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Abstract

Being able to distinguish between galaxies that have recently undergone major-merger events, or are experiencing
intense star formation, is crucial for making progress in our understanding of the formation and evolution of
galaxies. As such, we have developed a machine-learning framework based on a convolutional neural network to
separate star-forming galaxies from post-mergers using a data set of 160,000 simulated images from
IllustrisTNG100 that resemble observed deep imaging of galaxies with Hubble. We improve upon previous
methods of machine learning with imaging by developing a new approach to deal with the complexities of
contamination from neighboring sources in crowded fields and define a quality control limit based on overlapping
sources and background flux. Our pipeline successfully separates post-mergers from star-forming galaxies in
IllustrisTNG 80% of the time, which is an improvement by at least 25% in comparison to a classification using the
asymmetry (A) of the galaxy. Compared with measured Sérsic profiles, we show that star-forming galaxies in the
CANDELS fields are predominantly disk-dominated systems while post-mergers show distributions of
transitioning disks to bulge-dominated galaxies. With these new measurements, we trace the rate of post-
mergers among asymmetric galaxies in the universe, finding an increase from 20% at z= 0.5 to 50% at z= 2.
Additionally, we do not find strong evidence that the scattering above the star-forming main sequence can be
attributed to major post-mergers. Finally, we use our new approach to update our previous measurements of galaxy
merger rates ( ) z0.022 0.006 1 2.71 0.31=  ´ +  .

Unified Astronomy Thesaurus concepts: Galaxy mergers (608); Convolutional neural networks (1938)

1. Introduction

The first deep Hubble Space Telescope (HST) images of the
distant universe revealed that many distant and faint galaxies
are in fact irregular/peculiar in appearance (e.g., Williams et al.
1996). Because the first cameras on HST, WFPC1/WFPC2,
were sensitive in optical wavelengths only, probing distant
galaxies was limited to their rest-frame ultra-violet light, due to
the effects of redshift. It was unclear whether the peculiar
appearances were the result of observational limitations or were
real. The question thus remained whether the observed
irregularities were in fact just the star-forming areas of these
galaxies, while the older stars remained below detection. When
the NICMOS camera was launched in 1998 on HST it became
clear that the morphologies of distant galaxies were peculiar in
their rest-frame optical wavelengths as well, implying that the
bulk stellar mass in these galaxies was indeed out of
equilibrium (e.g., Dickinson et al. 2000; Conselice et al.
2005; Papovich et al. 2005; Mortlock et al. 2013; Whitney et al.
2021). The common consensus was that distant galaxies are
indeed intrinsically peculiar. However, it remained unclear why
and how this finding relates to the various possible modes that
could be responsible for producing these irregularities in
galactic structures at high redshifts. The peculiar appearance is
likely linked to the formation process of the galaxies, but
details of the origin of the observed irregular structures have
proven difficult to fully understand.

Since then, it has become clear that, overall, galaxies
gradually transition from peculiar galaxies at higher redshifts to
ellipticals and disk systems at lower redshifts (e.g., Conselice
et al. 2003; Lotz et al. 2004; Mortlock et al. 2013; Huertas-
Company et al. 2015). This conclusion was made possible with
the advent of the WFC3 camera on HST, which allowed
astronomers to trace the morphological evolution of galaxies
over large areas of the sky. Galaxies are therefore undergoing a
transformation, and their irregular origins reveal clues about the
processes that drive galaxy formation. One popular and well-
explored hypothesis is that these systems are in fact undergoing
hierarchical mergers to form larger systems. The basic idea is
that two galaxies in the early universe smash together to form a
larger galaxy, a process that is predicted to be a critical element
in the cosmological context of galaxy formation within a cold
dark matter universe, with well-defined predictions of this
process (e.g., Bertone & Conselice 2009; Jogee et al. 2009;
Mundy et al. 2017).
To make progress in understanding the evolution of galaxies,

it is crucial to identify merging galaxies correctly. In order to
separate galaxies into mergers and nonmergers—initially focus-
ing on the nearby universe—quantitative morphology tools were
developed that use parameters such as the asymmetry index (A;
e.g., Conselice et al. 2000; Conselice 2003). Merging galaxies
are often identified through a combination of these morpholo-
gical measurements such as the concentration, asymmetry, and
smoothness (CAS) parameters (e.g., Conselice et al. 2003; Lotz
et al. 2004). However, mergers are not uniquely identifiable in
this parameter space and some do not fall into the selection
criteria at all (e.g., Conselice 2006; Lotz et al. 2008). Therefore,
care has to be taken to calibrate their usage.
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Today, the merger rate can be accurately measured to high
redshifts (z∼ 3) using galactic structure (e.g., Conselice et al.
2003, 2008; Man et al. 2016; Mantha et al. 2018; Ferreira et al.
2020; Whitney et al. 2021). Using, e.g., CAS parameters, the
measurements show that the merger rate increases at higher
redshifts up to z∼ 3, such that fmerger∼ (1+ z)2−3 (e.g.,
Conselice 2014), an evolution that scales similarly to the
density of the universe, which evolves as∼ (1+ z)3. This
implies that with identifications of mergers at both high and
low redshifts, we are able to trace the galaxy merger history
and investigate the role of mergers within the formation of
galaxies over time (e.g., Conselice 2006; Mundy et al. 2017).

In addition to high merger rates, distant galaxies have much
higher star formation rates than today, peaking at z∼ 2 (e.g.,
Madau & Dickinson 2014). We further know that galactic
structure is highly dependent on the star formation rate in the
sense that intensely star-forming galaxies generally appear
more clumpy and irregular than quiescent galaxies at all
redshifts (e.g., Windhorst et al. 2002; Guo et al. 2015, 2018;
Mager et al. 2018; Sazonova et al. 2021). In fact, these two
different types of galaxies—mergers and noninteracting
intensely star-forming galaxies—can look very similar by
eye, which complicates visual classifications. Even kinemati-
cally it can be challenging to distinguish mergers from rotating
galaxies with high dispersions (e.g., Simons et al. 2019;
Bottrell et al. 2022). In addition, classifications and selections
of galaxies after a merger event (post-mergers) are highly
contaminated by misclassified isolated galaxies with high
specific star formation rates (sSFR). This is because their star-
forming regions and dusty interstellar medium can generate
asymmetric features reminiscent of (post-)merger features. It is
therefore currently unknown if and how we can correctly
distinguish whether a galaxy is undergoing intense star
formation or some type of merger using galactic structures
and morphologies.

One way to approach this question is through novel
techniques using machine learning. Recently, tremendous
progress has been made in applying supervised deep learning
methods to investigate galaxy morphology (e.g., Huertas-
Company et al. 2018, 2019, 2020; Cheng et al. 2020;
Reiman & Göhre 2019; Martin et al. 2020; Walmsley et al.
2020, 2022). These end-to-end techniques are also very
promising for investigating galaxy mergers specifically
(Ackermann et al. 2018; Bottrell et al. 2019; Pearson et al.
2019a, 2019b; Ferreira et al. 2020; Wang et al. 2020; Bickley
et al. 2021). Additionally, one can also leverage information
not only from visual classifications and observations, but also
by forward-modeling cosmological simulations to the observa-
tional domain (Ćiprijanović et al. 2020, 2021).

We have recently started a machine-learning exercise to
determine the merger history of galaxies using cosmological
simulation runs from IllustrisTNG (Vogelsberger et al. 2014;
Pillepich et al. 2018b; Nelson et al. 2019). In Ferreira et al.
(2020), we were able to separate mergers from other types of
galaxies in IllustrisTNG to a success rate of 90% up to z∼ 3.
The present paper is a follow-up to our first paper, in which we
now investigate whether it is possible to distinguish merging
galaxies from intensely star-forming galaxies. These galaxies
have the lowest success rates in classifications from Ferreira
et al. (2020). Our task in this paper is to correctly distinguish
mergers from star-forming galaxies by only using their
morphology and structure.

This paper is organized as follows: in Section 2 we describe
the data sets we constructed for this task, from IllustrisTNG
(simulations) and CANDELS (observations). A description of
the methods we used to train a deep learning model and how
we measure the structure of the galaxies in our samples is given
in Section 3. We present our results in Section 4 while a
discussion on the implications is laid out in Section 5. Finally,
we summarize and conclude our findings in Section 6.

2. Data

To test our new deep learning approach, we use simulated
galaxies from cosmological simulations post-processed with
the SKIRT (Camps & Baes 2015, 2020) dusty radiative transfer
code. The simulations are based on IllustrisTNG (Section 2.1),
which are used for the construction of the training sample for a
convolutional neural network (CNN) that is subsequently
applied to observed galaxies from the CANDELS fields
(Section 2.3). Our sample definitions for post-mergers and
star-forming galaxies are given in Section 2.2. We discuss the
pipeline used to generate CANDELIZED mock images from
IllustrisTNG in Section 2.4.

2.1. IllustrisTNG

IllustrisTNG is a suite of cosmological, gravo-magneto-
hydrodynamical simulation runs with a diverse set of particle
resolutions. From highest to lowest resolution, simulations
were realized in three comoving simulation boxes of 50, 100,
and 300Mpc h−1 length size, aptly named TNG50, TNG100,
and TNG300 (Marinacci et al. 2018; Naiman et al. 2018;
Nelson et al. 2018, 2019; Pillepich et al. 2018a, 2019; Springel
et al. 2018).
Our analysis makes use of the TNG100-1 simulation, which

has proven to be a good compromise between resolution and
volume.4 TNG100 has already been used extensively in studies
that analyze galactic morphologies and structures, including the
comparison between simulations and observations (Huertas-
Company et al. 2019; Blumenthal et al. 2020), and the use for
deep learning (Wang et al. 2020; Bickley et al. 2021; Bottrell
et al. 2022). Specifically, Zanisi et al. (2021) showed that
TNG100 galaxies reproduce observed objects well, especially
disk-dominated sources. While there are some deviations in the
small-scale structure of highly concentrated spheroidal sys-
tems, this is a minor issue in our analysis since they only make
up a small fraction of our sample. In addition, our galaxies are
resolution limited at the current redshift of interest, meaning
that tiny details of structure are not relevant in this analysis.
To counterbalance any limitations from resolution, we limit

our analysis to galaxies with M* > 109.5Me. Above this limit,
and at our explored redshift range z> 0.5, galaxies are
represented by thousands of stellar particles. This enable
sampling the simulated galaxies into resolutions comparable to
that of the observed CANDELS data. Specifically, the
gravitational softening length of the simulation, ò, is not a
limitation when compared to the HST Advanced Camera for
Surveys (ACS) and WFC3 cameras resolution.
This approach is a noticeable refinement to our previous

treatment in Ferreira et al. (2020), where the research question
did not demand the resolution of fine morphological features

4 We tested our selections on TNG50-1, but the resulting samples are too
small for deep learning training.
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like clumpy regions and tidal features, which are required for
the present analysis.

To select appropriate galaxies from TNG100-1, we isolate
galaxies with M* > 109.5Me, in the redshift range 0.5< z< 3.
To limit contamination in our sample, we use a minimum dark
matter to total mass ratio of

( )M

M
0.1, 1DM

total
>

as a way to avoid subhalos created as a result of disk
fragmentation. This means that at least 10% of the subhalo’s
mass needs to be in the form of dark matter. We acknowledge
that this could also inadvertently remove galaxies that had their
dark matter stripped; however, this number is small and does
not impact the final sample. This criteria removes ≈2% of
galaxies from the overall pool of available sources (subhalos)
in TNG100.

We also remove objects that are smaller than the ACS point-
spread function (PSF) size from the selection. To identify these
objects, we first convert the half-mass–radius R1/2 provided in
the simulation group catalogs in kiloparsecs, to a pixel scale
based on the cosmological model adopted by IllustrisTNG and
the ACS pixel scale

( ) ( )R
a z

h
R , 21 2Mass,pix 1 2Mass,kpc=

where a(z) is the angular size at z, and h is the Hubble
constant/100. Any galaxy with R1/2Mass,pix< 3 pix was then
filtered out from our selections. This step removes ≈3% of
galaxies from the total pool of available sources.

2.2. Sample Definitions

Our goal is to separate star-forming galaxies from post-
mergers at intermediate to high redshifts based on their
morphology. We define post-mergers as galaxies with at least
one major-merger event with a mass ratio

( )M

M
, 0.25, 32

1
m m=

where M1 and M2 are the stellar masses of the galaxy pair
involved in the merging event, ranked by their stellar mass,
respectively, with M1>M2. Galaxies are considered post-
mergers if they have coalesced into a single galaxy in the past
500 Myr, where a single galaxy is represented by a subhalo in
the simulation as identified by friends-of-friends algorithms
(Rodriguez-Gomez et al. 2015). This selection window time-
scale is motivated by the observability timescales of disrupted
structures caused by mergers identified by structure measure-
ments in IllustrisTNG (Whitney et al. 2021), and is higher than
what was previously used in Ferreira et al. (2020). We allow
post-mergers to have low sSFRs. Their asymmetric features
likely arise from the merging process rather than from star-
forming clumps. In contrast, noninteracting star-forming
galaxies are defined here as galaxies that have sSFRs above
the following threshold:

( )sSFR 10 yr 49.5 1> - -

and are not interacting with other galaxies. To isolate
noninteracting cases, we exclude any galaxy from the

simulation that had major or minor merger events (μ> 0.1)
around±1 Gyr of its current redshift. Minor mergers are
excluded completely from both definitions, and any conclu-
sions presented in this paper should be considered with this in
mind. Importantly, this selection is not intended to limit the
noninteracting cases to extreme starbursting episodes alone, but
to select noninteracting galaxies with sufficiently high sSFR to
produce clumpy and asymmetric features that could be
mistaken for merging signatures.
In summary, this selection results in a sample of ∼6000 post-

mergers and ∼110,000 noninteracting star-forming galaxies.
While this may be a realistic representation of actual fractions
(only ∼5% of the sample are post-mergers), training the
network requires a balanced data set. We thus use the post-
merger sample as the baseline and separate it in bins of redshift,
stellar mass, and size, randomly sampling the same number of
noninteracting galaxies within each bin. We remove bins
without adequate matched numbers of star-forming galaxies.
This becomes noticeable in the higher mass bins where post-
mergers dominate and very few star-forming galaxies are
present.
After matching the samples, we count ∼4000 galaxies in

each class as our final sample. A summary of this sample
separated by class and redshifts is available in Table 1. The
distribution of redshifts, star-forming rates, stellar masses, and
stellar half-mass–radius is shown in Figure 1 for post-mergers
in red, and star-forming galaxies in blue. Both classes have
very similar physical properties, with a small excess of large,
passive and massive post-mergers in comparison to the star-
forming galaxies. Additionally, the top-right and bottom-right
panels of Figure 1 show the time since the last major-merger
event, τ, and the mass ratio, respectively, for post-mergers. The
nature of the distribution for τ arises from the average time
between snapshots in the simulation of around ∼0.15 Gyr. This
timescale represents one to three snapshots after the coales-
cence of stellar masses.

2.3. CANDELS Fields

One of the main goals of this work is to predict star-forming
and post-merger galaxies in the observed CANDELS imaging
data (Grogin et al. 2011; Koekemoer et al. 2011), which
comprises high-quality HST observations from COSMOS,
UDS, EGS, GOODS-South, and GOODS-North (Grogin et al.
2011; Koekemoer et al. 2011). CANDELS data has been used
extensively for galaxy merger studies, with estimated merger
rates up to z∼ 6 (e.g., Mantha et al. 2018; Duncan et al. 2019;

Table 1
Summary of the Initial IllustrisTNG Sample

Redshift Post-mergers Star-forming Total

0.5 � z < 1.0 1214 1167 2381
1.0 � z < 1.5 1082 1140 2222
1.5 � z < 2.0 847 881 1728
2.0 � z < 2.5 589 556 1145
2.5 � z < 3.0 333 321 645

Note. The numbers in this table represent the sample before each galaxy was
post-processed with SKIRT and CANDELIZED mocks pipeline (see the text
for details), during which each image was augmented by 20 for four
orientations and five different fields.
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Whitney et al. 2021). Importantly, CANDELS also provides
visually classified morphologies (Kartaltepe et al. 2015), as
well as photometric redshifts, star formation rates, and stellar
mass estimates (Conselice et al. 2007; Duncan et al.
2014, 2018a, 2018b, 2019) from spectral energy distribution
(SED) fitting, essential for creating matched samples. Stellar
masses are estimated within a 0.2 dex systematic uncertainty,
and the outlier fraction of photometric redshifts is smaller than
5%. We do not account for these uncertainties directly in our
methods, but we refer the reader to the detailed discussion on
the uncertainties associated with these physical measurements
in the aforementioned references. Furthermore, the depth of the
wide field data is comparable to the detection limit of galaxies
in the IllustrisTNG simulations in the stellar mass range
studied here.

To select CANDELS galaxies, we first remove all proble-
matic objects according to their quality flags as recorded in the
photometric catalog and in the Kartaltepe et al. (2015) catalogs
to avoid edges, artifacts, and stars. Following Huertas-
Company et al. (2016) and Kartaltepe et al. (2015), we then
select galaxies with H-band magnitudes H< 24.5 mag.

Because this cut can bias our sample against extended sources,
we also include a signal-to-noise ratio (S/N) lower limit of S/
N> 50 to exclude any compact source with only a few bright
pixels. This magnitude cut removes 1074 sources, while the S/
N cut further removes 430 sources. Then we proceed with the
same cuts we used to select IllustrisTNG galaxies, using
0.5< z< 3 and M* > 109.5Me. We apply a final cut using the
asymmetry (A> 0.1; Section 3.3) to remove regular unambig-
uous galaxies with no apparent disturbed or asymmetric
features. This ultimately results in a sample of 23,494 galaxies
from all of the CANDELS fields combined.
Finally, we produce cutouts for I814, J125, and H160W bands

centering on each selected CANDELS galaxy, each with a field
of view of 50 kpc× 50 kpc, using photometric redshifts from
Duncan et al. (2019), preserving relative sizes between
galaxies. Importantly, this selection does not rely on size
measurements that could easily be spurious in interacting or
merging galaxies. We do not find any bias in our classifications
that could be attributed to small changes of the field of view
caused by the photometric redshift uncertainties.

Figure 1. Physical properties of the 8000 IllustrisTNG TNG100-1 selected simulated galaxies. For both types of galaxies, we show distributions for redshifts (top left),
star formation rates (top middle), stellar masses (bottom left), and stellar half-mass–radius (bottom middle) in red for post-mergers, and blue for star-forming galaxies.
Distributions agree in general, with a small excess of stellar mass and size for the post-mergers. The time since the last major merging event and the mass ratio, μ,—
properties unique to the post-mergers—are shown in top-right and bottom-right panels, respectively.
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2.4. Pipeline to Produce CANDELIZED Mocks

In order to guarantee realistic representations of CANDELS
galaxies in the simulated sample, we must include instrumental
and cosmological effects to the images of the IllustrisTNG
galaxies. An overview of the steps is shown in Figure 2 and is
detailed in this section. IllustrisTNG data holds information on
the stellar, gas, and dark matter particles for each source. Each
particle represents a large physical region that can be described
by rich stellar populations, which vary depending on age, mass,
and metallicity. The resampling of the star-forming regions is
particularly important to avoid problems with the coarse
representations (Camps et al. 2016; Trayford et al. 2017).

To create mock broadband images, we thus process each
stellar particle with a population synthesis model following the
recipes from Trayford et al. (2017) and Vogelsberger et al.
(2020). This entails post-processing the simulation data with
the Monte Carlo dusty radiative transfer code SKIRT (Camps
& Baes 2015, 2020).

Each stellar particle in the simulation is considered as a
single stellar population with GALAXEV (Bruzual &
Charlot 2003) or MAPPINGSIII (Allen et al. 2008) SEDs
based on its stellar mass, absolute metallicity, and age. We
choose to adopt these particular templates because, first, they

are implemented in SKIRT and, second, they had been tested
previously in similar pipelines to generate mock observations
from cosmological simulations (Trayford et al. 2017; Rodri-
guez-Gomez et al. 2019). Finally, the templates of Bruzual &
Charlot (2003) are also those used to derive stellar masses and
star formation rates for all of the CANDELS fields in Duncan
et al. (2019) that are used in this study.
To account for the fact that each stellar particle represents an

extended area (rather than treating them as a point source), we
model the particles with a smoothing length of a truncated
Gaussian emissivity profile equal to the distance to its 64th
neighbor particle (Trayford et al. 2017). We then define a grid
of wavelengths covering all spectral features we want to probe
within the HST filter response functions, similar to the grid
used in Trayford et al. (2017). For each wavelength bin of this
grid, we launch 106 photon packets, assuming isotropic
emission until they reach the virtual detector.
This process produces IFU data cubes over the SKIRT

wavelength grid, which we then reduce to broadband images
with the same properties as the CANDELS HST images.
SKIRT’s reference frame used to generate the data cubes is
located at a distance of 10Mpc (initial redshift z0) of the
sources. We must therefore shift the IFU data to each target’s

Figure 2. Example of the processing steps of our mock pipeline. (a) Noiseless F814W broadband image generated from the simulated galaxy data cube with
0 03 pix−1 pixel scale. (b) The same image after rebinning from z = 0.5 to z = 0.6. (c) Image convolved by the HST F814W PSF. (d) Image with Gaussian noise
added. (e) Image added on top of a random patch of the sky within a CANDELS field with no neighboring sources. (f) Image added randomly to a patch of sky with
other sources in the field of view. As this patch of the sky is randomly selected, all final images have varying levels of contamination from nearby sources. We
quantify this by the total flux in the sky patch before adding the simulated source to it.
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redshift, zt, by (1+ zt) while dimming its flux by

( ) ( )
f
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z
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t
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= + -
⎜ ⎟
⎛
⎝

⎞
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due to cosmological dimming (Hogg 1999; Equation (15)).
Next, we convolve the IFU data with the broadband filter’s
response functions for I814, J125, and H160W. The results are
clean, noiseless images from the simulation galaxies at
30 mas pix−1 (matching the ACS pixel scale) before adding
any PSF effects (Figure 2, images (a)–(c)). We rebin the J and
H bands from 30 mas pix−1 to the WFC3 images pixel scales of
60 mas pix−1. Examples for stamps where the background was
added can be seen in Figure 2, images (e) and (f).

Figure 3 gives randomly selected examples of galaxies in our
sample before any contamination from the CANDELS sky is
included, separated by their class.

The data-driven paradigm of deep learning methods imposes
high requirements on the amount of data necessary to train a
model that is capable of generalizing the training data well. In
practice, this means that for the majority of models, a
successful approach requires tens, hundreds, or even millions
of examples. We are far away from these numbers in
cosmological simulations. Our initial selection results in a
balanced set of ∼4000 examples of each class (Section 2.1).
Fortunately, in the case of galaxy images, there are ways to
increase the initial data set by exploiting aspects of the final
image that do not depend directly on the simulated galaxy. In
our case, we apply data augmentation to our data set in three
ways outlined below. An example of this approach is shown in
Figure 4, following the same galaxy in each possible
combination of orientation/field.
First, since IllustrisTNG provides the 3D distribution of all

particles associated with a galaxy, we generate each galaxy
with different line-of-sight projections, treating each new

Figure 3. A random selection of IllustrisTNG simulated galaxies in our test sample; shown are post-mergers (left) and star-forming galaxies (right), with their
redshifts, SFRs, and stellar masses printed in each stamp. Images are ordered from left to right in redshift, and top to bottom in SFR. For post-mergers, we also display
the time since merger, Tm, and the mass ratio μ. All stamps use a square-root normalization.
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representation as a new galaxy. We select four different
projections, three aligned with the axis of the simulation, XY,
XZ, and YZ, respectively, and a fourth line of sight aligned with
one octant of the simulation cube.

Second, each CANDELS field has unique observational
properties (e.g., different noise levels, and depth). We exploit
this aspect and reproduce each of the different orientations from
the previous step on top of a random patch of sky of each
CANDELS field, taking care to use appropriate noise levels for
the simulated galaxy. To find empty patches of sky, we
randomly sample the R.A. and decl. within each field, and make
a large cutout of the area that is four times larger than the final
size of the cutout. Using positions given in the CANDELS
catalogs, we then identify all sources within this cutout and
reselect a new R.A. and decl. location within the cutout that does
not centrally overlap with another source. We allow some degree
of overlapping source, but require a unique central position. We
do this interactively until a patch of sky that matches all of above

criteria is found. This, combined with all of the orientations,
augments our data set 20 times. In addition, this also helps the
network to generalize the impact of contamination from
neighboring sources, as the same galaxy in one field might be
isolated in its cutout, but in a denser environment in another.
Finally, we apply random flips, rotations, and small zoomed-

in/zoomed-out regions around the central source on the fly
during training as a regularization technique. This does not
increase the overall size of the sample, but at each training
epoch, the network sees different realizations of the same
sample.
Overall, our sample increases from ∼8000 examples to

∼160,000. However, having multiples of similar galaxies in
our data set can result in overfitting. To reduce this risk, we do
not allow different realizations of the same galaxy to fall in
both the training sample and the test sample. This ensures that
testing and validating are performed on unique data sets.

Figure 4. Demonstration of the augmentation pipeline for one random galaxy from TNG100-1 (ID = 192802, z = 0.55, at different orientations). We increase our
sample by augmenting the data set, reproducing it in four orientations (rows) in each of the CANDELS fields (columns). The simulated galaxy is placed in a random
patch of the sky in the CANDELS fields and thus can have other sources in the final cutout. The amount of contamination from neighboring sources varies widely due
to the random sampling of the background described in Section 2.4. This contamination is quantified by the overlapping percentage, Θ, and the average flux of the
background patch, BGflux.
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2.5. Contamination Quantification

Providing realistic levels of contamination and the inclusion
of neighboring sources are some of the most important
requirements for a good generalization between samples of
simulated galaxies and real observations (Bottrell et al. 2019).
In an update to what was done in Ferreira et al. (2020), we
included realistic contamination in our IllustrisTNG sample, as
described in Section 2.4. By comparing clean galaxy realiza-
tions to their respective background-added images, we can thus
test how our methods behave when faced with a variety of
contamination levels, drawing direct conclusions for real world
applications. We quantify the degree of contamination in each
image using two measurements, which are also listed in
Figure 4.

First, we define how much of the galaxy is covered by a
background source. We call this the overlapping percentage, Θ.
For this, we measure segmentation maps both for the central
source and all background sources of each image stamp. Θ is
the percentage of the segmentation map of the central galaxy
that is covered by segmentation map(s) of background sources
and ranges from 0%, for no overlap, to 100%, where the central
galaxy is completely covered by another galaxy in the field.

Second, we estimate the average flux (per pixel) of all
background sources, BGflux, by averaging the flux of the
sources within the segmentation map over its area. BGflux

values are given in units of e s−1 pix−1. This ranges from
BGflux∼ 0, where there is no apparent or very faint source in
the background, to values that are comparable to or even higher
than the flux of the central source. Very high values may be due
to bright neighboring sources that outshine the central galaxy.
Stars can also be identified by this method.

We use the overlapping percentage, Θ, and the flux of
background sources, BGflux, to define galaxy images with low
contamination. Figure 5 shows the parameter space formed by

these two measurements for the entire sample of ∼160,000
simulated and candelized images. The blue box framed by the
dashed line defines a region of galaxies with low contamina-
tion,

( )15%, BG 10 e s pix , 6flux
1.5 1 1Q < < ´ - - -

which can be considered as a conservative choice. We find that
∼90% of our sample is located in this region. We do not
remove the remaining 10% of the galaxies from our sample,
because such highly contaminated cases will also be present in
observations. We use these contamination estimates to under-
stand how our methods are impacted by it.
These two properties form a simple and powerful way to

characterize the contamination of our sample, as they control
different contributions to contamination. Because these are
challenging to measure directly in real CANDELS observa-
tions, we trained a deep learning model to predict the same
values in real images. We describe this exercise in the
Appendix. By inference, any discussion based on contamina-
tion measurements in our simulation sample is also valid for the
CANDELS observations.

3. Methods

We use a deep learning framework with a CNN based on
Ferreira et al. (2020) but with significant updates related to the
improved and more robust data pipeline that was discussed in
Section 2.4. In this section we describe our deep learning
analysis (Section 3.1), where we also highlight the improve-
ments to Ferreira et al. (2020). In Section 3.2, we discuss how
to avoid overfitting due to the augmentation of the TNG
sample, which was part of our sample pipeline. We further wish
to compare the resulting classifications to “traditional”
classifications. We thus measure nonparametric morphology
indices, structural parameters, and Sérsic profiles for both the
TNG sample and the CANDELS sample with MORFOME-
TRYKA (Ferrari et al. 2015; Albernaz Ferreira & Ferrari 2018;
Lucatelli & Ferrari 2019), for which we provide a brief
overview in Section 3.3.

3.1. Deep Learning Classifications

We employ neural networks to forward model the simula-
tions into the observational domain. The neural network takes
galaxy images as input and outputs a probability associated
with its classification, in this case whether it is a post-merger or
a star-forming galaxy.
Neural networks are known for being able to approximate

complex functions where no analytical approach is feasible,
based on the universal approximation theorem (Lu et al. 2017).
Deep neural nets combine several layers of nodes (neurons) in a
feed-forward fashion, mapping inputs to outputs using non-
linear activation functions. As a data-driven method, the
underlying rules are not explicitly programmed into the
network but learned from pattern recognition on the relation-
ship between inputs and outputs of data. These rules are found
by minimizing a loss function between the true outputs and the
predicted outputs. It is optimized by adjusting the weights and
biases of the network so that the loss function reaches a
minimum.
A CNN is an end-to-end method, where the most meaningful

spatial features are also learned from the data itself through
convolution operations. These features are then combined for a

Figure 5. Contamination characterization for 162,000 IllustrisTNG simulated
images in our sample. We show the logarithm of the average flux per pixel of
the background measured in each cutout, ( )log BGflux vs. the overlapping
percentage, Θ, which indicates how much the central galaxy segmentation map
is covered by the segmentation map of the sources in the background. We
define a conservative region of low contamination shown by the dashed line
and blue area, which contains 90% of the whole sample. Every point represents
at least one image.
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classification task, producing the desired outcome based on the
input.

In this work, we use an improved version of the CNN
architecture described in Ferreira et al. (2020). This consists of
a feed-forward network with an input image size of 128× 128
pixels, where the number of convolutional blocks, convolu-
tional layers, fully connected layers, number of filters, and
kernel sizes, are all defined by the following hyperparameters:

1. number_conv_blocks define the number of convolu-
tional blocks, each will probe features of different scales;

2. number_conv_per_block describe how many con-
volutions each block will have;

3. initial_number_filters define the starting num-
ber of filters, which are then doubled after each
convolutional block;

4. initial_kernel_size is the initial size of the
convolutional kernel, which is then reduced by two after
each block, down to a minimum of three;

5. n_fc_layers and size_fc_layers define the
number of hidden layers and their respective sizes,
respectively;

6. l2_regularization and dropout are the degrees
for each regularization technique used, respectively. l2
regularization is applied to all convolutional layers, where
dropout is applied only after the hidden layers.

The approach of variable depth and width for neural networks
is similar to the family of networks described in Tan & Le
(2019). However, in our case, the networks are smaller due to
the smaller image size used.

We modify the methods from Ferreira et al. (2020) to
improve generalization of our models. First, instead of using
two binary classification networks and combining their
predictions to construct a multiclass classification, we now
only use one network for the binary classification of post-
mergers and star-forming galaxies.

Second, we treat the learning rate differently. In Ferreira
et al. (2020), we monitored the learning rate decays during
training as a hyperparameter. Here, we use cosine annealing,
a type of learning rate scheduling (e.g., Loshchilov &
Hutter 2016, for an explanation) combined with a regular
stochastic gradient descent optimizer (Zhou et al. 2020). This
approach probes several different learning rate regimes during
training and uses cyclic resets that serve as a way to avoid

unstable local minima, improving generalization of the
solutions.
All hyperparameters are determined by a Bayesian optim-

ization process (The GPyOpt 2016), and the values for the best
model used here are summarized in Table 2. These values can
be directly used in conjunction with our public KERAS
implementation.

3.2. Augmentations and Overfitting Avoidance

To avoid overfitting pitfalls from using our CANDELS
background augmentation pipeline (Section 2.4), we train a
suite of models, one for each CANDELS field. Because we
have included areas of all of the CANDELS fields as
background in our training set, the network could potentially
memorize these and use them for predictions, impairing the
results. To ensure this is not the case, each CANDELS field has
two models—one at low redshift, 0.5< z< 1.5, and one at high
redshift, 1.5< z< 3.0—trained only with images augmented
with regions of the other four fields. All data sets (training,
validation, and test) are restricted in this way, guaranteeing that
any overfitting of the CANDELS background will have no
impact on the final application of our models.
An example of this process is outlined in Figure 6, for the

models that will be used for predictions in the GOODS-North
(GDN) field. The training set contains galaxies augmented with
the COSMOS (COS), GOODS-South (GDS), Extended Groth
Strip (EGS), and The UltraDeep Survey (UDS) fields while the
validation and test sets only contain galaxies from GDN.

Table 2
The Best Hyperparameters of Our Architecture Found through Bayesian

Optimization (The GPyOpt 2016)

Hyperparameter Best Model

batch_size 128
number_conv_blocks 3
number_conv_per_block 2
initial_number_filters 32
initial_kernel_size 11
number_fc_layers 2
size_fc_layers 128
l2_regularization 0.1
dropout 0.5

Note. These define the depth, width, and number of trainable parameters of our
architecture. This process is done using our set-aside validation samples. The
same model is used for all of the CANDELS data sets.

Figure 6. Schematics of the training pipeline leveraging multiple fields for
augmentation. Each pair of models, at low redshift (LZ), and high redshift
(HZ), is trained only with data that is augmented with the CANDELS fields that
are not the target for the model. In this example we show a model designed for
predictions on GOODS-North (GDN), trained on data augmented with
characteristics of all of the remaining four fields (GDS, COS, EGS, and
UDS). This model is also tuned and evaluated in validation and test sets that
have only of target CANDELS field augmentations, ensuring that no overfitting
of neighboring sources is part of the predictive process.
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This ensures that each model is tailored to one CANDELS
field and that no source from that particular field is used during
training, i.e., the network never sees any of its data. We further
apply a regularization method that makes use of random
rotations and image flips on the fly during the training time.

3.3. Galaxy Structure and Morphology

Nonparametric structure measurements of galaxies are a
traditional way to select galaxy mergers (Conselice et al. 2003;
Lotz et al. 2004, 2008; Snyder et al. 2017). To measure
structures for our sample, we fit Sérsic profiles to all galaxies,
using the software MORFOMETRYKA (Ferrari et al. 2015;
Albernaz Ferreira & Ferrari 2018; Lucatelli & Ferrari 2019).
MORFOMETRYKA measures asymmetry (A), concentrations
(C), the Gini coefficient (G), moment of light of the brightest
pixels (M20), normalized information entropy (H), and others. It
also measures several structural parameters and fits 1D and 2D
Sérsic profiles. For our purpose, we are particularly interested
in the asymmetry of the galaxies (A), as well as their
smoothness (S) since, together, they define a common criterion
for finding galaxy mergers:

( ) ( )A A S0.35 , .> >

The asymmetry is defined as the pixelwise normalized
difference between the original image and the same image
rotated by 180°,

∣ ∣
∣ ∣

A
I I

I
A ,180

bg=
S -
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where I is the image, I180 is the rotated image, and Abg is an
asymmetry term associated with the background (e.g.,
Conselice 2014). We measure Abg in each cell of a meshgrid
overlaid onto the image, omitting the area occupied by the
segmentation map of the central galaxy. We then use the
median of these values as Abg. This ensures a robust modeling
of the impact of the background in the resulting asymmetry of
the image (e.g., Tohill et al. 2021).

Finally, as we are especially interested in investigating the
nature of the peculiar/irregular cases, we follow the hybrid
method proposed by Bickley et al. (2021). We first filter out
regular symmetric galaxies from the sample using the
asymmetry (A). Instead of using the widely used cut for
selecting mergers (A> 0.35), we choose a conservative
selection of galaxies with,

( )A 0.1 .>

This will remove cases that are irrelevant for our research
question. These are galaxies without any disturbances that
would classify them as peculiar or irregular.
In Figure 7 we show the distribution of asymmetries A

measured with MORFOMETRYKA for star-forming galaxies (in
blue) and post-mergers (in red) for the simulated galaxies. The
distributions largely overlap, though asymmetries for post-
mergers are generally slightly higher. The difference between
both distributions is small enough that using solely the
asymmetry (A> 0.35) will produce samples with low com-
pleteness and purity, and given that the fraction of merging
galaxies is lower than regular star-forming galaxies, it is likely
that this approach produces very contaminated samples.

4. Results

Here we discuss what our trained models reveal, first from
the test data set of IllustrisTNG selected galaxies (Section 4.1),
and then applied to the CANDELS fields (Section 4.2).

4.1. Predictions within IllustrisTNG

We measure the performance of our trained models in our
prepared test sets. This is done by training the network with
two realizations of the test data sets, one with full HST-
matched properties including a CANDELS background patch
of the sky (Sections 2.4, 3.2, which we call realistic
mocks) and one with clean mocks with no sky noise and
contamination included (which we call pristine mocks).
For simplicity, in cases where we only mention the
realistic mocks without specifying which CANDELS
fields it was augmented with, we consider the average of all 20
models described in Section 3.2.
To compare between models and realizations of these data

sets, we use traditional performance metrics common for
evaluating machine-learning model performance. These consist
of receiver operating characteristic (ROC) curves and preci-
sion-completeness diagrams (Powers 2011), as well as
confusion matrices and their individual indices. Here, we are
dealing with a single binary classification task, such that the
probabilities of both classes respect the condition
P(NMSF)+ P(PM)= 1. Figure 8 displays the overall perfor-
mance for each network.
The left panel shows four different realizations of the

network for comparison purposes. The network is trained twice
to generate two different types of models: one labeled base
that consists of a network trained with the realistic
mocks, and a second labeled clean, which is trained with the
pristine mocks. Then, each model is applied to both data
sets. We do this to measure the best-case scenario within the
simulations, in the absence of any contamination or impact
from observational effects. Models trained with the realis-
tic mocks data set are plotted as solid lines, while models
trained with the pristine mocks data set are shown by

Figure 7. Distribution of asymmetries A measured with MORFOMETRYKA for
our TNG100-1 sample of galaxies. Star-forming nonmergers and post-mergers
are shown in blue and red, respectively. The dashed vertical line illustrates the
typical threshold (A > 0.35) used to classify galaxies as mergers.
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dashed lines. Furthermore, the color conveys the data set in
which the model was applied to, red and blue for pristine
mocks and realistic mocks, respectively. In addition to
these, a single parameter classifier based on the asymmetry (A)
is also evaluated and displayed as the green dotted line. The
area under the curve for each case can be found in the legend of
the left panel.

The different realizations of our network (base and clean)
cross-correlated with the realistic mocks and pristine
mocks data sets confirm the importance of realistic observa-
tional modeling of the mocks (discussed in detail by Bottrell
et al. 2019). This is especially important when crossing
domains from cosmological simulations to real observations.
Figure 8 shows that the base network performs just as well as
the clean network when applied to the pristine mocks,
resulting in similar performance metrics, as can be seen by the
overlapping red curves. However, the base network outper-
forms by ∼10% the clean network when applied to the
realistic mocks data set, as displayed by the difference
between the blue curves in Figure 8. This demonstrates that
correctly modeled observational features increase the general-
ization capabilities of the resulting models. A network that is
only trained on pristine images will perform poorly in the real
observations domain.

Importantly, all cases outperform the asymmetry by 20%–

30%. To some extent, this is expected because asymmetries of
post-mergers are lower than asymmetries of galaxies that are
just in the beginning of their merging event, including cases of
closely interacting galaxies. Evidently, the asymmetry function
is a much more general morphological descriptor while the
network is very specialized for the particular task of dividing
post-mergers from star-forming galaxies.

We compare the performance of asymmetry (A) and CNN
predictions further and show completeness-purity diagrams in
the right panel of Figure 8. It displays outcomes for our
ensemble of CNN models in the inferno color map, and for
the classic asymmetry parameter in the viridis color map.
The commonly used asymmetry value to classify galaxy

mergers is generally higher than (A> 0.35), which is shown in
the figure by the red patch over the curve. However, here we
compare an asymmetry classifier with our neural network to
exemplify how one can use the classification threshold of the
network as a way to control the trade-off between precision and
completeness. This is a useful feature when dealing with
unbalanced data sets, like the case for galaxy mergers.
The precision and completeness of the asymmetry behave in

unpredictable ways. First, the precision of the selection
increases slowly, then it decreases again around (A∼ 0.2),
and spikes above 0.6 precision for (A> 0.8), but with very low
completeness. We do not seek to redefine its use, but merely
contrast it with our deep learning approach, and show in broad
terms when it might fail when dealing with ambiguous
morphologies.
Our network is able to correctly identify post-mergers and

star-forming galaxies from the IllustrisTNG simulation in
∼80% of the cases. Figure 9 shows the confusion matrix for the
realistic mocks data set identified within each individual
CANDELS field, as well as for the pristine mocks sample,
where accuracy reaches ∼90%. All classifications are done
with the model trained with the realistic mocks. We
show true positives (TPs) and true negatives (TNs) in blue, and
false positives (FPs) and false negatives (FNs) in pink. The
CLEAN case represents the best-case scenario, where our
current method and data set achieves an even higher
performance of ∼91% TPs. A histogram of the redshift
distribution for each cell helps to visualize any possible biases
in redshift for the misclassification cases. This demonstrates
that the models are more likely to correctly classify low-
redshift galaxies, as they represent the majority of the samples.

4.1.1. Impact of Redshift

With the goal of applying our models to a wide range of
redshifts, we explore how our performance metrics are
impacted by increasing redshifts. Following the angular size–
distance-relation, galaxies at increasingly larger distances from

Figure 8. Performance metrics for our four trained models and comparison with the classical asymmetry index A for the simulated images. Left: ROC curves for both
the network trained with the pristine mocks data set (dashed lines) and with the realistic mocks data set (solid lines) applied to both data sets, color-coded
in red (pristine) and blue (realistic). The green dotted line indicates the ROC curve for a classifier using only the asymmetry A. The area under each curve
can be read in the label. Right: precision-completeness diagrams for the baseline network trained with the CANDELS matched mocks with asymmetry A, color-coded
by classification threshold levels for CNN (inferno) and asymmetry (viridis). A small region in red is printed over the asymmetry curve to point out the region
where the classification threshold is A > 0.35.
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low to intermediate redshifts will be greatly impacted by
decreasing resolution, which means that morphological features
are less well sampled. The right panel of Figure 10 shows this
effect on the performance of our models, where the scores of
the metrics gradually decrease with increasing redshift, going
from 85% accuracy at z = 0.5 to around 80% at z= 2. The
error bars—sampled from bootstrapping our testing samples—
follow accordingly.

4.1.2. Contamination Impact on Classification

We use the contamination estimates measured in Section 2.5
to find the contamination failure threshold of our classifier,
comparing performance metrics for subsets of the test set
selected in bins of both the overlapping percentage, Θ, and the
average background flux per pixel, BGflux, as shown in
Figure 10. The horizontal black dashed line at 0.8 shows the
accuracy of the model when evaluated in the complete test set
(80%). The metrics outperform this baseline in subsamples of
images with low contamination, decreasing as we increase each
of the contamination factors.

As described in Section 2.5, we select the point where the
average mean values for each metric fall below the dashed line,

which is our contamination cutoff, i.e.,

15%, BG 10 e s pix .flux
1.5 1 1Q ~ ~ - - -

Since it is not possible to directly measure the contamination
parameters in the real observations, we refer the reader to our
deep learning model trained to measure the contamination in
the Appendix.

4.2. Classifications on CANDELS

We use our network to carry out predictions in all real
CANDELS galaxies at 0.5< z< 3, M*� 109.5Me, S/N> 50,
and HMAG< 24.5. We filter out regular galaxies using a
conservative asymmetry cut of A> 0.1 as we are interested
only in asymmetric, irregular/peculiar systems. This selection
results in a sample of 23,494 galaxies, for which 14,410 have
visual classifications from Kartaltepe et al. (2015). Based on
the classifications from our networks, we separate these
galaxies in post-mergers and noninteracting star-forming
galaxies using a threshold probability of 60%. Galaxies with
probabilities 50%< P(PM) ∧ P(SF)< 60% are not considered
in any class. These represent 2125 galaxies (≈15%) of the
sample with visual classifications. Figure 11 showcases some
examples of galaxies in the CANDELS fields separated by the

Figure 9. Confusion matrix for all of the samples matched to CANDELS fields as well as the pristine sample (highlighted by gray shading in the bottom right).
These confusion matrices were evaluated with the ensemble of models trained with the CANDELS matched mocks. We show true negatives (TNs) and true positives
(TPs) highlighted in blue while the false negatives (FNs) and false positives (FPs) are shown in pink. The colors are based on the rate percentage, which is also printed
in each cell. All of the CANDELS fields have TP and FN rates of around ∼80%. For the pristine case, performance can reach as high as ∼90%, marking the
intrinsic limit of our method based on the data available. The histograms show the redshift distribution for the galaxies in each category, which demonstrate that it is
easier to recover correct classifications at lower redshifts.
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classification of our models. Post-mergers are shown in the left
panel, and star-forming galaxies are shown in the right panel.

To investigate how the relative number of post-mergers and
star-forming galaxies changes over cosmic time, we divide the
CANDELS sample in bins of Δz= 0.25. Figure 12 shows the
change of class fractions change with redshift. We do this
analysis in two mass regimes: low-mass galaxies with

( )M M9.5 log 10.0< <* (left panel) and high-mass systems
with ( )M Mlog 10.0 >* (right panel). Noninteracting star-
forming galaxies are shown by the blue circles while post-
mergers are shown in by the red squares. The upper dashed line
displays the fraction of galaxies that are not mergers, including
the star-forming galaxies and other low-probability cases not
included in any class.

For the lower-mass post-mergers, we see an upward trend
from ∼15% at z = 0.5 to ∼35% at z= 2, then a slight decrease
beyond z= 2. This is still consistent with a ∼35% fraction
within the error bars. The star-forming galaxies behave in the
opposite way, decreasing from ∼70% at z = 0.5 to around
∼55% at z= 2. This suggests that among asymmetric galaxies
of this mass range, there is an exchange between the classes as
we go to higher redshifts up to z= 2. This once again
emphasizes that classifications of local galaxies that are purely
based on the asymmetry (A) are highly contaminated with
noninteracting star-forming galaxies. However, this is miti-
gated at higher redshifts where we find more post-mergers.
Nevertheless, samples selected based on A are still dominated
by star-forming galaxies, albeit to a lesser extent.

Trends for higher-mass galaxies are substantially different
(right panel of Figure 12). While the post-mergers exhibit a
similar but steeper upward trend from ∼20% at z = 0.5
fraction to ∼50% at z= 2, the relative fraction of star-forming
galaxies shows a constant value of ∼50% at 0.5< z< 3, while
the fraction of the rest of the sample (dashed line) goes from
∼75% to ∼50%. This supports the idea that for more massive
systems, post-mergers at higher redshifts will eventually
become massive passive galaxies with no significant asym-
metric features.

At the highest redshift bins, the error bars are large, an
indication for our networks to perform less accurately above
z= 2. The fraction of post-mergers changes from 30% to
around 50% at z= 2. We therefore attribute the downtrend in
post-mergers beyond z= 2 to the poor performance of our
models at high redshifts and do not take this to imply a real
evolutionary effect.
We know that mergers are more common in the past (e.g.,

Mundy et al. 2017; Duncan et al. 2019; Ferreira et al. 2020;
Whitney et al. 2021), and here we find further evidence that this
is also the case for peculiar galaxies, indicating that the nature
behind these disturbed morphologies at earlier times can be
attributed to merging. To further investigate this, we select all
galaxies from Kartaltepe et al. (2015) that are classified as an
irregular/peculiar with f_Irr> 0.75, i.e., cases where more
than 50% of the visual classifiers agree on the classification,
and check how our networks perform on this subset. We
observe similar trends with redshift, with the fraction of post-
mergers increasing by ∼20% from z = 0.5 (∼30%) to z= 2
(∼50%), which agrees with the results for the complete sample.
Furthermore, our methods classify ∼50% of the galaxies
visually classified as potential mergers (f_merger> 0.75) in
Kartaltepe et al. (2015) as post-mergers. This is higher than
random, but does show the difficulty of obtaining exact
matches between mergers determined visually compared with a
quantitative process.

4.2.1. Visual Representation of the Classification

As a way to visualize how our networks organize the
features extracted from the images to produce the final
classification, we generate a 2D representation of the final
dense layer of the network corresponding to 128 neurons (128
dimensions) using a UMAP (Figure 13). The color code of the
points expresses their respective labels, red for post-mergers
and blue for star-forming galaxies. Then, we overplot the
positions assigned by the network for unlabeled CANDELS
galaxies. We also include some examples of images of
CANDELS galaxies close to their original position in this
manifold as a way to visualize how the morphologies change

Figure 10. Impact of contamination and redshifts on the performance of our models. The left and central panels show how accuracy, precision, and recall (blue
squares, orange circles, and green hexagons, respectively) behave for increasing percentages of overlap (Θ) and for increased background flux (BGflux). In the right
panel, we show how the accuracy, precision, and recall of our methods change in bins of Δz = 0.25 redshift. Error bars are sampled from bootstrapping the test
sample. The performance gradually decreases with z, decreasing below 80% beyond z = 2. There is a slight uptick at z = 2.5, but with large error bars. The cutoff at
z > 2.5 is the result of a combination of small sample size and redshift effects. The black dashed line at score = 0.8 indicates the overall accuracy of the model in the
complete test set.
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with its position. Each region in the parameter space of this
diagram is directly related to a probability. The maximum
probability is found in the extreme regions farther away from
the center, which represents how different these objects are for
the network. Images of galaxies that the network struggles to
identify are mixed in the bottom middle, representing the
region where both probabilities are similar P(PM)∼ P(SF).

5. Implications

Making use of the classifications from our deep learning
models, we first explore the impact of major mergers on
classifications above the star-forming main sequence (SFMS)
as parameterized by Schreiber et al. (2015; see Section 5.1).
We then discuss the structure of the two galaxy classes using
Sérsic profile measurements (Section 5.2). In Section 5.3, we
update classifications from Ferreira et al. (2020) with our new
specialized model, thus increasing certainty for previously
undefined classifications. We then add to the discussion

proposed by Bickley et al. (2021) regarding the Bayesian
limitations of classifying post-mergers by considering an
evolving merger fraction. We finish with Section 5.5, in which
we compare extracted features from real CANDELS galaxies to
features extracted from IllustrisTNG galaxies, as a way to
address the challenges of transferring the model from
simulations to real observations.

5.1. Classifications above the Star-forming Main Sequence

The influence of merging on the structure of peculiar/
irregular galaxies at intermediate redshifts (0.5< z< 3.0) is
directly related to the question of whether merging galaxies can
induce more starbursting episodes than galaxies evolving
secularly. Enhanced star formation can then lead to more
clumpy and asymmetric structures, and thus can impact the
morphological appearance of galaxies greatly. By examining
the SFMS of galaxies, one can investigate the nature of

Figure 11. Examples of CANDELS galaxies with A > 0.1 classified by our models into post-mergers (left) and star-forming galaxies (right), with their redshifts,
SFRs, and stellar masses. Images are ranked from left to right with increasing redshift and top to bottom with increasing SFR. All stamps use a square-root
normalization.

14

The Astrophysical Journal, 931:34 (22pp), 2022 May 20 Ferreira et al.



Figure 13. UMAP representation of the output from the last dense layer of the network. This representation shows the parameter space used for the network to
generate the final probability. Probabilities are highest in the extremes at the top, and uncertainty increases due to increased contamination as we go along this structure
toward the middle. The same random examples of CANDELS galaxies are placed close to their points in this manifold. Small regions identified by circles show the
clustering of nongalactic detections in this parameter space, located close to the region of uncertain classifications at the bottom of the UMAP. “Stars” are stars in the
center, and “Stars in FOV” correspond to stars at the edge of the stamps.

Figure 12. Relative class fractions for post-mergers and star-forming galaxies vs. redshift for real galaxies in the CANDELS fields. The fraction of post-mergers
increases from 30% at z ∼ 0.75 to 50% by z ∼ 2. Error bars are drawn from bootstrapping the samples and applying the underlying uncertainty associated with the
performance of our models, which decreases with redshift.
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galaxies with unusually high SFRs and the formation path that
resulted in this physical effect.

In order to investigate this, we select only galaxies in our
CANDELS fields sample that lie above the SFMS as
parameterized by Schreiber et al. (2015). We separate these
sources by stellar masses, redshifts, and their post-merger/star-
forming classification, measuring the mean distance to the
SFMS (ΔMS), as:

( ) ( ) ( )log SFR log SFR , 7MS MSD = -

where ( )log SFR is the log star formation rate of a particular
galaxy, and ( )log SFRMS is the parameterization from Schreiber
et al. (2015). The SFRs and stellar masses used here for
CANDELS galaxies were compiled by Duncan et al. (2019)
through SED fitting. We refer the reader to this publication for
further details. In Figure 14 we show the mean value of each
stellar mass bin, for four redshift ranges (one in each panel),
separated into star-forming and post-merger galaxies by our
classifications. For the 0.5< z< 2.5 redshift range (panels A,
B, and C), we do not find any impactful difference between the
classes and ΔMS, with all offsets well within the error bars.
However, for redshifts 2.5< z< 3.0, post-mergers with

( )M Mlog 10.0 <* are on average ∼0.1 dex higher than
star-forming galaxies of the same mass. The opposite is found
for ( )M Mlog 10.0 >* ; however, uncertainty is higher here.
Additionally, ΔMS increases with redshift in all cases, which
describes a larger scatter above the SFMS. However, given the
performance metrics of our models at high redshift (Figure 10),
we can not claim that this is a real effect. We stress that in
Figure 14 we only select galaxies above the SFMS, which is
why the distance is always positive.

In summary, locations of post-mergers and noninteracting
galaxies in the SFMS diagram are comparable, with the
possible exception at the highest redshifts. This suggests one of
the following: within our sample of CANDELS galaxies,
major-merging is not playing a major role in enhancing
starbursting episodes; or the timescale probed by our method is
too large and the SFR enhancement from the captured post-
mergers is short lived.

A relevant result was discussed in Hani et al. (2020), who
investigated TNG300-1 post-mergers at 0.0< z< 1.0. They
showed that post-mergers have enhanced sSFRs by a factor of
∼2, but that this effect decays on timescales of ∼0.5 Gyr,
which can be driven in part by minor mergers. Although we do
not find evidence for an enhancement in starbursts due to major
mergers, we do not rule out the importance of minor mergers to
this effect. We trained our models without the presence of
minor mergers, but we can not be sure that the star-forming
galaxies classified by our models are not in some cases
triggered by minor mergers.

5.2. Structure and Light Profiles

Our deep learning classifications relate to two different
formation pathways. These formation scenarios could result in
structures that differ for post-mergers and star-forming
galaxies. To verify if in fact their structures are diverse from
one another, we investigate light profile fitting by using Sérsic
profiles measured by MORFOMETRYKA.
Figure 15 shows the distribution of Sérsic indices for post-

mergers in red, and star-forming galaxies in blue. In general,
each class presents very distinct distributions: the post-mergers
have a mean Sérsic index n 1.8 0.6

0.7~ -
+ roughly representative of

a transition from disks to spheroids; star-forming galaxies have
systematically lower Sérsic indexes with n 1.1 0.5

0.5~ -
+ , which is

more consistent with disk-dominated galaxies. This offset of
∼1 dex increases for classification thresholds at higher values.
The average Sérsic profile (n) of post-mergers increases while
the distribution for star-forming galaxies continues with a
similar shape. This is quantitative evidence that (1) post-
mergers with higher light concentrations are more easily
separable from noninteracting star-forming galaxies, and (2)
these types of galaxies are intrinsically different from each
other.

5.3. Merger Fractions and Rates

By using the new classifications from this work, we can
update classifications from Ferreira et al. (2020) for cases
where the previous method had ambiguous probabilities for
some major mergers and nonmergers.

Figure 14.Mean distance to the SFMS (ΔMS) vs. log stellar mass in bins of redshift for CANDELS galaxies above the SFMS. Post-mergers are plotted as red squares,
star-forming galaxies as blue circles. Error bars are estimated using bootstrapping and show ±1σ. The classes are indistinguishable between 0.5 < z < 2, both increase
similarly in ΔMS as we increase redshift. This represents the increase in scatter above the main sequence. All galaxies included in this diagram lie above the SFMS, as
we are only interested in exploring the scattering above the SFMS. For the last redshift bin (2 < z < 2.5), there is a significant difference between the two classes both
at the low-mass end and at the high-mass end. At low masses ( ( )M Mlog 10.0 <* ), post-mergers scatter higher than star-forming galaxies with a difference of
ΔMS ∼ 0.1 dex. At high masses ( ( )M Mlog 10.0 >* ), the trend reverses and star-forming galaxies scatter higher with a ΔMS difference of ∼0.1 dex. However, care
needs to be taken in the interpretation of this trend as it could be spurious or insignificant given the error bars and the performance metrics of our models at high
redshift (Figure 10).
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Our new data set accounts for the effects of dust; it is not
limited by orientation and probes the rest-frame optical. Thus
we can check if any major-merger classifications in the
previous work can be attributed to noninteracting star-forming
galaxies or if any nonmergers can be reclassified as post-
mergers. This is done by comparing the probabilities for major
mergers and nonmergers, P(MM) and P(NM), respectively,
from Ferreira et al. (2020) to the new probabilities P(PM) and
P(SF). We update a nonmerger classification to post-merger if

( ) ( )P PPM NM ,>

and update the major-merger classifications to nonmerger if

( ) ( )P PSF MM .>

In other words, we reclassify galaxies from the previous sample
where our new method is more certain about its classification
than the previous one. This leads to ∼5% of major mergers
reclassified as star-forming nonmergers, which lowers the
overall merger fractions at lower redshifts and keeps it similar
at higher redshifts. In Figure 16 we compare the new merger
fraction measurements, in green, to the results from Ferreira
et al. (2020), in gray.

The updated fit of the cosmic evolution of the merger
fraction, fm(z)

( ) ( ) ( )f z z0.011 0.002 1 , 8m
2.71 0.31=  ´ + 

with errors estimated with bootstrapping, agrees with the
previous measurement in Ferreira et al. (2020) within errors. To
measure the galaxy major-merger rate (), we combine the
timescale (τm= 0.5 Gyr) used in our selection (Section 2.1)
with this merger fraction through

( )
f

. 9m

mt
=

The updated galaxy major-merger rate is

( ) ( ) z0.022 0.006 1 . 102.71 0.31=  ´ + 

We emphasize that this correction is a minor adjustment to the
galaxy major-merger rates presented in Ferreira et al. (2020),
which remain broadly consistent with each other.

5.4. Bayesian Analysis of Mergers

We now investigate the possible contamination in merger
samples that are selected through our method. This approach is
fairly direct and based on Bayesian statistics, and relies on
some understanding of the true intrinsic merger fraction and
how it evolves with time. It also requires that we have a good
understanding of the fraction of contamination in merger
samples (Bickley et al. 2021). The basic Bayesian formula to
understand this is given by the following:

( ∣ ) ( ∣ ) ( )
( )

( )M S S M
M
S

P P
P

P
, 11= ´

where P(M|S) is the probability of a merger, given that a
method used to select mergers, (S), identifies it as such. The
value of P(M) is the probability that an object is a merger
before a selection of merger is made. P(S) is the probability that
a galaxy is selected as a merger, whether a real merger or a
false positive. Because of the results of this paper, we know
that this last number is very likely not equal to unity. It in fact
can depend on various factors and methods of finding mergers.
We can write the probability P(S) as:

( ) ( ∣ ) ( ) ( ∣ ) ( ) ( )S S M M S NMP P P P P NM 12= ´ + ´

where NM standard for nonmergers, where P(S|NM) is the
probability of identifying correctly a nonmerger, and the value
of P(NM) is the probability that the galaxy is not a merger. We
can simplify this if we know, a priori, what the merger fraction
is based on previous work. If we denote the merger fraction as
fm, and the machine-learning probability of finding a merger/
nonmerger as pm and pmn, respectively, then we can rewrite

Figure 16.Major-merger fractions as a function of redshift. We show corrected
merger fractions from Ferreira et al. (2020) by reclassifying galaxies with our
new method in mergers and nonmergers, shown in green. The original
estimates are shown in gray.Figure 15. Sérsic index distribution for post-mergers and star-forming galaxies,

in red and blue, respectively. Post-mergers display more concentrated light
distributions with n 1.8 0.6

0.7~ -
+ while the star-forming galaxies have n 1.1 0.5

0.5~ -
+

consistent with disk-dominated galaxies.
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Equation (11), as

( ∣ )
( ( )( ))

( )M SP
p f

p f p f1 1
. 13

m

m m

m m nm

=
´

+ - -

Thus, for example, if the accuracy of a machine-learning
method for finding a merger is 0.9 and the accuracy for finding
a nonmerger is 0.9, and the merger fraction fm= 0.1, then the
probability that a galaxy identified as a merger is actually a
merger is P(M|S)= 0.5. This implies that even when the
accuracy of finding mergers and nonmergers is 90%, at the
lowest redshifts, where the merger fraction is low ∼10%, there
is still a 60% chance that an identified merger is identified
incorrectly as such. At higher redshifts, where the intrinsic
merger fraction is higher, the probability of finding a merger
correctly increases to ∼80% when the merger fraction is as
high as fm∼ 0.3.

We can generalize the equation for P(M|S), as a function of
z, by considering how the merger fraction fm evolves with
redshift, such that:

( ∣ )
( ) ( )

( ) ( ) ( ( ))( ( ))
M SP z

p z f z

p z f z p z f z
,

1 1
,m

m m

m

m nm

=
´

+ - -

( ) ( )f z f z1 ,m
m

0º +

which gives us a tool to understand how our classifications
might be contaminated by sample unbalance effects with
respect to redshift.

From this we can conclude that a significant fraction of
individual galaxies within the CANDELS imaging may be
incorrectly identified as either mergers or nonmergers. From
our results here, our method effectiveness for correctly
classifying mergers increases from ∼40% at z∼ 0.5 to ∼70%
at z∼ 3. This is likely what can account for some of our
misidentified galaxies as discussed in Section 4 when
discussing the success of our method of separating star-forming
systems from those that are undergoing mergers.

These are conservative estimates that do not include the fact
that we pre-select CANDELS galaxies based on their
asymmetry. This should increase P(M|S, z) further since fm is
higher among galaxies with A> 0.1.

5.5. On Domain Adaptation Issues

There is a growing concern on the applicability of
simulation-trained deep learning models when applied to an
intrinsically different domain. For us, this is the case with going
from cosmological simulations to real observations. When
transferring from one domain to another, deep learning models
might fail due to relying too much on domain-specific features.
Several techniques were developed to address this problem,
focused on forcing neural networks to learn domain invariant
features, leading to more robust models. Ćiprijanović et al.
(2021) showed that adopting techniques for domain adaptation
could increase model performance when applying to the target
domain by 20%.

In our case, the source domain comprises the IllustrisTNG
galaxies and the target domain comprises the CANDELS
observations. To check if we need to apply domain adaptation
techniques to this particular problem, we used uniform
manifold approximation and projections (UMAPs; as described
in Section 4.2.1; McInnes et al. 2018) to reduce the high
dimensional space generated by the features extracted by our

network to a 2D-space that is easy to visualize.5 Then, for each
of our trained models, we compare whether the features
extracted by the network show similar distributions for Illustris
and CANDELS galaxies. In Figure 17 we show UMAPs for
each of the CANDELS field models, for low redshift (left) and
high redshift (right), color-coded by their class in the case of
Illustris and in black for real CANDELS galaxy images. As can
be seen, these distributions of simulated galaxies and real
observations are clustered together, with very few outliers not
following the main cluster. Additionally, we can see that each
class forms its own cluster, with overlapping regions, showing
that features between classes are distinct and in general not
domain specific.6

We attribute the generalization success of our models to our
mock data pipeline, which is tailored to mimic each individual
CANDELS field with maximum fidelity—with their instru-
mental and observational features. Also augmentations with
patches of the sky from CANDELS introduce real observations
into our source domain, which not only make our training sets
big (∼140.000 images) but also help with domain confusion
within the network. Thus, we do not include any domain
adaptation process in our pipeline.

6. Summary

To shed light on the nature of peculiar/irregular objects at
intermediate to high redshifts, we have constructed a frame-
work based on forward-modeling of cosmological simulations
with deep learning algorithms, which allows classifications
with physically motivated labels based on the formation history
of galaxies.
We used data from the IllustrisTNG TNG100-1 simulation to

create realistic mocks of galaxies with CANDELS-like proper-
ties, including a full radiative transfer treatment with SKIRT
for two specific classes of galaxies: post-mergers and
nonmerging star-forming galaxies. These are selected so that
their main difference is their formation history.
We produced a data set of ∼160,000 images of simulated

IllustrisTNG galaxies with realistic visual properties that mimic
CANDELS observations in the redshift range 0.5< z< 3.0.
The images are used to train deep CNNs to distinguish between
formation histories of post-mergers and star-forming galaxies.
The main conclusions drawn from this work are summarized as
follows:

1. The classifier network combined with our new data set
produces classification models with a balanced perfor-
mance of ∼80% accuracy, precision, and completeness
when applied to a single-band imaging data set, out-
performing the asymmetry (A) by at least 25% within the
simulated data. Additionally, for pristine images without
any contamination and observational effects, the theor-
etical limit of our model is ∼91% accuracy. This is
evidence that using the asymmetry (A) alone for
ambiguous morphological cases might generate highly
contaminated samples.

2. We define two new contamination indicators, the over-
lapping percentage, Θ, and the average flux of the

5 We also tested with t-SNEs with similar results.
6 We also tested generating random noise images to check their position in
this parameter space. As expected, they cluster away from the image regions,
forming their own outlier region, which is far from the main locus where
galaxies are found.

18

The Astrophysical Journal, 931:34 (22pp), 2022 May 20 Ferreira et al.



background sources, BGflux, by leveraging how simulated
galaxies are combined with true CANDELS background
sky patches. Θ controls how sources overlap and are
projected in the same stamp, while the BGflux value
probes the effect of the brightness of external sources on
the classification of the central object. These allow us to
explore in detail how deep learning classifications are
impacted by contamination. We show that both crowded
environments and projections and the relative brightness
of external sources to the central galaxy negatively
impacted our results. Based on this, we define quality
control limits to our approach within the CANDELS
fields as Θ∼ 10% and BGflux< 10−3 e s−1 pix−1.
Although not universal, these limits provide guidelines
for sample selection when applying our models to data.

3. By applying our model to real CANDELS observations
of galaxies with high asymmetries, we show that the
relative fraction of post-mergers to star-forming galaxies
increases with higher redshift for two mass regimes. For
low-mass sources ( ( )M M9.5 log 10.0< <* ), the post-
merger fraction increases by ∼20% within 0.5< z< 2.0,
while the fraction of star-forming galaxies decreases by
∼15% in the same redshift range. In the high-mass case
( ( )M Mlog 10.0 >* ), the post-merger fraction increases
by ∼25% at 0.5< z< 2.0, while the fraction of star-
forming galaxies stays broadly constant.

4. We explore the impact of major mergers on galaxies
located above the SFMS as parameterized by Schreiber
et al. (2015). We separate CANDELS galaxies above the
SFMS in the classes provided by our model and in bins of
stellar mass. At 0.5< z< 2.0, we do not find any clear
signs that major mergers play a critical role on the
scattering above SFMS, with similar trends for post-
mergers and star-forming galaxies. However, in the
highest redshift bin with good sample statistics
(2.0< z< 2.5), we see a post-merger driven SFR
enhancement at lower masses of about ∼0.1 dex.

5. We show that the light distribution parameterized through
Sérsic profiles of the CANDELS galaxies classified by
our models as post-mergers are intrinsically distinct from
those classified as star-forming galaxies. The star-forming
galaxies sample is dominated by disklike objects with an
average Sérsic index of n 1.1 0.5

0.5= -
+ while the post-

mergers have more concentrated light profiles corresp-
onding to higher central concentration with n 1.8 0.6

0.7= -
+ ,

with a long tail at higher Sérsic indices. Moreover, when
we increase the probability threshold of our classifica-
tions to improve the purity of our selections, only the
post-merger distribution displays higher Sérsic indices.
Evidently, our model predicts that post-mergers are more
likely to be bulge-dominated galaxies.

Figure 17. Extracted features by our networks in a UMAP 2D representation. For each model in our ensemble, we generate a UMAP from the extracted features from
the last convolutional layer of the trained networks, both when applied to the Illustris galaxies, color-coded by the class, and to the unlabeled CANDELS galaxies
shown in black dots. Both Illustris and CANDELS extracted features populate the same region of this representation, showing that the features used by the network to
then perform the classification task are in general domain invariant. Additionally, both classes—post-mergers and star-forming galaxies—form separated clusters with
some overlapping. Classification could be done in this representation alone, but it is then better organized by the fully connected layers that combine these features to
produce the final output probability.
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6. By using our updated data pipeline and models
specifically tailored to distinguish between post-mergers
and star-forming galaxies, we revisit the merger
fractions and merger rates from Ferreira et al. (2020) by
correcting ambiguous cases. This leads to updated galaxy
merger rates that are slightly lower, but consistent
with previously reported rates:  0.022 0.006=  ´
( )z1 2.71 0.31+  .

7. We show that our models use similar features to classify
IllustrisTNG and real CANDELS galaxies, with no clear
discrepancy between the two domains. Using the features
extracted by the convolutional layers of our network, we
generate UMAPs, which visualize the complex parameter
space in two dimensions. Features of IllustrisTNG
galaxies and CANDELS galaxies overlap for all of the
CANDELS fields. Although the CANDELS galaxies do
not span the entire feature space of the IllustrisTNG
galaxies used here, they are contained within that feature
space.

Our machine-learning-driven approach provides a new way
to investigate the formation history of galaxies with models that
are informed by cosmological simulations. This includes the
use of the models themselves, and the application of these
models within accurate observing conditions.

Nevertheless, currently we are still limited to high-mass
major-merger cases due to resolution limitations from the
simulations and mass completeness from the observations. In
the upcoming years, combining the next generation of high-
resolution, small box simulations (e.g., TNG50-1, New
Horizons) with observational data from the James Webb Space
Telescope and Euclid Telescope will open a new window to
incorporate the effect of minor mergers and lower-mass
systems. Together, this will represent a major step toward
uncovering unresolved questions of galaxy evolution.
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ior—Brazil (CAPES). C.J.C. acknowledges support from the
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Science and Technology Facilities Council through grant No.
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Hen at the High Performance Computing Center Stuttgart
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Data Availability

Ready-to-use models are publicly available for anyone to
download.7 The post-processed IllustrisTNG data used for
training is stored in large TFRecords binary files and are
available upon request.

Appendix

Contamination Network

Based on the contamination measurements described in
Section 2.5, we devise a new neural network with the goal of
predicting the overlapping percentage (Θ) and the background
flux (BGflux) measurements from real observations. In this way,
contamination thresholds can be applied to real observational
samples in a similar way to what is done in the simulations.
The contamination quantification depends on our ability to

separate the background patch of the sky from the central
source, a feature that is only available when we are post-
processing simulated galaxies. In the case of real CANDELS
observations, directly measuring these properties is difficult,
because it is not straightforward to de-blend background/
foreground sources if they are projected on top of one another
or are close enough to be a potential interaction.
We use all of the contamination information from our data

pipeline (Section 2.4) to train a neural network to predict these
values from the final image, without separating source and
background. We use the same network architecture described
in this work, but we replace the final sigmoid layer with a linear
activation function, and change the loss function as well. The
result is a model that can be directly applied to real
observations, where the image is the input and the outputs
are values for Θ and BGflux.
Figure 18 displays the performance of these predictions

based on the original measurements, together with Pearson and
Spearman correlation indices. In general, the performance of
the model is in good agreement with the original measure-
ments, with rms errors on the order of∼ 10−3 for BGflux and
∼5% for Θ. These limits are well within the region of the
parameter space formed by these indices that we defined as a
low-contamination region. Apart from the small bias making
the predictions undervalue the truth values, the performance is
good enough to separate high-contamination cases from the rest
of the sample, which is ultimately our goal. In Figure 19 we
show examples of different combinations of Θ and BGflux.
Even though this network is designed to be used within the

context of this work as a way to reproduce contamination
quantification in the same manner as what was done with the
simulated images, we recognize that this can be useful for a
wider application. For example, this can be used as a fast
selection tool that can remove catastrophically bad cases from
big samples in just a couple of seconds; thus, it can be a
powerful tool for quick exploration. In this regard, we release
this model independent of the classification models presented
in Section 3.1.

7 https://github.com/astroferreira/FERREIRA2022
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Figure 19. Panel with cutouts of IllustrisTNG galaxies demonstrating four different selections on the Of and 〈fBG〉 parameter space. Isolated galaxies with almost no
noticeable contamination have low overlap and low background flux (top left). Low overlap and high background flux show cases where the central galaxy is
overshadowed by a bright companion, but with no overlap (top right). High overlap and low background flux show galaxies overlapping with similar brightness, cases
where projection effects can be misinterpreted as a major merger (bottom left). High overlap and high background flux show central galaxies with very large and bright
companions that extend over its segmentation map (bottom right). This illustrates how useful these two measurements can be for proper selections.

Figure 18. Performance of the contamination quantification network. (Top) The relationship between true and predicted values for BGflux, and (bottom) the
relationship between truth and predicted values for Θ. Pearson and Spearman correlation indices are displayed for each case, as well as the rms error.
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