
PsychoPy2: Experiments in behavior made easy

Jonathan Peirce1
& Jeremy R. Gray2 & Sol Simpson3

& Michael MacAskill4,5 & Richard Höchenberger6 & Hiroyuki Sogo7
&

Erik Kastman8
& Jonas Kristoffer Lindeløv9

The Author(s) 2019

Abstract
PsychoPy is an application for the creation of experiments in behavioral science (psychology, neuroscience, linguistics, etc.) with
precise spatial control and timing of stimuli. It now provides a choice of interface; users can write scripts in Python if they choose,
while those who prefer to construct experiments graphically can use the new Builder interface. Here we describe the features that
have been added over the last 10 years of its development. The most notable addition has been that Builder interface, allowing
users to create studies with minimal or no programming, while also allowing the insertion of Python code for maximal flexibility.
We also present some of the other new features, including further stimulus options, asynchronous time-stamped hardware polling,
and better support for open science and reproducibility. Tens of thousands of users now launch PsychoPy every month, and more
than 90 people have contributed to the code. We discuss the current state of the project, as well as plans for the future.

Keywords Psychology . Software . Experiment . Open-source . Open science . Reaction time . Timing

Computers are an incredibly useful, almost ubiquitous, feature
of the modern behavioral research laboratory, freeing many
scientists from the world of tachistoscopes and electrical en-
gineering. Scientists have a large range of choices available, in
terms of hardware (e.g., mouse vs. touchscreen) and operating
system (Mac, Windows, Linux, or mobile or online plat-
forms), and they no longer need to have a degree in computer

science to make their experiment run with frame-by-frame
control of the monitor.

A wide range of software options are also available for
running experiments and collecting data, catering for various
needs. There are commercial products, such as E-Prime
(Psychology Software Tools Inc., Sharpsburg, PA, USA),
Presentation (Neurobehavioral Systems Inc., Berkeley,
California, USA), Experiment Builder (SR Research Ltd.,
Canada), and Psykinematrix (Kybervision, LLC, Japan). A
relatively new possibility, however, has been the option to
use free open-source products, provided directly by academics
writing tools for their own labs and then making them freely
available to others.

The most widely used example, to date, began as a set of C
routines, called VideoToolbox, written by Denis Pelli, initially
to carry out studies in vision science (Pelli, 1997). David
Bra ina rd wro te MATLAB wrappers a round the
VideoToolbox library, with some additional pure MATLAB
code, and called the package Psychophysics Toolbox
(Brainard, 1997). This has now gone through several itera-
tions and substantial rewriting, especially by Mario Kleiner
in the most recent version, Psychtoolbox 3 (Kleiner,
Brainard, & Pelli, 2007). Psychtoolbox shows how successful
these projects can be. After 20 years, it is still in active devel-
opment and has been used extensively in research. It also
shows how popular the open-source movement has become;
in 2004, the Psychophysics Toolbox article (Brainard, 1997)

* Jonathan Peirce
jonathan.peirce@nottingham.ac.uk

1 School of Psychology, University of Nottingham, Nottingham, UK
2 Knack, Inc., Okemos, MI, USA
3 iSolver Software Solutions, Osgoode, Ontario, Canada
4 Department of Medicine, University of Otago, Christchurch, New

Zealand
5 New Zealand Brain Research Institute, Christchurch, New Zealand
6 Cognitive Neuroscience, Institute of Neuroscience and Medicine

(INM-3), Research Center Jülich, Jülich, Germany
7 Faculty of Law and Letters, Ehime University, Matsuyama, Ehime,

Japan
8 Department of Psychology and Center for Brain Science, Harvard

University, Cambridge, MA, USA
9 CCN, Department of Psychology and Communication, Aalborg

University, Aalborg, Denmark

Behavior Research Methods
https://doi.org/10.3758/s13428-018-01193-y

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-01193-y&domain=pdf
mailto:jonathan.peirce@nottingham.ac.uk

received 123 citations (according to Google Scholar), whereas
in 2018 it received 1,570.

Open-source packages have several attractive features be-
yond being free. Having access to all the source code means
that a scientist can examine what is happening Bunder the
hood^ and can extend or adapt the code themselves if the
package does not already have the features or performance
they need. Most open-source packages are written in high-
level interpreted languages, typically MATLAB or Python.
This has made it relatively easy to provide support for all
platforms, so the scientist can develop and run the same study
on any machine. Most important to many people, however, is
the principle of openness and the sense that this is good prac-
tice for replicable research.

In terms of the choice of available scripting languages,
while there are again many options (e.g., R, MATLAB,
Mathematica, or Java), Python is one of the most popular
languages in the world at the time of writing. The
PopularitY of Programming Language project (PYPL) has
analyzed Google searches for programming tutorials and
found that over 25% of searches are for Python tutorials, as
compared with 2.5% for MATLAB and 4% for R (see http://
pypl.github.io/PYPL.html for up-to-date statistics). Python is
so useful as a scripting language that MacOS and many
flavors of Linux provide it as standard in their operating sys-
tems. That popularity means that the language receives a great
deal of support from hardware manufacturers and program-
mers from all spheres.

The PsychoPy project began in 2002, as a Python library to
conduct visual neuroscience experiments in Jonathan Peirce’s
lab. It developed a small following of Python enthusiasts in
the field, and gradually it grew to provide further stimuli and
features (Peirce, 2007, 2009). At that point, PsychoPy provid-
ed a useful set of stimuli and methods and a basic editor with
which to write code, but it required users to program their
experiments, which made it inaccessible to nonprogrammers,
including most undergraduate psychology students.

The question was how to enable nonprogrammers to use
PsychoPy. Ideally, the package should be accessible enough
for typical undergraduates in psychology (who are often quite
averse to programming), while also offering the flexibility
required for professional researchers to build a range of pre-
cise experiments.

This led to the addition of a graphical experiment creation
interface called the Builder, the defining feature in the devel-
opment of PsychoPy2. In addition to the Builder, which freed
users from the need to be computer programmers, a large
number of improvements and new features have been added.
Additionally, PsychoPy has adopted a more robust develop-
ment and testing workflow and has benefited from the growth
of a supportive online community. With the bulk of that phase
of development now complete—the Builder interface has be-
come a relatively stable tool and has shown itself capable of

running a wide range of studies—this article provides a brief
summary of the features and changes that have come about
over the last 10 years of development of PsychoPy.

It is beyond the scope of this article to teach readers how to
use the software. For that there are numerous didactic re-
sources available, such as YouTube videos (e.g., https://
www.youtube.com/playlist?list=PLFB5A1BE51964D587),
the demo menus that are built into the application, the
extensive online documentation at http://www.psychopy.org,
and even a textbook (Peirce & MacAskill, 2018).

Other packages

At the time that the core PsychoPy library was written, the
other comparable packages were Vision Egg (Straw, 2008)
and PyEPL (Geller, Schlefer, Sederberg, Jacobs, & Kahana,
2007), both of which subsequently ceased development. Since
2008, numerous additional libraries have been created in
Python, such as Expyriment (Krause & Lindemann, 2014),
PyGaze (Dalmaijer, Mathôt, & Van der Stigchel, 2014),
mPsy (https://wisions.github.io/mPsy/), and SMILE (http://
smile-docs.readthedocs.io/). In comparison to these,
PsychoPy offers a broader list of stimulus options,
experimental designs, response options (such as rating
scales), and hardware support, as well as a larger community
of active developers.

Most critically, however, the other libraries do not offer a
graphical interface to create studies, which limits their suit-
ability for undergraduate teaching. Another Python-based ap-
plication, OpenSesame (Mathôt, Schreij, & Theeuwes, 2012),
was, however, developed around the same time as the
PsychoPy Builder interface. PsychoPy and OpenSesame re-
main, to our knowledge, the most versatile open-source ex-
periment-building packages currently available, and we com-
pare them in the following section. There was also an open-
source Macintosh application called PsyScopeX (http://psy.
ck.sissa.it/), buCupdate since 2015.

Builder

The idea of the Builder interface was to allow the user to
create a graphical representation of an experiment. From
this, the software would then generate a Python script to
actually run the experiment. We wanted something that
would be cross-platform, open and free, and that would
support Python programming when experiments needed
extending. We also wanted to provide stimuli that were
dynamic, with stimulus attributes that could be updated
on each screen refresh as specified directly from the
graphical interface, which was not possible (or certainly

Behav Res

http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://www.youtube.com/playlist?list=PLFB5A1BE51964D587
https://www.youtube.com/playlist?list=PLFB5A1BE51964D587
http://www.psychopy.org
https://wisions.github.io/mPsy
http://smile-docs.readthedocs.io
http://smile-docs.readthedocs.io
http://psy.ck.sissa.it
http://psy.ck.sissa.it

was not easy) using other graphical interfaces An image
of the Builder interface can be seen in Fig. 1.

How does Builder work?

In PsychoPy Builder, an experiment is described by a set of
Routines, which contain a set of one or more Components,
such as stimuli and response options. The Components in
the Routines can be thought of as a series of tracks in a
video- or music-editing suite; they can be controlled indepen-
dently in time—that is, onsets and offsets—but also in terms
of their properties. The last part of the experiment description
is the Flow: a flow diagram that controls how the Routines
relate to each other. It contains the Routines themselves, as
well as Loops (which repeat the Routines they encompass).
The Flow has no Bknowledge^ of time per se; it simply runs
each Routine immediately after the previous one has ended.
The experimental timing is controlled by specifying the times
of onset and offset of the stimuli and of response-gathering
events within the Routines themselves.

This experiment description is internally stored in terms of
standard Python objects: a Python list of Routines, each of
which is a list of Components, which are themselves essen-
tially a Python dictionary of parameters and, finally, a list of
items on the Flow. Builder saves the experiment as standard
XML-formatted text files using the open-standard psyexp for-
mat (read more at http://www.psychopy.org/psyexp.html).
These files need not be specific to PsychoPy or Python; any
system that can interpret a simple XML file could theoretically

receive a Builder-generated experiment file and use that de-
scription to conduct the study, if it has a similar set of stimulus
features.

The first job of the Builder interface is to provide a graph-
ical means to create and represent these psyexp experiment
descriptions. The second job is to be able to generate, from
those descriptions, working code to actually run the experi-
ments. This step is made relatively easy by Python’s powerful
text-handling structures and object-oriented syntax. Users can
compile and inspect the resulting script at the click of a button.

In general, that output script is a Python/PsychoPy script,
but the interface could output scripts for alternative targets as
well. Since the Builder is merely generating text, representing
code based on the Components and Flow, it is only a matter of
developer resources to expand this capability in order to gen-
erate experiments written in languages other than Python—for
example, to generate a Psychophysics Toolbox script
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in the
MATLAB language. Indeed, we are now working on an
HTML/JavaScript output so that Builder experiments can also
run in a web browser (which is not possible with Python
code).

The generated Python code is well-formatted and heavily
commented, to allow users to learn more about Python
programming—and the PsychoPy package in particular—in
a top-down fashion. This allows the user to adapt that output
script and then run the adapted version themselves, although
this is a one-way road—scripts cannot be converted back into
the graphical representation.

Fig. 1 The PsychoPy Builder interface. The right-hand panel contains the
Components that can be added to the experiment, organized by categories
that can be expanded or collapsed. These Components can be added into
Routines and appear like Btracks^ in the Routine panel. In the demo
shown here, in the Routine named Btrial,^ we simply present a word after
a 500 ms pause and simultaneously start monitoring the keyboard for
responses, but any number of Components can be set to start and stop

in a synchronous or asynchronous fashion. The bottom panel of the in-
terface shows the Flow of the experiment: the sequence in which the
Routines will be presented, including the occurrence of any Loops in
which we can repeat trials and/or blocks and control the randomization
of conditions. Users report that this view is a highly intuitive and flexible
way to implement their experimental designs

Behav Res

http://www.psychopy.org/psyexp.html

Additionally, the Builder also provides a Code Component
that allows users to execute arbitrary Python code at any of the
same points available to standard Components (at the begin-
ning of the experiment, beginning of a trial, every screen re-
fresh, etc.). These Code Components allow the experimenter
to add a high level of customization to the study without
leaving the comfort of the Builder interface. This provides a
balance between ease of use (via the graphical interface) and
flexibility (allowing out-of-the-ordinary requirements to be
implemented in custom code).

OpenSesame (Mathôt et al., 2012) has a similar goal of
providing a graphical interface for specifying experiments.
OpenSesame uses, among several options, the PsychoPy
Python module as a back end to present stimuli and has be-
come popular for its ease of use and slick interface. It differs
from PsychoPy mainly in that (1) OpenSesame represents the
flow in a nested list, similar to E-Prime, where PsychoPy has a
horizontal flow with loops; (2) in Routines, the PsychoPy
interface emphasizes the temporal sequence of components,
where the Open Sesame interface emphasizes their spatial
layout; (3) PsychoPy allows the experimental and stimulus
parameters to vary dynamically on every screen refresh during
a routine, whereas OpenSesame requires stimuli to be
pregenerated; and (4) PsychoPy generates Python scripts that
can be exported and run independently of the graphical
interface.

How well does the Builder achieve its goals?

Intuitive enough for teaching The aim was to allow nonpro-
grammers, including undergraduates, to be able to generate
experiments. The best way for the reader to judge whether this
aim has been achieved is perhaps to watch one of the walk-
through tutorials on YouTube (e.g., https://www.youtube.com/
playlist?list=PLFB5A1BE51964D587). The first of these
videos shows, in 15 min and assuming no prior knowledge,
how to create a study, run it, and analyze the generated data.

PsychoPy’s Builder interface is being used for undergrad-
uate teaching in many institutions, allowing students to create
their own experiments. At the School of Psychology,
University of Nottingham, we previously used E-Prime for
our undergraduate practical classes. In the academic year
September 2010–2011, our first-year undergraduates spent
the first half using PsychoPy and the second using E-Prime.
We surveyed the students at the end of that year and, of the 60
respondents, 31 preferred PsychoPy to E-Prime (as compared
with nine preferring E-Prime, and the remainder expressing no
preference), and 52 reported that they could Bmaybe,^
Bprobably,^ or Bdefinitely^ create a study on their own fol-
lowing the five sessions with PsychoPy. PsychoPy has gained
a number of usability improvements since then, and
Nottingham now uses PsychoPy for all its undergraduate
classes.

Flexible enough for high-quality experiments We aimed to
generate software that can implement most Bstandard^ exper-
iments to satisfactory levels of temporal, spatial, and chromat-
ic accuracy and precision. In terms of features, the Builder can
make use nearly all the stimuli in the PsychoPy library with no
additional code. For instance, it can present images, text,
movies, sounds, shapes, gratings (including second-order
gratings), and random-dot kinematograms. All of these stimuli
can be presented through apertures, combined with alpha-
blending (transparency), and updated in most of their param-
eters on every screen refresh. Builder also supports inputs via
keyboard, mouse, rating scales, microphone, various button
boxes, and serial and parallel ports. It also supports a wide
range of experiment structures, including advanced options
such as interleaved staircase (e.g., QUEST) procedures. The
use of arbitrary loop insertions, which can be nested and can
be inserted around multiple other objects, allows the user to
create a wide range of experimental flows. Figure 2 is a
screenshot of one such Builder representation of an experi-
mental flow.

At times, an experimenter will require access to features in
the PsychoPy library that have not been provided directly as
part of the graphical interface (often to keep the interface
simple), or will want to call external Python modules beyond
the PsychoPy library itself. This can be achieved by inserting
snippets of custom code within a Code Component, as de-
scribed above.

As evidence that PsychoPy is used by professional re-
searchers, and not just as a teaching tool, according to
Google Scholar, the original article describing PsychoPy
(Peirce, 2007) now has over 1,800 citations. Most of these
are empirical studies in which the software was used for stim-
ulus presentation and response collection. The Builder inter-
face is not only used by nonprogrammers, but also by re-
searchers perfectly adept at programming, who find that they
can create high-precision studies with greater efficiency and
fewer errors by using this form of Bgraphical programming.^

Indeed, several of the authors of this article use the Builder
interface rather than handwritten Python code, despite being
very comfortable with programming in Python. Overall, the
clearest indication that people find PsychoPy both easy to use
and flexible is the growth in user numbers since the Builder
interface was first released (see Fig. 3). We have seen user
numbers grow from a few hundred regular users in 2009 to
tens of thousands of users per month in 2018.

Precision and accuracy The Builder interface includes provi-
sion for high-precision stimulus delivery, just as with the
code-driven experiments. Notably, the user can specify stim-
ulus durations in terms of number of frames, for precise short-
interval timing. PsychoPy will handle a range of issues, such
as ensuring that trigger pulses to the parallel port are synchro-
nized to the screen refresh. Builder-generated scripts are

Behav Res

https://www.youtube.com/playlist?list=PLFB5A1BE51964D587
https://www.youtube.com/playlist?list=PLFB5A1BE51964D587

oriented around a drawing and event loop that is synchronized
to the regular refresh cycle of the computer monitor. Hence, in
general, the presentation of visual stimuli is both temporally
accurate (being presented at the desired time and for the de-
sired duration) and precise (with little variability in those
times). One published study suggested that the temporal pre-
cision of PsychoPy’s visual stimuli was poor (Garaizar,
Vadillo, López-de-Ipiña, & Matute, 2014), but this was an
artifactual finding due to the authors using a prototype version
of the Builder interface (v1.64, from 2011, which did carry an
explicit warning that it should not be used for precision stud-
ies). The authors subsequently reran their analysis, using an
official production-ready release (v1.80, 2014). Using the
timing approach recommended in the documentation, they
found very good timing of visual stimulus display, for Bnormal
usage^ (Garaizar & Vadillo, 2014).

A current limitation of temporal stimulus accuracy and pre-
cision, however, is the presentation of sound stimuli. There
can be a lag (i.e., impaired accuracy) of sound onset, poten-
tially up to tens of milliseconds, with associated trial-to-trial
variability in those times of onset. Sound presentation relies
on one of several underlying third-party sound libraries, and
performance can vary across operating systems and sound
hardware. The authors are currently conducting objective

testing of performance across all these factors and updating
PsychoPy’s sound library to one with better performance.

Features and enhancements

As well as providing this new interface, making it easier for
researchers at all levels to create experiments, there have been
a large number of new features added to the PsychoPy Python
library since the time of the last publication about the package
(Peirce, 2009). Most notably, (1) researchers have the option
to choose which version of PsychoPy to run the experiment
on; (2) the range of stimuli that can be generated Bout of the
box^ has grown considerably, as have the options for manip-
ulating the existing stimulus types; and (3) increased support
is available for external hardware and asynchronous response
inputs.

Choosing the software version at run time

One issue for reproducible and open science is that software
releases do not always maintain compatibility from one ver-
sion to another, and changes to software may have very subtle
effects on stimulus presentation, response collection, and ex-
perimental flow. One unattractive solution is that users retain
the same version of the software in the lab and avoid
upgrading. This precludes users (and their colleagues) from
accessing new features and benefiting from important bug
fixes. To circumvent such issues, PsychoPy now allows the
user to specify which version of the library to use for running
the experiment, regardless of which version is currently
installed. Typically, this will be the PsychoPy version in which
the experiment was initially created. This can be done in the
Experiment Settings of the Builder interface, or in code via the
useVersion() function (see the top of Code Snippet 1). The
specified version will be used to interpret the script, regardless
of what PsychoPy version is currently installed.

The idea is that the user should get the experiment working
correctly in the current latest version of the software and test it
thoroughly in that version. For instance, experimenters should
ensure that data files contain the necessary values by actually
performing an analysis. They should ensure that the timing is
correct, preferably with a Black Box Toolkit (Plant &Quinlan,
2013) or similar hardware. When they are confident that the

2010

2011

2012

2013

2014

2015

2016

2017

2018

0

5000

10000

15000

20000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Unique users per month

Fig. 3 Users per month, based on unique IP addresses launching the
application. These figures are underestimates, due mostly to the fact
that multiple computers on a local area network typically have a single
IP address. We can also see the holiday patterns of users, with dips in
usage during Christmas and the Northern hemisphere summer

Fig. 2 A more complex Flow arrangement. Loops and Routines can be
nested in arbitrarily complex ways. PsychoPy itself is agnostic about
whether a Loop designates trials, a sequence of stimuli within a trial, or

a sequence of blocks around a loop of trials, as above. Furthermore, the
mechanism for each loop is independent; it might be sequential, random,
or a something more complex, such as an interleaved staircase of trials

Behav Res

study runs as intended, they should then Bfreeze^ the experi-
ment so that it will continue to use that version of the
PsychoPy library indefinitely, even when the lab version of
the PsychoPy application is itself updated. This is optional:
Users who do want the latest features, and do not mind occa-
sionally updating their code when PsychoPy necessarily intro-
duces incompatible changes, can simply ignore the useVersion
setting.

Even if the script requests a version from the Bfuture^ (i.e.,
one that has never actually been installed locally), PsychoPy
will fetch it online as needed. If the experimental script does
not explicitly specify a version, it will simply run using the
latest installed version. Hence, this capability ensures both
backward and forward capability.

We should note that there are still limitations to this system
when the version being requested is not compatible with the
Python installation or dependencies. The user cannot, for in-
stance, request version 1.84.0 using an installation of Python
3, because compatibility with that version of Python was only
added in PsychoPy 1.90.0.

New stimuli and added features

Rating scales PsychoPy now provides rating scales, in both its
Python library and as a Component in the Builder interface.
Ratings can be collected in a range of ways, from standard
Likert-style scales to scales with a range of gradations, or
continuous Bvisual analog^ scales. These are highly custom-
izable objects that allowmany aspects to be controlled, includ-
ing the text of a confirmation button, the shape and style of the
response slider, and independent colors of various parts of the
scale.

MoviesMovie stimuli were already available in 2008, but their
reliability and efficiency have improved. Movies remain a
technically challenging stimulus, but the recent improvements
in performance mean that a fast computer running a recent
version of PsychoPy should be able to present high-
definition video smoothly.

Element arrays The ElementArrayStim is a stimulus allowing
the display of a large array of related elements in a highly
optimized fashion. The key optimization is that the code can
modify an entire array of objects in one go, leveraging the
power of the graphics card to do so. The only constraint is
that each element must use the same texture (e.g., a grating or
an image) and mask, but the elements can differ in almost
every other possible way (e.g., each having its own color,
position, size, opacity, or phase). Hundreds or thousands of
objects can be rendered by this means (in tasks such as visual
search arrays or global form patterns), or instead as an array of
simple masks that can gradually be removed. Currently, this
stimulus is only available using code (either in scripts or as

Code Components in the Builder interface), because it is in-
herently an object that needs programmatic control. See Code
Snippet 1 for an example.

Geometric shapes Users can now create vector-based shapes
by specifying points geometrically, to create standard poly-
gons, such as rectangles, or arbitrary shapes. See Code
Snippet 1 for an example.

Greater flexibility of stimulus attributes The code syntax for
changing stimulus attributes dynamically has been vastly ex-
panded and homogenized across stimulus types, to the point
that almost all attributes can be altered during runtime. The
syntax for doing so has been simplified. See the stimulus
updates in Code Snippet 1 for an example.

Application localization and translationAnother addition was
the ability of the PsychoPy application’s graphical user inter-
face to support localization into different languages. The code
to make this possible was largely written by author J.R.G. To
date, H.S. has translated all the elements of the application into
Japanese, with other localizations possible and welcome.

Support for Python 3 Since 2008, the Python language has
undergone a substantial change from version 2 to version 3.
PsychoPy now supports both Python 2 and Python 3, so that
users with older Python 2 code can continue to run their stud-
ies with no further changes, whereas users that want access to
the new features of Python 3 can do so. A few of the depen-
dent libraries, notably in specialized hardware interfaces, are
still not available in Python 3–compatible versions, such that a
few features still require a Python 2 installation. We therefore
aim to continue supporting Python 2 for the foreseeable
future.

ioHub and hardware polling One of the most substantial ad-
ditions to the package is the ioHub system for asynchronous
control of hardware, written by S.S. IoHub was conceived
initially for the purpose of providing a unified application
programming interface (API) for eyetracking hardware, so
that users could use one set of functions to control and read
data from any eyetracker. It comes with integrated support for
trackers from SMI, SRResearch, Tobii, LC Technologies, Eye
Tribe, and Gazepoint.

IoHub runs as a separate process, ensuring high-rate hard-
ware polling without disturbing the main process that handles
stimulus presentation and experimental control. The system is
capable of polling data and also streaming it at very high
rates—for instance, capturing all the data from a 2-kHz
eyetracker. IoHub can also be used for other hardware, such
as keyboards, mice, Labjack boxes, Arduinos, and so forth.

IoHub is also capable of streaming data to its own unified
data file, combining the data from all the devices being polled

Behav Res

(and data from the experiment, as sent by the main PsychoPy
process), all timestamped using the same clock. This is all
saved in the well-established HDF5 format. These data files
allow for very high-performance hierarchical storage that can
be read by most analysis packages, including MATLAB, R,
and Python, thus freeing the researcher from the proprietary
formats of the eyetracker itself.

Another option for eyetracking measurements in Python is
PyGaze (Dalmaijer et al., 2014). PyGaze is similar to ioHub,
in that it provides a unified API to several eye-gaze tracking
hardware systems (EyeLink and Eye Tribe, with experimental
support for SMI and Tobii trackers at the time of writing).
Unlike ioHub, PyGaze makes its calls from the same thread
as the main experiment/stimulus-generation thread (although
the processing by the eyetracker system itself is usually car-
ried out on another core, or even on a separate, dedicated
eyetracker computer). With PyGaze, users cannot as easily
combine data from different devices (e.g., button box and
eyetracker) timestamped on the same clock, and they must
rely on the proprietary data format of the eyetracker manufac-
turer and associated analysis tools.

Open science and reproducibility

The developers of PsychoPy are advocates of open science.
We believe that sharing materials, data, code, and stimuli is
critical to scientific progress and hope our work has supported
these goals in a variety of ways. Within the project itself, we
support open science by having provided the full source code
of PsychoPy since its inception in 2002 and by maintaining
standard open file formats throughout.

We also encourage open scientific practices in others. By
being open ourselves, by offering active support on our forum
(at https://discourse.psychopy.org), and by providing many
demos and free software, we hope that we set an example to
the community of how science can and should be conducted.
A very strong sense of community has grown around the
PsychoPy project, and we believe that this is also important
in encouraging open science.

With a recent grant from the Wellcome Trust, we have
added our own open-source online experiment repository for
users to search and upload experiments to share with each
other. The site is called Pavlovia.org and can be accessed via
Git version control, as well as directly through the PsychoPy
application. This feature is currently in beta testing for the new
PsychoPy3 phase of development.

Development workflow

The workflow of PsychoPy development has changed consid-
erably since 2008. Most notably, the version control system

has moved from SVN to Git, and we have developed a test
suite to ensure backward-compatibility. The source code has
moved from its initial location at sourceforge.net to GitHub
(https://github.com/psychopy/psychopy).

Git: It is now easier for users tomake contributions, and for
us to examine the community-contributed code. Git makes it
easy to create forks and branches from the existing project, to
work on them locally, and then propose changes to be folded
back into the main project. The PsychoPy development repos-
itory is hosted on GitHub, which eases the workflow for con-
tributors seeking to submit their changes and for the lead de-
velopers to review such changes.

Tests: Proposed code changes are now tested in an auto-
mated fashion that makes our released versions more robust to
contributed errors. Using the pytest library, the testing now
includes checks of stimulus renderings to reference images
across combinations of back ends and settings, to ensure back-
ward-compatibility. The full test suite runs automatically,
checking every new contribution to the code. We believe that
the combination of the extensively used test suite and the
useVersion functionality yields the reliability expected for crit-
ical parts of scientific experiments.

The growing community

We have mentioned the community aspect of the project al-
ready, but that is because it has an impact on so many aspects
of the success and development of an open-source project.
Open-source development works best when many people get
behind a project. Without large numbers of users, there is
always a danger that a project will stop being supported, due
to the lack of recruitment of new developers and less impetus
for the existing developers. A large community also brings the
advantage of there being many shared experiments and teach-
ing resources.

Figure 3 shows our growth in users, from a few hundred
regular users in 2008 to a monthly-active-user count of over
21,000 in November 2018. The data are based on unique IP
addresses launching the application. This systematically un-
derestimates the actual number of users, because multiple
computers on a local area network often share a single external
IP address, appearing externally like a single user.
Additionally, many labs disconnect their laboratory machines
from the internet while running experiments, and some users
choose to disable the sending of usage stats.

A small percentage of users also become contributors, in
terms of providing bug fixes, new features, and documenta-
tion contributions. The project on GitHub shows an active
developer community, with over 90 people contributing to
the main project code. The size of these contributions natural-
ly varies, but all fixes, even just for a typo in the documenta-
tion, are welcome. A number of contributors have devoted

Behav Res

https://discourse.psychopy.org
http://pavlovia.org
http://sourceforge.net
https://github.com/psychopy/psychopy

considerable amounts of time and effort to the project. At
present, 18 contributors have each committed over 1,000 lines
of updated code. In open-source software, people refer (some-
what morosely) to the Bus Factor of a project (the number of
people that would have to be hit by a bus for the project to
languish) and, sadly, for many projects the Bus Factor is as
low as 1. The strong developer community for PsychoPy is an
important ingredient in this sense; we certainly have a Bus
Factor well over 1.

The third place where the community is important is in
terms of mutual support. PsychoPy has a users’ forum
(https://discourse.psychopy.org) based on the open-source
Discourse software. This serves as a place where users ask
for, and offer, support in generating experiments, where the
developers discuss potential changes, and where announce-
ments are made. The forum has just over 2,000 registered
users and receives roughly ten posts per day, across a variety
of categories. Users have also written a range of resources,
with various workshop and online-tutorial materials, some of
which have been collated at http://www.psychopy.org/
resources/resources.html.

Books

In addition to the online documentation and the user forum,
there are now several books to help users learn PsychoPy.
Some of the PsychoPy team have written a book teaching
how to use the Builder interface (Peirce & MacAskill, 2018)
and will soon release a companion book focused on program-
ming experiments in Python. Dalmaijer (2016) uses PsychoPy
to illustrate Python programming in experimental psychology.
Sogo (2017) has written a textbook in Japanese on using
PsychoPy to run experiments and Python to analyze data.
Bertamini (2018) uses PsychoPy to teach readers how to im-
plement a wide range of visual illusions.

Future developments

We are now working on the next major phase of development
(PsychoPy3), adding the capacity to present experiments on-
line (and by extension, on mobile devices). In recent years,
web browsers have become capable of providing access to
hardware-accelerated graphics (even including GL Shader
programs). This means that we can present visual stimuli in
a browser with timing sufficient to synchronize to the screen
refresh cycle, at least on modern hardware and software. The
PsychoPy Builder interface allows this to be achieved by gen-
erating a script using HTML and JavaScript rather than the
established Python code. A beta version of that system is
already available, but it should be used with caution.

Author note Author contributions: All of the authors of this
work have contributed their code voluntarily to the project. J.P.
wrote the bulk of the code and designed the logic of both the
application interfaces and the underlying Python library. He re-
mains the primary maintainer of the code. J.R.G. contributed the
next largest amount of code, most notably contributing the rating
scale and the translation code, but he has really touched on nearly
all aspects of the library and application, and his contribution to
the project cannot be overestimated. S.S. wrote the very substan-
tial ioHub subpackage for high-performance hardware interfac-
ing. He also added many other features, including the TextBox
for high-performance text rendering. M.M. has contributed less
to the code base itself, but has been probably the most active
supporter of users in the forum of anyone other than J.P. R.H. has
been incredibly influential in terms of additions to the code, user
support, and especially in the endeavor of improving our devel-
opment and testing framework and the update to Python 3. H.S.
has spent a great deal of time making sure that we appropriately
support non-English users, most obviously in terms of writing a
full set of translations into Japanese, but also in fixing many
issues with Unicode conversions. E.K. most notably contributed
and maintains the code to support switching PsychoPy versions
during a script, and J.L. has provided a wide range of smaller
features and bug fixes that have all very much improved the
function of the software. J.P. wrote the first draft of the manu-
script, but all authors were then involved in editing that draft.
Acknowledgments: Many people have supported the project
along the way, either with code contributions or by supporting
users on the forum, and we are very grateful to the entire com-
munity for their work in this respect—sorry we cannot make you
all authors! Special thanks to Yaroslav Halchenko, for providing
the Neurodebian packaging and for the additional support he has
provided us over the years (especially with Travis-CI testing).
Support: The project has received small grants from the Higher
EducationAcademy, UK, for development of teachingmaterials;
from Cambridge Research Systems, UK, for providing support
for some of their hardware (Bits#); and from the Center for Open
Science, to write an interface to integrate with their server. Most
recently, this work was supported by the Wellcome Trust [grant
number WT 208368/Z/17/Z). Conflicts of interest: PsychoPy is
provided completely open-source and free of charge. The authors
occasionally provide consultancy in the form of training or paid
support in developing experiments, although any other individ-
uals are equally permitted to gain from providing training and
consultancy on PsychoPy in this manner.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Behav Res

https://discourse.psychopy.org
http://www.psychopy.org/resources/resources.html
http://www.psychopy.org/resources/resources.html

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Bertamini, M. (2018). Programming visual illusions for everyone. Cham:
Springer. https://doi.org/10.1007/978-3-319-64066-2

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10,
433–436. https://doi.org/10.1163/156856897X00357

Dalmaijer, E. S. (2016). Python for experimental psychologists. London:
Routledge.

Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2014). PyGaze: an
open-source, cross-platform toolbox for minimal-effort program-
ming of eye tracking experiments. Behavior Research Methods,
46, 913–921. https://doi.org/10.3758/s13428-013-0422-2

Garaizar, P, & Vadillo, M. A. (2014). Accuracy and precision of visual
stimulus timing in PsychoPy: No timing errors in standard usage.
PLoS ONE, 9, e112033. https://doi.org/10.1371/journal.pone.
0112033

Garaizar, P., Vadillo, M. A., López-de-Ipiña, D., & Matute, H. (2014).
Measuring software timing errors in the presentation of visual stim-
uli in cognitive neuroscience experiments. PLoS ONE, 9, e85108.
https://doi.org/10.1371/journal.pone.0085108

Geller, A. S., Schlefer, I. K., Sederberg, P. B., Jacobs, J., & Kahana, M. J.
(2007). PyEPL: A cross-platform experiment-programming library.
Behavior Research Methods, 39, 950–958. https://doi.org/10.3758/
BF03192990

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in
Psychtoolbox-3? Perception, 36(ECVPAbstract Suppl), 14.

Krause, F., & Lindemann, O. (2014). Expyriment: A Python library for
cognitive and neuroscientific experiments. Behavior Research
Methods, 46, 416–428. https://doi.org/10.3758/s13428-013-0390-6

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-
source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44, 314–324. https://doi.org/10.3758/
s13428-011-0168-7

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python.
Journal of Neuroscience Methods, 162, 8–13.

Peirce, J.W. (2009). Generating stimuli for neuroscience using PsychoPy.
Frontiers in Neuroinformatics, 2, 10. https://doi.org/10.3389/neuro.
11.010.2008

Peirce, J. W., & MacAskill, M. R. (2018). Building experiments in
PsychoPy. London: Sage.

Pelli, D. G. (1997). TheVideoToolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437–442.
https://doi.org/10.1163/156856897X00366

Plant, R. R., & Quinlan, P. T. (2013). Could millisecond timing errors in
commonly used equipment be a cause of replication failure in some
neuroscience studies? Cognitive, Affective, & Behavioral
Neuroscience, 13, 598–614. https://doi.org/10.3758/s13415-013-
0166-6

Sogo, H. (2017). Shinrigaku jikken programming—Python/PsychoPy ni
yoru jikken sakusei to data shori [Programming psychological ex-
periments: Creating experiment programs and data handling with
Python/PsychoPy]. Tokyo: Asakura Shoten

Straw, A. D. (2008). Vision Egg: An open-source library for realtime
visual stimulus generation. Frontiers in Neuroinformatics, 2, 4.
https://doi.org/10.3389/neuro.11.004.2008

Behav Res

https://doi.org/10.1007/978-3-319-64066-2
https://doi.org/10.1163/156856897X00357
https://doi.org/10.3758/s13428-013-0422-2
https://doi.org/10.1371/journal.pone.0112033
https://doi.org/10.1371/journal.pone.0112033
https://doi.org/10.1371/journal.pone.0085108
https://doi.org/10.3758/BF03192990
https://doi.org/10.3758/BF03192990
https://doi.org/10.3758/s13428-013-0390-6
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.1163/156856897X00366
https://doi.org/10.3758/s13415-013-0166-6
https://doi.org/10.3758/s13415-013-0166-6
https://doi.org/10.3389/neuro.11.004.2008

	PsychoPy2: Experiments in behavior made easy
	Abstract
	Other packages
	Builder
	How does Builder work?
	How well does the Builder achieve its goals?

	Features and enhancements
	Choosing the software version at run time
	New stimuli and added features

	Open science and reproducibility
	Development workflow
	The growing community
	Books
	Future developments
	References

