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Abstract

Optical coherence tomography (OCT) relies on optical interferometry to provide
noninvasive imaging of living tissues. In addition to its 3D imaging capacity for
medical diagnosis, its potential use for recovering optical parameters of biolog-
ical tissues for biological and pathological analyses has also been explored by
researchers, as pathological changes in tissue alter the microstructure of the tis-
sue and therefore its optical properties. We aim to develop a new approach to
OCT data analysis by estimating optical properties of tissues from OCT scans,
which are invisible in the scans. This is an inverse problem. Solving an inverse
problem involves a forward modeling step to simulate OCT scans of the tissues
with hypothesized optical parameter values and an inverse step to estimate the
real optical par1meters values by matching the simulated scans to real scans. In
this paper, we present a Monte Carlo (MC)–based approach for simulating the
frequency-domain OCT. We incorporated a focusing Gaussian light beam rather
than an infinitesimally thin light beam for accurate simulations. A new and
more accurate photon detection scheme is also implemented. We compare our
MC model to an analytical OCT model based on the extended Huygens-Fresnel
principle (EHF) to demonstrate the consistency between the two models. We
show that the two models are in good agreement for tissues with high scattering
and high anisotropy factors.
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1 INTRODUCTION

In order to simulate OCT, we must have some knowledge how OCT works. The fundamental theory behind OCT is
ranging measurement using low-coherence interferometry in physics. A simplified diagram of an OCT system is shown
in Figure 1. The OCT system emits a light beam from its light source, which is then split into two arms by a splitter:
a reference arm and a sample arm. The light through the reference arm is cast onto a mirror and reflected back, thus
experiencing a time delay. The light exiting the sample arm is guided through a fiber and focused onto the sample tissue to
be examined. The backscattered or reflected light from the tissue is redirected back to the system through the same fiber
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2019 John Wiley & Sons, Ltd.

Int J Numer Meth Biomed Engng. 2019;35:e3177. wileyonlinelibrary.com/journal/cnm 1 of 19
https://doi.org/10.1002/cnm.3177

https://doi.org/10.1002/cnm.3177
https://orcid.org/0000-0003-4346-692X
http://creativecommons.org/licenses/by/4.0/


2 of 19 WANG AND BAI

FIGURE 1 A diagram of a generic OCT system. SD, super-luminescent diode

and combined with the returning light through the reference arm. The mixed light creates an interference pattern on the
surface of a photoreceiver or detector, which is then converted into electronic signals. The signals are further processed
into a reflectivity profile of the sample tissue at various scanned depth, which is called the A-scan. As the sample arm
sweeps laterally across the tissue sample, many A-scans are generated along the lateral direction and can be combined
into a cross-sectional 2D image, namely, the B-scan image. B-scans resulted from different lateral directions can be further
combined into a 3D volume dataset.

There are mainly two types of OCT systems widely used today: time-domain OCT (TDOCT) and frequency-domain OCT
(FDOCT).1 FDOCT includes spectral-domain (or spectrometer-based) OCT (SDOCT) and swept-source OCT (SSOCT). In
TDOCT, the path length of the reference arm light is changed during the acquisition of an A-scan. The reference beam
light interferes with the sample arm light scattered from a scattering site at a particular depth of the tissue of which the
path length falls within the coherence length. The path length of the reference arm is then accommodated continuously
to construct the whole A-scan. A disadvantage of TDOCT is that the scanning process is slow. Any relative movement
between the OCT system and the examined medium would lead to artifacts in the resulting signal. FDOCT features a light
source of a wide wavelength bandwidth, and the interfered light between the sample and reference arms is dispersed by a
spectrometer, resulting in a spectrum. An inverse Fourier-transform is then applied to convert the spectrum into a depth
scan. Unlike TDOCT, only one scan is needed to acquire a full depth scan. The SSOCT, on the other hand, utilizes a light
source of a single frequency. During a scan, the light source quickly sweeps a series of frequencies, and the interference
pattern from each frequency is recorded continuously by a photo-receiver. The A-scan may be constructed similar to
FDOCT via an inverse Fourier transform.

In this paper, we first review briefly some related work. In Section 3, we present the details of our MC approach for
simulating frequency-domain OCT. Unlike conventional MC approaches for OCT simulation, we use focusing Gaussian
light beams instead of infinitesimally thin beams as the input light source and incorporate a new photon detection scheme
for the focusing Gaussian light beam. We then compare our simulation results with the analytical EHF model in Section
4, followed by a discussion of some of the related issues.

2 RELATED WORK

There are generally two major approaches for modeling the imaging process of OCT. One uses an analytical model of
the OCT derived from the theories of optics, such as the extended Huygens-Fresnel principle (EHF) and the radiative
transfer equation (RTE) under the small angle approximation. Yi et al2 proposed an analytical model termed ISOCT for
analysing frequency-domain OCT signals. The model assumes that the medium has continuous refractive index (RI)
fluctuation, which is specified as an RI correlation function using the Whittle-Matern functional family. By deducing the
RI correlation function from OCT signals, one is able to estimate a full set of optical properties of the tissue. It is a single
scattering model, which only takes into account photons scattered once before it is back-propagated into the detector.
In reality, however, multiple scattered light may contribute to the OCT signals as well. As photons are transmitted to a
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certain depth through tissues with random spatial variation in the refraction index (ie, inhomogeneous), a large number
of them are highly likely to be scattered for multiple times. Ignoring these multiple scattering events may introduce errors
in the estimation of optical parameters. To account for multiple scattering events, Thrane3 applied the EHF principle
to solve the Maxwell equations for light wave propagation through tissues. Optical parameters of tissues such as the
scattering coefficient and the effective anisotropy factor are estimated by fitting the model to real OCT A-scans. This
model is flexible in the sense that it can be applied to a variety of OCT geometry by incorporating ABCD matrices into their
EHF framework. An ABCD matrix can be used to trace light rays through an optical system. Turchin et al4 proposed an
analytical OCT model based on the RTE to solve the inverse problem of OCT. The RTE cannot be directly applied for OCT
modeling since it does not take into account the coherence between the reference and the sample arms, which is essential
for OCT imaging. Therefore, their model assumes a delta-correlated light source and has accounted for the correlation
between light propagated forward and backward. Interestingly, it was confirmed in Drexler and Fujimoto5 that the RTE
model with the small angle approximation and the EHF model are equivalent, if both models adopt the same scattering
phase function.

The other major approach is based on MC simulation. This approach simulates directly the interaction between pho-
tons and tissues during light transport within the tissue.6-8 Given the optical geometry and optical properties of a tissue
model, photons are simulated and tracked along their path through the tissue subject to stochastic events of absorp-
tion and scattering. Wang et al9 developed a simulator, namely, the MCML, for studying the propagation of a laser beam
incident to multilayered tissues. The simulator however can only deal with homogeneous and isotropic media. Other sim-
ulators have been developed based on MCML for TDOCT.10-13 Previous work implemented the feature of low-coherent
interference of sample and reference arms by taking into account the coherence length of the light source in detecting
photons. They differ mainly in how the geometry of scattering media was structured, or whether an importance sampling
scheme was incorporated to boost the simulation performance. As OCT image formation relies on back-scattered pho-
tons, photon packets reflected from the tissue are detected subject to a photon detection scheme. Back-scattered photons
are differentiated as class I photons and class II photons.14 Class I photons are largely single-scattered photons from the
ballistic component of the sample arm, which have reached a scan depth z and of which the optical path length differs
from that of the reference arm no larger than the coherence length of the optical source. Class II photons are the same as
class I photons except that they have not reached the scanned depth but has a comparable path length to the length of the
reference arm due to multiple scattering, which mainly contribute to diffusive reflectance. The backscattered reflectance
at depth z contributed by class I photons, and the diffusive reflectance contributed by class II photons are estimated by
summarizing the weights of all II photons. In practice, the whole scan depth needs to be discretized into a grid with a
resolution limited by the coherent length.

MC-based approaches can give very realistic simulation results containing speckle noises, which are inherent in real
OCT images and are applicable for tissues with complex geometry or optical properties. However, a major drawback of
the approach is that photons are treated as physical particles, and the general MC approaches are incapable of modeling
wave phenomena such as diffraction.15 Another drawback is that the computation for solving the inverse problem can be
very costly, since a large quantity of photon packets have to be traced in simulation in order to obtain a sufficient number
of photons back scattered from the photon-tissue interaction for every depth of the complete scan range. To tackle the
inefficiency problem, importance sampling has been applied to the photon scattering step to greatly enhance the chance
for photon packets being back-scattered towards the photon detector.12,16

Some MC simulation studies focused on simulating FDOCT.17,18 In the FDOCT simulation, the light source is modeled
as one with a broad wavelength bandwidth. The photon propagation is similar to TDOCT except that FDOCT simulation
does not differentiate class I and II photons. The difference is largely at the detector side. The photon detector is modeled as
a wavenumber-resolved photo-detector array, and each detector corresponds to a certain wavenumber. Once a photon has
been detected, each detector will deposit its weight modulated by a wave function of the detector's wavenumber and the
photon's optical path length. Hence, a wavenumber-dependent fringe signal encoded with optical path lengths is obtained
after simulation, followed by an inverse Fourier transform to reconstruct the A-scan. FDOCT simulation can alleviate the
inefficiency problem mentioned above, since each detected photon contributes to the spectrum across all wavenumbers,
which in turn helps reconstruction of A-scans for the full depth range. We are also aware of a similar photon propagation
procedure used in a more recent work19 for simulating optical tomography (OT) in the frequency domain. The weight of
each photon was also modulated by a complex wave form as a function of the optical path length. However, because the
principle of OT imaging is different from OCT, the photon detection and formation of scans in the OT simulation are very
different from the OCT simulation.
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FIGURE 2 A flow-chart of our simulation framework

3 MONTE CARLO SIMULATION OF OCT

3.1 A framework for simulating photon propagation in tissues
A flow-chart of the MC simulation framework is shown in Figure 2 adapted from the original MCML framework.9 The
modified components of the original MCML are in represented with frames of thicker boundaries than the rest in the
flow-chart. The OCT system geometry adopted in our approach is shown in Figure 3. For simplicity, only the sample and
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FIGURE 3 A 4F optic system

reference arms are presented. The sample arm is equipped with a 4F optic system, composed of an emitting optical fiber
F, a collimating lens L1, and a focusing lens L2. L1 and L2 have the same focal length f. F is placed at a focal point on
one side of L1. L2 is at a distance 2F away from L1 on the other side, and d is distance away from the tissue. L1 and L2
share a common focal plane located between them. The sample light beam emitted from F is casted onto L1 and becomes
collimated. It then goes through L2 and is focused into a tissue. F is situated at the focal plane of L1 (p-plane). The light
beam is focused at the focal plane of L2 (q-plane). A reference light beam goes through another 4F system and is reflected
back by a mirror situated at the arm end. The sample light beam has a 1∕e radius equal to wf at the fiber end and w0 on the
r-plane. For the convenience of analysis, it can be regarded that the backscattered sample light is mixed with the reference
light beam at the r-plane, which is equivalent to the mixing of both at the photodetector.3 The p-plane and q-plane are a
pair of conjugate planes of the 4F system.

Tissues are modeled as multilayered with constant thickness each layer. The coordinate origin is at the top surface of
the tissue, and the z axis is perpendicular to all layers and the x and y axes are parallel to the layers. Photons are modeled
as photon packets with an initial weight set to unity. Photon packets are sampled from a Gaussian distribution of the
intensity of a focusing light beam launched from the surface of a tissue model. Each photon packet is propagated through
the tissue following a focusing Gaussian beam model before it encounters the first scattering event. The distance of its
free movement is sampled from an exponential distribution specified with the absorption coefficient 𝜇a and the scattering
coefficient 𝜇s. After the free movement, the weight of the photon packet is reduced by the amount 𝜇aw∕(𝜇a + 𝜇s). The
scattering step updates the photon's movement direction by sampling a direction from a scattering phase function p(𝜃).
The phase function is for modeling the distribution of photons being scattered along a direction specified by the scattering
angle 𝜃 relative to its incident direction. In a cylindrical coordinate system with the z-axis along the incident direction:

1
4𝜋 ∫

2𝜋

0 ∫
𝜋

0
p(𝜃) sin 𝜃d𝜃d𝜙 = 1, (1)

where 𝜙 is the azimuthal angle and p(𝜃) is normalized so that its integral over the full solid angle is one. The well-known
Henyey-Greenstein (HG) phase function20 is often used for modeling scattering in biological tissues. However, in order to
compare the MC simulation results with those of the EHF model, we replace the HG function with the small-angle phase
function.3,4 It consists of two parts: a Gaussian density and an isotropic density, which is defined as

x(z, 𝜃) = (1 − 2pb(z))x1(z, 𝜃) + 2pb(z). (2)

Here, pb is the backscattering probability of photons. x1(z, 𝜃) is defined as a Gaussian density function modeling forward
scattering at depth z

x1(z, 𝜃) =
2

1 − g(z)
exp

(
−1 − cos 𝜃

1 − g

)
≈ 4⟨𝜃2(z)⟩ exp

(
− 𝜃2⟨𝜃2(z)⟩

)
, (3)

where ⟨𝜃2(z)⟩ is the variance of the scattering angle at depth z, which can be approximated as a function of the anisotropic
factor g(z) at depth z when the scattering angle is small: ⟨𝜃2(z)⟩ ≈ 2(1 − g(z)). To sample a scattering angle is simple, we
firstly generate a uniform random number 𝜖. If 𝜖 is smaller than 2pb, we sample the scattering angle uniformly from the
range [0, 𝜋]. Otherwise, we sample from the Gaussian density function.

Once the photon packet hits a boundary of the tissue, the Fresnel equations are used to determine whether it should be
transmitted to the next layer or be reflected at the boundary. If the photon packet exits from the tissue, it will be terminated
and is subject to a photon detection scheme to determine if it contributes to the formation of OCT signals. If the weight
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of the photon packet drops below a threshold, it is then terminated subject to a Russian survive roulette. The procedure is
repeated for many times to simulate a large number of photons. Finally, the spectrum data obtained from the simulation
is converted to OCT A-scans using the inverse Fourier transform.

3.2 Simulating FDOCT
The implementation of FDOCT simulation was based on the method of Hartinger et al,18 which is briefly presented here.
Let N be the number of frequency components, 𝛿k the wavenumber linear spacing, and k0 be the smallest wavenumber.
The wavenumber span of the light source is then (k0, k0 + 𝛿k, k0 + 2𝛿k, … , k0 + (N − 1)𝛿k). Let us assume a photon
emit from a wave component having wavenumber k hits a reflector at depth z0 in the tissue and is backscattered towards
the detector. Its optical path length is then 2z0, and it creates an electric field at the detector, which can be expressed as

Ei =
√

Wi exp(2iz0k), (4)

where Wi is the weight of the ith photon packet. In essence, this wave form of the photon has encoded the depth z0, which
can be reconstructed by taking the Fourier transform of equation (4), regarding k as time and z0 as frequency. By collecting
contributions from all detected photons, we obtain a spectrum-like signal as a function of the wavenumber18:

S(k) =
√

G(k)
N∑

i=1

√
Wi exp(2ikzi), (5)

where G(k) is the light source spectrum and N is the total number of detected photon packets. Assuming a Gaussian
spectrum, it can be defined as

G(k) ∝ exp

[
−
(

k − kc

Δk

)2
]
, (6)

where kc is the central wavenumber and Δk is the wavenumber bandwidth. In case of SSOCT, G(k) can be simply set
to unity. Generally, we treat the reference electric field as R(k) =

√
𝛼G(k), where 𝛼 is a parameter chosen to scale the

total sample arm power |S(k)|2 between 0.001% and 0.01% of the reference arm power |R(k)|2. Therefore, a spectrum as a
function of the wavenumber is given by interfering the sample and reference arm fields18 as

ID(k) = |S(k) + R(k)|2 − |S(k) − R(k)|2. (7)

We further apply a Hamming window and the inverse Fourier Transform to the spectrum to recover the A-scan. One
convenient aspect of the FDOCT simulation is that it can be easily incorporated into the existing TDOCT simulation
framework. Only the steps of photon collection and signal formation need to be modified. In Zhao17 and Hartinger et al,18

the magnitude of the inverse Fourier transform of ID(k) was taken as the A-scan. We found that this does not give a
consistent result as TDOCT under the same simulation configuration. We use the square of the magnitude instead. Finally,
the imaging depth is calculated according to the Nyqist-Shannon sampling theorem as

D = 1
4
𝜆2

c

𝛿𝜆
, (8)

where 𝜆c is the central wavelength 𝜆c = 2𝜋∕kc and 𝛿𝜆 is the wavelength spacing of the light source spectrum. In reality,
FDOCT signals are obtained from a spectrometer as a spectrum specified upon a wavelength array. In the specification
of OCT equipment, the minimum wavelength 𝜆min, the central wavelength 𝜆c, the wavelength bandwidth Δ𝜆, and wave-
length spacing 𝛿𝜆 are often supplied. Before simulation, we then have to convert the specification into the wavenumber
domain. Firstly, we need to resample the wavelength array by interpolation so that the corresponding wavenumbers will
be evenly spaced after conversion. An interpolating factor si is calculated as21

si =
[

1
𝜆max

+ i
M − 1

(
1

𝜆min
− 1

𝜆max

)]−1

− 𝜆min, (9)
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where M is the length of the wavelength array and 𝜆max = 𝜆min + (M − 1)𝛿𝜆. Then a new array of wavelength is obtained
as 𝜆i = 𝜆min + si. Thus, the wavenumber of each element of the interpolated new array is ki = 2𝜋∕𝜆i. Finally, according
to Izatt and Choma,1, eq2.8 the wavenumber bandwidth is calculated as

Δk = 𝜋√
ln 2

Δ𝜆
𝜆2

c
. (10)

3.3 Simulating focusing Gaussian beam
In OCT modeling, an important factor to consider is the incident light beam. A common practice in MC approaches is
to model it as a photon stream with an infinitesimally small radius, but this is not true in reality. In analytical models
such as EHF and RTE, the incident light is modeled as a focusing Gaussian beam and a simple focusing beam geometries
can be incorporated. Due to diffraction of light waves, a Gaussian beam focuses to a spot with a diffraction-limited size,
which is also termed the beam wrist. However, conventional MC simulation approaches such as MCML do not take into
account wave characteristics of photons since they are treated as particles. Nonetheless, a simple method is to use focusing
geometry and direct photons towards the focal point before they are scattered, but the ballistic photons reaching the focal
point will concentrate into a infinitesimally small point instead of forming the beam wrist. In our simulation, we adopt
an alternative method for simulating focusing geometries proposed in Hokr et al.15 Photons are initially sampled from
a Gaussian distribution of the intensity of an incident beam at the lens plane. Before encountering the first scattering
event, each photon follows a trajectory where its moving direction is always perpendicular to the propagating wave front
of the focusing Gaussian beam. As a result, the distribution of ballistic photons at any plane transversal to the optical axis
is always Gaussian. After being scattered, a photon will propagate in a way as specified in traditional MC simulation. A
great advantage of this method is that it can be easily integrated into existing conventional simulation frameworks such as
MCML. Here, unlike Hokr et al,15 which assumes a focusing lens at z = 0 and presents a focusing Gaussian beam model
in a tissue with the refractive index set to unity, we consider a more general setup where the focusing lens is positioned
at d distance away from the surface of the medium and the refractive index of the medium is n.

Let w0 and wf be the 1∕e radius of the beam intensity at the focusing lens and the focal plane, respectively. In a medium
with a refractive index n, wf can be calculated as wf = 𝜆f∕(2n𝜋w0), where 𝜆 is the wavelength of the focusing Gaussian
beam and f the focal length. The power of the beam is given as P = I0𝜋w2

𝑓
, where I0 is the optical intensity at the center

of the beam wrist. The intensity profile of the beam at depth z is expressed as

I(r; z) = I0
w2
𝑓

w(z)2 exp
[
− r2

w(z)2

]
, (11)

where r is a position on the transverse plane. w(z) is the radius of the beam at depth z. Rather than sampling photons from
the lens plane, we directly launch photons on the surface of the medium. There are two reasons for this. Firstly, there is
no need to propagate photons from the focusing lens to the surface. Secondly, if there is mismatch in refractive indexes
between the tissue and the air, a lot of photons launched from the lens may be directly reflected on the tissue surface.
These photons are wasted since they have never entered the tissue. Hence, we can improve the simulation efficiency by
directly sampling photons at the tissue surface to avoid possible reflection. To this end, we obtain the intensity distribution
of the beam cast on the surface using Equation 11 with the radius ws calculated as

ws ≡ w(z = 0) = w𝑓

√
1 +

[
𝜆(𝑓 − d)

2𝜋w𝑓

]2

. (12)

After sampling a photon packet from this distribution, it is propagated into the medium using the same photon
propagation procedure described in Hokr et al.15 The radius of the wave front at a depth z in the medium is given as

R(z) = −(d − 𝑓 + z∕n)

[
1 +

(
zR

d − 𝑓 + z∕n

)2
]
, (13)
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where zR is the Rayleigh length calculated as zR = 2n𝜋w′2
𝑓
∕𝜆. w′

𝑓
is the radius of the beam at the focal plane in the medium:

w′
𝑓
= 𝜆( 𝑓 − d)∕(2n𝜋ws). Assume at a time step t, the photon is at a location (x(t), y(t), z(t))T. Its direction of travel at t is

defined as

v(t) = 1√
1 + (x(t)2 + 𝑦(t)2)∕R(z(t))2

(
− x(t)

R(z(t))
,− 𝑦(t)

R(z(t))
, 1
)T

, (14)

which is normal to the wave front of the Gaussian beam passing the photon's location. Given a small time step of propaga-
tion, the position r(t + 1) of the photon at the time step t + 1 is updated according to the equation of motion .r(t) = (c∕n)v(t)
where c is the light speed. The equation can be solved to obtain the position of the photon at t + 1 by the Runge-Kutta
method using the second derivative of Equation 14.

3.4 The photon detection scheme
Once a photon packet leaves the tissue through the top surface, it may be detected by a photodetector. Some criteria must
be satisfied in order for a photon packet to contribute to the OCT signal, which are referred to as a detection scheme.22

Previously published papers specified acceptance criteria on the angle and position of exiting photon packets related to
the numerical aperture of the receiving lens or optical fibers in addition to the condition that the difference between the
optical path length of the photon packet and the reference arm length must be less than the coherence length. Specifically,
the angle between the incoming direction of the photon packet and the optical axis must be smaller than an acceptance
angle of the receiving fiber or lens according to considerations of field distributions. However, Tycho22 argued that such
considerations may not be valid since simulated photon packets can only represent energy of photons, but not their electric
field. To circumvent this, an MC approach incorporating a new detection scheme derived from the EHF principle was
proposed. The approach adopts the 4F optic system as the sample arm geometry and is designed to estimate a heterodyne
factor at the q-plane where a tissue discontinuity is situated. Photon packets are diffusively reflected from the tissue
discontinuity and back-propagated to the p-plane. Since the p-plane and q-plane are unity conjugates, it was proved that
the reflected sample beam at the p-plane is delta-correlated and the heterodyne efficiency factor calculated in the p-plane
is identical to that calculated in the r-plane due to the discontinuity in the q-plane. Consequently, the proposed detection
scheme only needs to take into account the intensity distribution of the sample and reference field in the p-plane. Let Φp
and Φr be the heterodyne efficiency factor in the p-plane and the r-plane, respectively. According to the EHF model, Φp
is expressed as

Φp =
⟨i2

p⟩⟨i2
0,p⟩ =

∫ IR(p)⟨IS(p)⟩dp
∫ IR(p)⟨IS,0(p)⟩dp

= Φr, (15)

where p is a point in the p-plane. IR(p) is the intensity of the reference beam at p in the p-plane. IS(p) is the intensity of
the back-propagated sample field through the scattering medium. IS,0 is the intensity of the sample field in the absence
of the scattering medium. The triangular bracket indicates ensemble averaging over the scattering medium and the diffu-
sively reflecting discontinuity. By modulating the weight of all photon packets propagated to the p-plane by the intensity
distribution of the reference field followed by summation, as shown in Equation 16, the mean squared intensity of the
OCT signal due to light reflected from the q-plane at depth z can be estimated.

⟨i2(z)⟩ = ⟨i2
p⟩ = Φp⟨i2

0,p⟩ ≈ ∑
p

IR(p)Wp, (16)

where p represents a photon packet in the p-plane and Wp is its weight. This is a very interesting result since only the
intensity distribution represented by photon packets is needed and no assumptions related to field distributions or wave
characteristics are considered upon the photon packets. The approach demonstrated a good agreement with the EHF
model. However, it is not clear how the heterodyne efficiency factor is estimated if the tissue discontinuity is not coincident
with the focal plane, ie, it is not in the q-plane. Furthermore, in order to obtain a complete A-scan, the MC simulation
must run repeatedly for the Gaussian beam focused at a different depth of the tissue at a time, ie, implementing a dynamic
focusing scheme. This renders the approach very time-consuming. Besides, it cannot be directly applied to our case since
we require the focus of the sample arm beam fixed at a certain depth in FDOCT simulations while only one run of the
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simulation is needed to obtain a complete A-scan. Therefore, we adapted Tycho's photon detection scheme so that it works
for our case that the focus is fixed at a certain depth while a complete A-scan can still be acquired with a single run of
simulations.

Assume the tissue discontinuity is now at the q′ -plane, which is at the depth z within the tissue. We can find a plane
(p′ -plane) at a distance 2f − (d + z∕n) to the left of the collimating lens L1 so that the sample field that is reflected from
the q′ -plane and arrives at the p′ -plane is delta-correlated with the field in the q′ -plane, which means that the heterodyne
efficiency factor in the p′ -plane is identical to that in the r-plane due to the tissue discontinuity presented in the q′ -plane.
Since ⟨i2

0(z)⟩ = ⟨i2
0,p′⟩, the mean square heterodyne signal in the p′ -plane is also identical to that in the r-plane. A proof of

this is provided in Appendix A. Therefore, we are able to estimate the mean squared heterodyne signal by summing up
the weight of photon packets modulated by the intensity distribution of the reference field propagated to the p′ -plane. As
we are interested in the mean square heterodyne signal rather than the heterodyne efficiency factor, we do not need to
estimate the heterodyne signal in the absence of the scattering medium. The intensity distribution of the reference field
is Gaussian with one parameter w′

p, the 1/e radius of the reference beam in the p′ -plane, and it is expressed as

IR(p) =
1

w2
p′

exp

(
−
||p||2
w2

p′

)
(17)

In fact, the distance between the p′ -plane and the q′ -plane should be always 4f. As such, there does exist a limitation that
the scanned depth z cannot exceed 2f − d, although it can be circumvented by using a larger f. Here, we summarize our
detection scheme in Algorithm 1.

4 SIMULATION RESULTS

In this section, we present some simulation results of OCT signals using the MC method described above. To validate the
MC method for OCT simulation, A-scans obtained using the MC approach were compared with the analytical EHF model
in the first subsection. In our simulation, we set the absorption coefficient of tissues to zero. Since the EHF model does
not include absorption coefficient, we will not be able to compare the simulation results with the EHF model if we allow
nonzero absorption coefficients for the simulation. Furthermore, its value is much smaller than the scattering coefficient
for tissues in general. In the second subsection, we fit the EHF model to a set of simulation results to see if optical properties
can be recovered correctly. We used 108 photon packets in all simulations. All simulations were performed on a desktop
computer equipped with an Intel(R) Core i7 CPU at 3.60GHz and 24GB RAM. To demonstrate the performance of the
MC approach, we listed the average simulation time for generating an A-scan for a few types of tissues in Table 1. The
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TABLE 1 The average simulation time of one A-scan in seconds and
the ratio of detected photon packets in a percentage of total simulated
photon packets (as shown in brackets)

𝜇s, mm−1

1 5 10

pb 0.01 42 (0.18%) 125 (1.14%) 298 (3.58%)
0.1 84 (1.65%) 292 (5.98%) 505 (9.13%)

ratio of detected photon packets is also summarized. We found that the simulation time is largely dependent on 𝜇s and
pb, but not g. As 𝜇s and pb increase, the probability for photon packets to be backscattered gets higher leading to more
detected photon packets. In the photon detection scheme, the calculation of the intensity of the reference beam involves
exponentials, which is time consuming. Therefore, the simulation time is in proportion to the amount of detected photon
packets. For all simulations, the light source has a central wavelength of 1300 nm and a bandwidth of 95 nm. The spectrum
of wavelength contains 2048 cells and the wavelength spacing is 0.055 nm. The bandwidth of the light source is 229 nm. In
order to reduce speckle noises existed in all simulated A-scans, for each run of MC simulations, a B-scan along the y-axis
consisting of 10 A-scans was obtained and the averaged 10-based logarithm of A-scans was calculated. For convenience,
we refer A-scan in the following sections as the averaged A-scan after taking ten-based logarithm. We converted the
spectral data collected from simulations into A-scans by multiplying the data with a Hamming window followed by the
fast Fourier transform. The Hamming window works as a tapering function to reduce the spectral leakage caused by a
windowing effect introduced by finite data series. Each A-scan contains about 300 values at evenly spaced depth within
a 1-mm scan range.

4.1 Comparing MC and EHF
As the EHF model is a proven model for OCT, we compare the results from the MC approach with the EHF model. A
brief introduction to the EHF model is given in Appendix B. We firstly demonstrate the consistency between the MC
approach and the analytical EHF model using some examples as shown in Figure 4. The focal length of the focusing lens
was set to 0.5 mm, and it was positioned on the tissue's surface. The 1∕e radius of the incident light beam at the focusing
lens was set to 0.02 and 0.04 mm, respectively. Since we sare only interested in the shape of mean A-scans as a result
of underlying optical properties rather than the actual magnitude, each A-scan was normalized by its value at z = 0.
For comparison, we calculated a benchmark mean squared heterodyne signal by plugging the ground truth values of the
optical properties into the EHF model and then aligned it to the simulated A-scan by minimizing the mean squared error
between the simulated A-scan and the benchmark signal. Figure 4A,C shows comparisons between simulated A-scans
and the mean signal obtained with the EHF model. We also plot in Figure 4B,D simulated A-scans using the same setup
of optics and tissues as Figure 4A,C, respectively, but with the original photon detection scheme of the MCML: A photon
packet is detected only if it enters the photon-collecting optical fiber and its incident angle to the fiber is smaller than the
acceptance angle of the fiber. The radius of the fiber is set the same as wf, the waist radius of the incident sample beam. The
acceptance angle is calculated as 𝜃max = atan(w0∕f), the maximal half-angle of the cone of light exiting F and entering L1.
Noticeably, the new detection scheme achieves a better agreement to the EHF model in terms of signal profiles. Figure 4E
shows a simulated A-scan for a two-layer tissue. The thickness of the first layer is 0.4 mm. A clear boundary between
the two layers is indicated by a rapid rise in the simulated A-scan at depth z = 0.4 mm. A good match between the MC
simulation and EHF model is also achieved. In order to show the effect of mismatch in refractive indexes between the
tissue and the air, we set the tissue's refractive index to 1.2 and plot a simulated A-scan in Figure 4F. Note that for this
simulation, we launched photon packets from the focusing lens. The difference in refractive indexes introduced a huge
peak into the simulated A-scan suggesting that a large amount of photons were reflected at the surface of the tissue. The
EHF model, however, cannot model such reflection at the surface of the tissue.

4.2 Parametric fitting
We demonstrate a solution to the inverse problem by fitting the EHF model to the MC simulated A-scans. We then com-
pared the fitted optical parameters to their ground truth values to show the consistency between the two models. The
optical geometry for this is set as follows. The focal length of the focusing lens is 0.5 mm and is positioned immediately
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FIGURE 4 Comparing simulation results of our MC approach with the analytical EHF model. (A, C, E, F) Simulated A-scans using the
proposed photon detection scheme. (B, D) Simulated A-scans using the original photon detection scheme of MCML. (E) A simulated A-scan
of a two-layer tissue. The thickness of the first layer is 0.04 cm. (F) A simulated A-scan of a single layer tissue with a nonunity refractive index
n = 1.2. The optical properties of tissues and the radius of the sample beam w0 take the following values: (A, B) 𝜇s = 1 mm−1, g = 0.95,
pb = 0.05, w0 = 0.02 mm; (C, D, F) 𝜇s = 5 mm−1, g = 0.95, pb = 0.05, w0 = 0.04 mm. (E): 𝜇s = 2 mm−1, g = 0.95, pb = 0.05 for the
first layer; 𝜇s = 5 mm−1, g = 0.98, pb = 0.1 for the second layer, w0 = 0.04 mm
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next to the tissue's surface. The 1/e radius of the sample arm beam at the focusing lens (in the r-plane) is set to 0.1 mm.
We use a single-layered tissue for all runs of simulations. The tissue has a depth of 1 mm and is infinitely wide. For sim-
plicity, we assume it has a unity refractive index, the same as surrounding air, as we do not want the light reflection on the
surface of the tissue affect our simulation results. We specify a set of values for each optical property of the tissue in order
to explore different types of tissues. Specifically, 𝜇s is set to 1 mm−1 for tissues of very low optical scattering, 5 mm−1 for
low optical scattering and 10 mm−1 for high optical scattering respectively. g is set to 0.9 for tissues of wide-angle optical
scattering, 0.95 for small-angle scattering, and 0.98 for highly forward scattering tissues respectively. We set pb to 0.01 for
tissues of low diffusive scattering and 0.1 for highly diffusive scattering. The absorptive coefficient 𝜇a of all tissues is set
to zero. We can combine these values of the optical properties to cover a wide range of tissues.

We used a genetic algorithm for parametric fitting to avoid local optima. We sampled a set of values from the fitted
curve at a sequence of depths and used the sum of squared difference between these values sampled from the fitted curve
and the simulated A-scan as minimization criterion for the genetic algorithm. To improve fitting efficiency, we constrain
the parameters as follows: 1 ≤ 𝜇s ≤ 15, 0.8 ≤ g ≤ 1, 0.001 ≤ pb ≤ 0.5, 10−3 ≤ a ≤ 103, where a is a multiplying
factor applied to the mean squared heterodyne signal before taking logarithm. We ran MC simulations 10 times on each
of the eighteen types of tissues as described earlier. We then calculated the mean and standard deviation of the fitted

TABLE 2 Estimated scattering coefficient 𝜇s from parametric
fitting using genetic algorithmsa

g
0.90 0.95 0.98

pb 0.01 1.16± 0.40 1.38± 1.05 1.34± 0.50
5.13± 0.95 5.28± 0.75 5.24± 0.93

10.59± 1.49 10.64± 1.14 10.84± 1.99
0.1 1.15± 0.32 1.10± 0.36 1.30± 0.62

4.88± 0.89 5.12± 0.92 5.16± 0.63
10.36± 1.28 10.53± 1.15 10.90± 3.37

aEach table cell contains three rows of figures corresponding to ground
truth values of 𝜇s: 1, 5, and 10.

TABLE 3 Estimated anisotropy factor g from parametric fitting
using genetic algorithmsa

𝜇s, mm−1

1 5 10
pb 0.01 0.91± 0.13 0.94± 0.03 0.94± 0.02

0.96± 0.05 0.97± 0.02 0.95± 0.02
0.99± 0.02 0.99± 0.01 0.98± 0.01

0.1 0.90± 0.14 0.92± 0.06 0.89± 0.05
0.96± 0.03 0.96± 0.02 0.94± 0.02
0.97± 0.08 0.98± 0.01 0.97± 0.02

aEach table cell contains two rows of figures corresponding to ground truth
values of g: 0.9, 0.95, and 0.98.

TABLE 4 Estimated backscattering probability pb from parametric
fitting using genetic algorithms

𝜇s, mm−1

1 5 10

g 0.90 0.28± 0.38 0.03± 0.05 0.001± 0
0.21± 0.42 0.10± 0.11 0.03± 0.02

0.95 0.20± 0.34 0.06± 0.09 0.01± 0.02
0.12± 0.30 0.14± 0.05 0.07± 0.02

0.98 0.14± 0.2 0.05± 0.04 0.02± 0.02
0.22± 0.29 0.15± 0.06 0.10± 0.02

aEach table cell contains three rows of figures corresponding to ground truth
values of pb: 0.01 and 0.1.
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optical properties for each type of tissues. Estimated values of the optical properties are summarized in Tables 2, 3, and
4. All values are displayed as mean with 95% confidence level. Table 2 shows estimated scattering coefficients 𝜇s from
simulations where g and pb were set to different values. The estimated scattering coefficient is generally in good agreement
with their true values. However, there are relatively larger errors in g and pb estimates in the context of small optical
scattering and anisotropic factors. It is expected that the MC model and the EHF model are not completely in agreement,
since they model light propagation in different ways: One treats photons as particles and propagate them based on the
radiative transfer equation and the other is based on theories of wave propagation. Thus, there is always an inherent
discrepancy between these two models leading to errors in the inverse problem. To further investigate the cause to the
larger errors, we conducted a sensitivity analysis on the EHF model regarding the inverse problem so as to explore how
the uncertainty in the measurement (ie, A-scans) affects estimation of the optical properties. To this end, we derived a
measure of the relative error for each optical property from the linear perturbation analysis as follows

𝛿u
u

≤ 1
Nz

Nz∑
i=1

|||| 𝜕u
𝜕I(zi)

I(zi)
u

|||| ||||𝛿I(zi)
I(zi)

|||| , (18)

where u is an optical property to be investigated (ie, 𝜇s, g or pb). I(z) is the A-scan. zi, i = 1, … ,Nz, are a sequence of depth
values sampled within the scan range, which were set identical to the depth values of the simulated A-scan. 𝛿I(zi) is the
measurement error at depth zi. To obtain the measurement error, we calculated the depth-resolved standard deviation of
the A-scans for each type of tissues obtained from our MC simulation. We then averaged these standard deviations over
all depth values and all types of tissues and used it as the measurement error (2.4 dB). 𝜕u

𝜕I(zi)
can be calculated directly from

the EHF model. In Figure 5A-C, we plot the upper bound of relative errors of the estimation of g for g = 0.9, g = 0.95,
and g = 0.98, respectively, with 𝜇s and pb set to different values. It can be observed that the relative error of the estimation
of g drops as 𝜇s increases, regardless of pb. This implies that in the condition of smaller 𝜇s, it is more difficult to estimate
g correctly. Figure 5D,E visualizes relative errors of the estimation of pb for pb = 0.01 and pb = 0.1, respectively, when
𝜇s and g vary. Similarly, as 𝜇s increases, the relative error of the estimation of pb is reduced. Thus, the sensitivity analysis
reveals that in tissues of low scattering, the A-scan is insensitive to the variation of g and pb, which is confirmed by the
fitting results presented here.

FIGURE 5 Estimated relative errors of optical properties using linear perturbation analysis on the EHF model. (A) g = 0.9. (B) g = 0.95.
(C) g = 0.98. (D) pb = 0.01. (E) pb = 0.1
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5 CONCLUSION

In this paper, we reviewed main approaches for OCT simulation and presented a new Monte Carlo based approach for sim-
ulating FDOCT signals. We consider the incident light beam as a Gaussian light beam, a more realistic assumption than
the conventional OCT simulation approaches. Due to the introduction of Gaussian light beams, the conventional photon
detection scheme becomes invalid and may cause errors in the simulation result. We addressed this issue by incorporating
a photon detection scheme derived from Tycho22 into our FDOCT model, which modulates the weight of backscattered
photon packets by the intensity profile of the reference light beam. We compared our approach with the analytical EHF
model, a popular and proven model for OCT, to demonstrate that the simulated A-scans using our MC approach are in
good agreement with those using the EHF model. By fitting the EHF model to the simulated A-scans, we demonstrated
that the optical properties can be recovered correctly from tissues with high optical scattering coefficients and anisotropy
factors. MC however can give more realistic simulation results and deal with more complex tissue structures than EHF.
Our future work will involve inverse MC for more robust tissue parameter estimation.
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APPENDIX A: PROOF OF EQUIVALENCE OF SQUARED HETERODYNE SIGNALS

We prove that the square heterodyne signal in the p′ -plane, which is at a distance 2f − (d + z∕n) to the left of L1, is
identical to that in the r-plane resulted from the field reflected from the q′ -plane at depth z. We extend a proof presented
in Tycho22 for the equivalence of the heterodyne efficiency factor between the p-plane and the r-plane. We first prove that
the sample field is delta-correlated in the p′ -plane with the field in the q′ -plane in the presence of scattering, ie,

ΓS(p′
1,p

′
2) = ⟨US(p′

1)US(p′
2)⟩ ∝ 𝛿(p′

1 − p′
2)⟨IS(p′

1)⟩, (A1)

where p′
1 and p′

2 are vectors in the p′ -plane. IS(p) is the intensity of the sample field. US(p′) is the back reflected field by the
tissue discontinuity in the q′ -plane. To find out US(p′), we firstly calculate the field at the r-plane, Ur(r), by propagating a
reflected field Uq(q′) in the q′ -plane to the r-plane as

Ur(r) = ∫ Uq(q′)Gq′−r exp(iφ(q′, r))dq′, (A2)

where𝜙(q′
, r) is a random phase of a spherical wave propagating in the scattering medium from the q′ -plane to the r-plane.

Gq′ − r is the Huygens-Fresnel Green's function of propagating a field from the q′ -plane to r-plane given as

Gq′−r(q′, r) = − k
2𝜋Bq′−r

exp
(
− ik

2Bq′−r
(Aq′−rq′2 − 2q′ · r + Dq′−rr2)

)
. (A3)

Here, k is the wavenumber. Aq′ − r = 1, Bq′ − r = d + z∕n and Dq′ − r = 1 are elements of the ABCD matrix of light
transfer from the q′ -plane to the r-plane. q′ and r are the length of the vector q′ and r, respectively. Secondly, Ur(r) is
propagated to the p′ -plane through lens L2 and L1, which gives US(p′) as

US(p′) = ∫ Ur(r)Gr−p′ (r,p′)dr, (A4)

where Gr− p′ is the Huygens-Fresnel Green's function for propagating a field from the r-plane to the p′ -plane, which has
the same form as Equation A3 where the ABCD matrix elements are calculated as(

Ar−p′ Br−p′

Cr−p′ Dr−p′

)
=
(

1 2𝑓 − (d + z∕n)
0 1

)( 1 0
− 1

𝑓
1

)(
1 2𝑓
0 1

)( 1 0
− 1

𝑓
1

)
=
(
−1 d + z∕n
0 −1

)
. (A5)

Therefore, the cross-correlation of US(p′) is calculated as

ΓS(p′
1,p

′
2) = ⟨US(p′

1)U
∗
S (p

′
2)⟩ = ∫∫∫∫ Gq′−r(q′

1, r1)G∗
q′−r(q

′
2, r2)Gr−p′ (r1,p′

1)G
∗
r−p′ (r2,p′

2)

× ⟨Uq′ (q′
1)U

∗
q′ (q′

2)⟩ × ⟨exp(i𝜙(q′
1, r1) − i𝜙(q′

2, r2))⟩dr1dr2dq′
1dq′

2.

(A6)

Since the sample field is diffusively reflected at the discontinuity, Uq′ (q′) is delta-correlated, that is,

⟨Uq′ (q′
1)U

∗
q′ (q′

2)⟩ = 4𝜋
k2 𝛿(q

′
1 − q′

2)⟨Iq′ (q′)⟩, (A7)
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where Iq′ (q′) is the intensity of the field Uq′ (q′). Thus, Equation A6 becomes

ΓS(p′
1,p

′
2) ∝ ∫∫∫ Gq′−r(q′, r1)G∗

q′−r(q
′, r2)Gr−p′ (r1,p′

1)G
∗
r−p′ (r2,p′

2)⟨Iq′ (q′)⟩Γpt(r1 − r2)dr1dr2dq′, (A8)

where Γpt(r1 − r2) = ⟨exp(i𝜙(q′, r1) − i𝜙(q′, r2))⟩, the mutual coherence function of a spherical wave in the r-plane from
a point source in the q′ -plane. According to the EHF principle, the mean intensity of Uq′ (q′), ⟨Iq′ (q′)⟩, is given as

⟨Iq′ (q′)⟩ = (
k

2𝜋Br−q′

)2

∫ K(𝛒̃) exp
(

ik
Br−q′

𝛒̃ · q′
)
Γpt(𝛒̃)d𝛒̃, (A9)

where B′

r− q = d + z∕n and 𝛒̃ = r̃1 − r̃2. r̃1 and r̃2 are vectors in the r-plane. K(𝛒̃) is the overlap integral of the unscattered
sample field US(r̃) in the r-plane:

K(𝝆̃) = ∫ exp
(
−

ikAr−q′

Br−q′
𝝆̃ · R̃

)
US(R̃ + 𝛒̃∕2)U∗

S (R̃ − 𝛒̃∕2)dR̃, (A10)

where A′

r− q = 1 and R̃ = (r̃1 + r̃2)∕2. By integration over q′ in Equation A8, ie,

∫ Gq′−r(q′
1, r1)G∗

q′−r(q
′
2, r2)⟨Iq′ (q′)⟩dq′ =

(
k

2𝜋(d + z∕n)

)4

exp
(
− ik

d + z∕n
(r2

1 − r2
2)
)

K(𝛒̃)Γpt(𝛒̃)

× ∫ exp
[

ik
d + z∕n

(q′(r1 − r2 + 𝛒̃))
]

dq′

=
(

k
2𝜋(d + z∕n)

)2

exp
(
− ik

d + z∕n
(r2

1 − r2
2)
)

K(𝛒̃)Γpt(𝛒̃)𝛿(r1 − r2 + 𝛒̃),

(A11)

where the last step is due to the expression found in the inverse Fourier transform of the delta function

∫ exp[im · (u + v)]dm = (2𝜋)2𝛿(u + v) (A12)

and also considering that

Gr−p′ (r1,p′
1)G

∗
r−p′ (r2,p′
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(

k
2𝜋(d + z∕n)

)2

exp
(

ik
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2)
)

exp
(
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2 + p′2
1 − p′2

1 )
)
(A13)

Equation A8 becomes
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× exp
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2 + 𝛒(p′
1 + p′

2)]
) |Γpt(𝛒)|2K(−𝛒)d𝛒,

(A14)

where 𝝆 = r1 − r2, and R = (r1 + r2)∕2. Applying Equation A12, we get

ΓS(p′
1,p

′
2) ∝ 𝛿(p′

1 − p′
2)
(

k
2𝜋(d + z∕n)

)2

∫ exp
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ΓS(p′
1,p

′
2) is nonzero if and only if p′

1 = p′
2. Therefore, Equation A15 is equivalent to

ΓS(p′
1,p

′
2) ∝ 𝛿(p′

1 − p′
2)
(

k
2𝜋(d + z∕n)

)2

∫ exp
(

ik
d + z∕n

𝛒 · p′
1

) |Γpt(𝛒)|2K(−𝛒)d𝛒 = 𝛿(p′
1 − p′

2)⟨IS(p′
1)⟩. (A16)

Therefore, the sample field is delta-correlated in the p′ -plane.
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Secondly, we show that the heterodyne efficiency factor in the p′ -plane is identical to that in the r-plane, ie, Φ′

p = Φr.
From Equation 15, we have

⟨i2
p′⟩ = ∫ IR(p′)⟨IS(p′)⟩dp′ ∝

(
k

2𝜋(d + z∕n)

)2

∫∫ exp
(

ik
d + z∕n

𝛒 · p′
) |Γpt(𝛒)|2K(−𝛒)IR(p′)d𝛒dp′. (A17)

IR(p′) is the intensity of the reference field propagating from the r-plane to the p′ -plane:

IR(p′) =
(

k
2𝜋Br−p′

)2

∫ KR(𝛒̃) exp
(

ik
Br−p′

𝛒̃ · p′
)
Γpt(𝛒̃)d𝛒̃, (A18)

where B′

r− p = d + z∕n and Γpt(𝛒̃) = 1 since the reference field is unscattered. KR(𝛒̃) is the overlap integral of the
unscattered reference field UR(r̃) in the r-plane given as

KR(𝝆̃) = ∫ exp
(
−

ikAr−p′

Br−p′
𝝆̃ · R̃

)
UR(R̃ + 𝛒̃∕2)U∗

R(R̃ − 𝛒̃∕2)dR̃, (A19)

where Ar− p′ = −1. Considering UR(r̃1)U∗
R(r̃2) = US(r̃1)U∗

S (r̃2), we have KR(−𝝆̃) = K(𝝆̃). By plugging Equation A18 into
Equation A17, it becomes

⟨i2
p′⟩ = ∫∫

{
∫

(
k

2𝜋(d + z∕n)

)2

exp
(

ik
d + z∕n

(𝛒 + 𝛒̃) · p′
)

dp′

}(
k

2𝜋(d + z∕n)

)2

KR(𝛒̃)|Γpt(𝛒)|2K(−𝛒)d𝛒̃d𝛒

= ∫
(

k
2𝜋(d + z∕n)

)2 {
∫ 𝛿(𝛒 + 𝛒̃)KR(𝛒̃)d𝛒̃

}|Γpt(𝛒)|2K(−𝛒)d𝛒 =
(

k
2𝜋(d + z∕n)

)2

∫ |Γpt(𝛒)|2|K(𝛒)|2d𝛒.

(A20)

⟨i2
0,p′⟩ is obtained by simply setting Γpt(𝝆) in the last step of Equation A20 to unity in the absence of scattering media, that

is,

⟨i2
0,p′⟩ = (

k
2𝜋(d + z∕n)

)2

∫ |K(𝛒)|2d𝛒. (A21)

Therefore, the heterodyne efficiency factor is calculated as

Φp′ =
⟨i2

p′⟩⟨i2
0,p′⟩ =

∫ |Γpt(𝛒)|2|K(𝛒)|2d𝛒
∫ |K(𝛒)|2d𝛒

. (A22)

Thirdly, we show that

Φr =
∫ |Γpt(𝛒)|2|K(𝛒)|2d𝛒

∫ |K(𝛒)|2d𝛒
. (A23)

The mean square of heterodyne signal measured in the r-plane due to light back-scattered from the q′ -plane at depth z
is given by3

⟨i2(z)⟩ ∝ ∫∫ ΓS(r1, r2; z)ΓR(r1, r2)dr1dr2, (A24)

where ΓR(r1, r2) = UR(r1)U∗
R(r2), and

ΓS(r1, r2; z) = ∫∫ ⟨Uq′ (q′
1)U

∗
q′ (q′

2)G̃q′−r(q′
1, r1)G̃∗

q′−r(q
′
2, r2)⟩dr1dr2

= ∫∫ ⟨Uq′ (q′
1)U

∗
q′ (q′

2)⟩⟨G̃q′−r(q′
1, r1)G̃∗

q′−r(q
′
2, r2)⟩dr1dr2,

(A25)
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where G̃q′−r(q′, r) = Gq′−r(q′, r) exp(i𝜙(q′, r)). By plugging Equation A7 into Equation A25, it becomes

ΓS(r1, r2; z) ∝ ∫ ⟨Iq′ (q′)⟩Gq′−r(q′, r1)G∗
q′−r(q

′, r2)Γpt(r1 − r2)dq′

=
(

k
2𝜋Bq′−r

)2

∫
{

∫
(

k
2𝜋Br−q′

)2

K(𝛒̃) exp
(

ik𝛒̃ · q′

Br−q′

)
Γpt(𝛒̃)d𝛒̃

}
exp

[
ik

Bq′−r
(𝛒 · q′ − 𝛒 · R)

]
Γpt(𝛒)dq′

= ( k
2𝜋(d + z∕n)

)2 ∫
{

∫
(

k
2𝜋(d + z∕n)

)2

exp
(

ik(𝛒 + 𝛒̃) · q′

d + z∕n

)
dq′

}
K(𝛒̃)Γpt(𝛒̃)Γpt(𝛒) exp

(
− ik

d + z∕n
𝛒 · R

)
d𝛒̃.

(A26)

The last step is due to Bq′ − r = Br− q′ = d + z∕n. Using Equation (A12), the equation above is simplified to

ΓS(r1, r2; z) ∝
(

k
2𝜋(d + z∕n)

)2

K(−𝛒)|Γpt(𝛒)|2 exp
(
− ik

d + z∕n
𝛒 · R

)
. (A27)

By plugging Equation A27 into Equation A24 and assuming that UR(r1)U∗
R(r2) = US(r1)U∗

S (r2), the mean square of
heterodyne signal in the r-plane is given as

⟨i2(z)⟩ ∝ (
k

2𝜋(d + z∕n)

)2

∫ d𝛒∫ exp
(
− ik

d + z∕n
𝛒 · R

)
US(R + 𝛒∕2)US(R − 𝛒∕2)dR×

K(−𝛒)|Γpt(𝛒)|2 =
(

k
2𝜋(d + z∕n)

)2

∫ |K(𝛒)|2|Γpt(𝛒)|2d𝛒.
(A28)

By setting Γpt(𝝆) to unity, the mean square of heterodyne signal in the absence of the scattering medium is obtained.
The heterodyne efficiency factor in the r-plane is calculated as

Φr =
⟨i2(z)⟩⟨i2

0(z)⟩ =
∫ |Γpt(𝛒)|2|K(𝛒)|2d𝛒

∫ |K(𝛒)|2d𝛒
= Φp′ . (A29)

Since ⟨i2
0(z)⟩ = ⟨i2

0,p′⟩, the mean square heterodyne signal in the p′ -plane is also identical to that in the r-plane.

APPENDIX B: THE EHF MODEL OF OCT SIGNALS

Let 𝜇s, g, and pb be the scattering coefficient, the anisotropy factor, and the backscattering probability of a tissue. The
tissue has a refractive index n. For the settings of the OCT system, the sample arm beam with a radius w0 is focused
into the tissue by a focusing lens with a focus length f. The distance from the lens to the tissue surface is d. Let k be the
wavenumber of the probing light beam: k = 2𝜋∕𝜆, where 𝜆 is the wavelength. The mean square heterodyne signal current
i(z) at depth z can be formulated as ⟨i2(z)⟩ = ⟨i2(z)⟩0Ψ(z), (B1)

where ⟨i2(z)⟩0 is the mean square heterodyne signal current in the absence of scattering at depth z, Ψ(z) is the heterodyne
efficiency factor representing signal degradation due to scattering. ⟨i2(z)⟩0 is defined as

⟨i2(z)⟩0 =
𝛼2PRPS𝜇spb

𝜋w2
H(z)

, (B2)

where 𝛼 is the power to current conversion factor, PR and PS is the power of the reference and the sample arm beams, and
wH(z) is the 1∕e radius of the irradiance at the probing depth z defined as

w2
H(z) = w2

0

(
A − B(z)

𝑓

)2

+
(

B(z)
kw0

)2

. (B3)
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A and B(z) are entries of the ABCD ray-matrix for light propagation from the lens plane to the probing depth. For this
case where the sample arm light beam is focused on the surface of the tissue, we have A = 1 and B(z) = d + z∕n.

Ψ(z) = exp(−2𝜇sz) +
4 exp(−𝜇sz − pb𝜇sz)[1 − exp(−𝜇sz)]

1 + w2
S(z)∕w2

H(z)
+ [1 − exp(−𝜇sz)]2 exp(−2pb𝜇sz)

w2
H(z)

w2
S(z)

. (B4)

Here, w2
S(z) is the 1∕e irradiance radius of the light beam at depth z with presented scattering, which is calculated as

w2
S(z) = w2

H(z) +
(

2B(z)
k𝜌0(z)

)2

. (B5)

𝜌0(z) is the lateral coherence length defined as follows

𝜌0(z) =
√

3
𝜇sz

𝜆

𝜋𝜃rms
√

1 − 2pb

(
nB(z)

z

)
=
√

3
𝜇sz

𝜆

𝜋𝜃rms
√

1 − 2pb

(
1 + nd

z

)
, (B6)

where 𝜃rms, the root-mean-square of the scattering angle, is calculated as 𝜃rms =
√

2(1 − g). Equation B4 contains three
items: The first item represents the component of the probing light undergoing single scattering; the third item is the
component experiencing multiple scattering due to tissue inhomogeneity, and the second item is the coherence mixing
of the unscattered and multiple scattered light.
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