly, the torque values of fasteners and the gaps are critical for prod-

uct quality and safety and are required to be controlled and recorded. Fastener torque 

values can be controlled and logged via commercially available smart tools [7]. How-

ever, gap measurement is more difficult in practice. A number of devices and methods 
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exist but each has associated high costs and limitations (Table 1). Therefore, measure-

ments are typically taken by hand using feeler gauges and recorded manually. The pro-

cess is slow and subject to human error requiring manual data input for industry 4.0 

compliance and additional electronic proof or quality checks may be required. Addi-

tionally, none of the devices is able to capture gap closure during tightening and co-

ordinate torque data with hand tools to measure the loads required to close gaps. Such 

data is valuable to determine assembly build stresses and fastener assembly load spec-

ifications. 

 

Table 1. Commercially available gap measurement device types 

Ref. Type Advantages Disadvantages 

Fig 2a Feeler gauges Low cost 

Simple 

 

Very slow 

Subject to human error 

No electronic data 

Can cause surface scratches 

Fig 2b Laser gap measure-

ment 

Fast 

Electronic logging 

 

High cost 

Can be unreliable 

Complicated 

Requires edge radius calibration 

 

Fig 2c Capacitor film Fast 

Simple 

Electronic logging 

Expensive (£3k approx.) 

Becomes trapped when gap is 

closed 

Cannot measure gaps below a 

certain limit 

 

 

 

Fig. 2. Commercially available assembly gap measurement devices include: traditional feeler 

gauges (a.), laser line gap profile scanning systems (b.) and capacitive film sensor devices (c.) 
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1.3 Rapid manufacturing, Machine vision and IOT devices 

Rapid manufacturing and 3D printing systems are now prolific with hobbyists and de-

sign engineers. The process is particularly suited for producing low volume customized 

components such as prosthetics [8]. It has also been used to produce hand tools for 

various purposes [9]. However, the most commonly available PLA material can be brit-

tle, soft and break easily. Therefore, it is ideally suited as a prototyping tool in the rapid 

development of industry 4.0 hand tools provided no significant load is experienced in 

use. It can also be used as a temporary prototype to perfect the design before a more 

rugged production model is completed. Therefore, it was selected as the most suitable 

method for the rapid development of smart hand tools for machine vision inspection. 

 

Machine vision, computer vision or image-processing has been in development since 

the 1980s and has a number of applications within the automation industry. Typically, 

it is used as a quality control or sorting method where typical applications include 

checking label positions on consumer packaging [10]. Its use is also now common place 

in large robot automation cells used for finding hole centers, edges and other well de-

fined part features. However, apart from rare specialist exceptions such as droplet meas-

urement [11,12], it is not currently in widespread use in hand tools. It offers great po-

tential for handheld monitoring of processes provided the cost and size of the technol-

ogy can be reduced along with simplifying the programming and deployment method.    

 

IOT (Internet Of Things) devices are defined as a self-contained smart device or com-

puter comprising of a micro-processor and controller with the capability to connect the 

internet, gather and transmit data, read physical sensors and operate switches. 

A number of low cost development IOT microcomputers are now commercially avail-

able to both the hobbyist and industrialist alike, such as Arduino, raspberry PI and Sie-

mens IOT 2040. However, very few have machine vision capability. Raspberry PI ap-

pears to function using Open CV [13], however, it is not a native function. These low 

cost devices have the potential to significantly transform data acquisition and control 

in the production environment once they become reliable and widely available. Na-

tional Instruments MyRIO supports machine vision capability, however, its cost is still 

relatively high in comparison to most other IOT devices and each additional device 

requires a software license at an additional expense, increasing the cost of deployment 

further. Nevertheless, it was found to be the most convenient tool with the greatest 

amount of customer support for the development and concept proving of self-contained 

programmable vision applications. 

2 Research methodology 

2.1 Experimental set-up 

The hand tool was designed to work as a self-contained casing for a commercially avail-

able low cost USB microscope. It was also required to project a high incidence light 

source over the measured edge to highlight the intended gap to be measured whilst 
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eliminating as much light as possible from other sources, thus improving measurement 

reliability. The prototype casing also allowed the adjustment and experimentation with 

the camera angle. The casing was also required to be as small as possible for access 

within the aerospace structure. The final prototype included a clamp for the microscope 

wire as it was found that movement of the wire resulted in some movement of the op-

tical sensor inside the microscope. (Fig 3) shows the latest prototype design which also 

included a variable resistor to adjust the intensity of the high incidence LED light source 

and customizable buttons with indicators for initiating a measurement and storing im-

ages. The initial device is reasonably small but has excellent potential for further min-

iaturization for increase measurement access. 

 

 

 
 

Fig. 3. Smart hand tool development prototype for optical aerospace assembly gap measure-

ment 

The National Instruments MyRIO device was chosen as the main IOT processor due its 

ability to be programmed via LabVIEW with predefined vision functions with relative 

ease. The platform also provides wireless capability and serial/digital IOs. Although 

the system does not support a VDU screen onboard, the image output can be monitored 

using any internet browser via a wireless PC, tablet or smartphone and the saved image 

captures can be saved directly to the attached USB for either wireless or USB connected 

transfer. It also supports interfaces such as UART serial LCD displays for output of 

symbols, text and numbers. A Maplin 16x2 Serial UART was utilized in this case to 

display the gap dimension, chosen for its availability and low cost. 

 

A generic USB 2-5Mp camera with 10-300x magnification and 30FPS sampling rate 

was selected for imaging device due to its very low cost and widespread availability. 

The high incidence light source, buttons and indicators are powered and controlled via 

digital and analog I/O sockets provided on the MyRIO. The microscope camera was 

connected to the NI MyRIO device via USB hub along with a standard USB drive for 

image storage. 
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2.2 Control algorithms and decision-making environment 

 

An example of the overall integration of the handheld device in a factory 4.0 aerospace 

assembly environment is shown in figure 4. The component being measured and the 

position of the gap measurement may be obtained via laser tracker and/or QR code on 

the component. The Gap data can then be sent via ODBC connection to the manufac-

turing bus, this value can then be cross checked for quality assurance. Once passed the 

data can then be archived against the part number. On failure, the relevant decision 

processes for rework or concession can be made facilitating an evolvable assembly sys-

tems architecture [15] similar to that demonstrated for aerospace assembly [16]. 

 

  

Fig. 4. Integration of the handheld machine vision device into the EAS factory 4.0 system ar-

chitecture 

The overall approach for decision making is demonstrated in Figure 5, A number of 

processes run locally on the MyRIO device such as image acquisition, image pro-

cessing, edge detection algorithms and calculations to convert pixel values to actual gap 

via a calibration table. Decisions on image quality and edge measurement quality of 

points and edge line fit are made locally with the operator notified to remeasure if an 

edge has not been detected with adequate certainty. Once an adequate measurement has 

been made the image and gap value can be passed to the manufacturing execution sys-

tem (MES) via wireless connection. In order to work with the MES the location of the 

measurement on the assembly must be known, this could be entered manually, via a 

QR or bar code on the assembly or by RFID or laser tracker co-ordinates. Once the 
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measurement location is known the MES can look up the gap requirements from the 

product database and ensure that the gap measured is within tolerance. If so, then the 

operator can be notified of a successful measurement and carry on to the next measure-

ment point. If not, additional instructions may be issued. 

 

 

Fig. 5. Integrated control architecture 

The MyRIO was programmed visually using LabVIEW functions combined with the 

Vision builder workbench. The program works by grabbing an image from the USB 

camera converting to high contrast black and white. Then a linear edge contrast recog-

nition function was used searching from top to bottom for the top edge and bottom to 

top for the bottom edge to output a linear average. The pixel distance between the two 

averaged edges is then calculated. Values obtained from a linear fit of calibration results 

allows the conversion of pixel distance to the actual gap in mm. This value is obtained 

via a calibration procedure discussed in the results chapter.  

 

Once the gap result is obtained it is communicated to the operator via a number of solid 

lit LEDs if the gap is in range. If the gap is out of range or an edge has not been detected 

LEDs are set to flash using digital I/O functions. The actual GAP value is also displayed 
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on the LCD display via a UART3 LabVIEW function. Images are also saved to a se-

lected file location and the value can also be published for reading from any Wi-Fi 

enabled device with an internet browser. 

 

3 System implementation and discussion of results 

3.1 Calibration & variability 

A typical aerospace gap measurement process was recreated using mild steel flat and 

channel section coated with typical green zinc chromate aerospace primer (Fig 6). The 

gap was adjusted and measured using feeler gauges to various gap sizes between zero 

and 0.7mm with five optical measurements taken at each gap using the newly developed 

device. Table 2 shows the results of the calibration procedure with an excellent linear 

fit to the results (Fig 6) yielding the required conversion constants for converting pixel 

gap to mm within the LabVIEW code. An average range of 20 microns was found in 

the measurements with an average standard deviation of 7 microns, well within the gap 

measurement requirements for typical aerospace assemblies. However, a zero gap 

measurement did not necessarily result in a zero pixel measurement. This was due to 

the presence of a radius on the edge of flat bar at the top edge of the gap. A small radius 

on a gap edge is typical in most assembly situations. Therefore, a calibration may be 

necessary on each new gap measurement procedure for new parts and assemblies. Parts 

will also require consistent edge radius dimensions to give reliable measurements. 
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(a)   
 

(b)   
 

 

Fig. 6. Aerospace gap measurement test set up to replicate wing rib foot to cover 

measurement, showing handheld device and typical output image of the gap under the 

top plate with automatically generated text overlay of results. 
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Table 2. Optical gap measurement calibration results 

Gap Pixel measurement Avg σ max min 
Range 

(pix) 

Range 

(mm) 
σ (mm) 

0.7 49.04 49.24 48.61 48.54 49.33 48.95 0.3225 49.33 48.54 0.79 0.0154 0.0063 

0.5 38.05 38.13 37.95 38.45 38.71 38.26 0.2813 38.71 37.95 0.76 0.0148 0.0055 

0.3 28.22 28.39 28.75 27.43 28.04 28.17 0.4362 28.75 27.43 1.32 0.0258 0.0085 

0.1 19.61 19.68 19.5 18.77 18.04 19.12 0.6303 19.68 18.04 1.64 0.0320 0.0123 

0.05 15.12 15.34 15.41 15.6 15.38 15.37 0.1536 15.6 15.12 0.48 0.0094 0.0030 

0 11.65 12.24 12.13 12.94 12.76 12.34 0.4618 12.94 11.65 1.29 0.0252 0.0090 

Pixel ratio 51.23 
 

AVG (mm):- 0.020 0.0074 

Zero Gap pixel 12.94 AVG (µm):- 20.4 7.4 

 

 

 

Fig. 4. Linear approximation of calibration results to give results in mm 

4 Conclusions 

The results show that the development of machine vision technology in a hand tool is 

now possible using low-cost portable microprocessors and readily available machine 

vision software functionality. The reliability of the technology can also be maintained 

by the careful design of bespoke rapid prototype tools which maintain camera position 

relative to the measurement workpiece, shield external light sources and provide their 

own consistent self-contained light source. This development widens the potential ap-

plication of the technology to a large range of hand held inspection processes and could 

greatly improve the connectivity and productivity of labor within the assembly indus-

try. 
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The device developed here specifically for microscopic optical gap measurement of 

wing skin to rib foot has shown great promise with a maximum 20µm error and standard 

deviation of 7µm under lab conditions. The cost of equipment is estimated at £600 plus 

the cost of software licensing which could be further reduced by development on an 

open source platform. However, the method requires refinement in the following areas 

before reliable workshop deployment is feasible: 

 

 Graphical interface for the operator 

 Robust procedure to account for edge radius in measurements 

 Rugged housing and long life battery 

 Automated procedure for networking and saving data 
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