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ABSTRACT We have developed a learning-based image transformation framework and successfully applied
it to three common image transformation operations: downscaling, decolorization, and high dynamic range
image tone mapping. We use a convolutional neural network (CNN) as a non-linear mapping function to
transform an input image to a desired output. A separate CNN network trained for a very large image
classification task is used as a feature extractor to construct the training loss function of the image trans-
formation CNN. Unlike similar applications in the related literature such as image super-resolution, none of
the problems addressed in this paper have a known ground truth or target. For each problem, we reason about
a suitable learning objective function and develop an effective solution. This is the first work that uses deep
learning to solve and unify these three common image processing tasks. We present experimental results to
demonstrate the effectiveness of the new technique and its state-of-the-art performances.

INDEX TERMS Deep learning, image downscaling, image decolorization, HDR image tone mapping.

I. INTRODUCTION
Many classic image processing tasks (Fig. 1) can be framed
as image transformation, where an input image is transformed
to an output image based on a given criterion. In this paper,
we consider three image transformation tasks: image down-
scaling, image decolorization (color to grayscale conversion),
and high dynamic range (HDR) image tone mapping. Down-
scaling image operations are widely used today to allow users
to view a reduced resolution image that preserves percep-
tually important details of its original megapixel version.
Decolorization aims to convert a color image to a grayscale
image which will preserve the visual contrasts of the original
color version. Another image processing task is HDR image
tone mapping. HDR images contain a much higher bit depth
than standard image formats and can represent a dynamic
range closer to that of human vision. The goal of HDR tone
mapping is trying to faithfully reproduce the appearance of
the high dynamic range image in display devices with limited
displayable range.

These three seemingly disparate image processing tasks
have a similar objective of outputting a reduced information
version which will maximally convey important perceptual
details of the original image. All these tasks face similar tech-
nical challenges. There are no known targets, an image can

be transformed to an arbitrary number of plausible outputs.
The transformation criterion, e.g., to preserve the perceptual
details and contrasts of the original image, etc., are qualitative
and subjective. There is no well-defined mathematical objec-
tive function to describe the transformation criterion and this
makes it difficult to find a canonical computational solution
to these problems.

In this paper, we take advantage of recent developments
in deep convolutional neural networks (CNNs) and have
developed a deep feature consistent deep image transforma-
tion (DFC-DIT) framework in which we train a deep CNN
to transform an input image to an output image by keeping
the deep features of the input and output consistent through
another pre-trained (and fixed) deep CNN. We show that
common traditional image processing tasks such as down-
scaling, decolorization and HDR tonemapping can be unified
under the DFC-DIT framework and produce state-of-the-art
results. To the best knowledge of the authors, this is the first
work that successfully uses deep learning to solve downscal-
ing, decolorization and HDR tone mapping problems in a
unified framework.

The new DFC-DIT framework is built on two crucial
insights, one into the visual appearance of an image and
the other into the properties of the deep convolutional
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FIGURE 1. Examples of classic image transformation tasks. Image downscaling (left) where we show results of our method, two
traditional methods (subsampling and bicubic) and a state-of-the-art SSIM-based method [1]. Decolorization (middle) where we
show results of our method, the Luminance channel and a state-of-the-art method [2]. HDR image tone mapping (right) where we
show results of our method and 3 methods from the literature [3]–[5].

FIGURE 2. The deep feature consistent deep image transformation (DFC-DIT) framework. A convolutional neural network transforms an input to an
output. A pretrained deep CNN is used to compute feature perceptual loss for the training of the transformation network.

neural networks. From image quality measurement literature,
it is known that the change of spatial correlation is a major
factor affecting the visual integrity of an image [6]. Research
in deep learning has shown that the hidden layers of a convo-
lutional neural network can capture a variety of spatial corre-
lation properties of the input image [7]. As one of the most
important objectives of many image processing tasks such as
the three studied in this paper is to maximally preserve the
visual integrity of the input, it is therefore crucial to keep
the spatial correlations of the output consistent with those of
the input. As the deep features (i.e., hidden layers’ outputs)
of a CNN capture the spatial correlations of the input image,
we can therefore employ a (pre-trained and fixed) CNN and
use its deep features to measure the spatial correlations of an
image. Therefore, the goal of preserving the visual integrity
of the input is equivalent to keeping the spatial correlations
of the output consistent with that of the input, which in
turn is equivalent to keeping their deep features consistent.

Based on these key insights, we have successfully developed
the DFC-DIT image processing framework (see Fig. 2).

The rest of the paper is organized as follows. We briefly
review related literature in section II. Section III presents the
DFC-DIT framework and its application to three important
image processing tasks, i.e., spatial downscaling, decoloriza-
tion and high dynamic range image tone mapping. Section IV
presents experimental results which show that DFC-DIT
stands out as a state-of-the-art technique. Finally we present
a discussion to conclude the paper.

II. RELATED WORK
A. IMAGE DOWNSCALING
Classical image downscaling techniques usually involve
processing the input images by applying a spatially con-
stant low-pass filter, subsampling, and reconstructing the
result to prevent aliasing in the reconstructed signal.
Approximations to the theoretically optimum sinc filter such
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as the Lanczos filter, and other filters (e.g., bilinear and
bicubic) have been developed and used in practice. However
the filtering kernels of these methods do not adapt to the
image content. A recent content-adaptive technique [8] is
proposed to overcome the above shortcoming by adapting
the shape and location of every kernel to the local image
content and demonstrates better downscaling results. A better
depiction of the input image was proposed [1] by formu-
lating image downscaling as an optimization problem with
the structural similarity (SSIM) [9] as the perceptual image
quality metric. In addition convolutional filters [10] are used
to preserve visually important details in downscaled images.

B. DECOLORIZATION
Decolorization aims to convert color images into grayscale
images while preserving structures and contrasts as much as
possible. The baseline method is to extract the luminance
channel of a given color image from the RGB channels.
However it could fail to express salient structures of the color
image because of the fixed weights to combine RGB chan-
nels. Other more advanced techniques are proposed to obtain
better results by either focusing on local contrasts or global
contrasts. Local contrasts [11], [12] use different mapping
functions in different local regions of the image, while global
contrasts [13]–[16] are designed to produce one mapping
function for the whole image. Reference [17] takes into
account multi-scale contrast preservation in both spatial and
range domain and uses bilateral filtering to mimic human
contrast perception. Reference [18] used a bimodal objective
function to alleviate the restrictive order constraint for color
mapping. Image fusion based strategy [19] is proposed for
image and video decolorization. In addition, color-to-gray
structural similarity (C2G-SSIM) index [20] is designed to
quantitatively evaluate the luminance, contrasts and structure
similarities between the reference color image and the corre-
sponding grayscale image.

C. HDR IMAGE TONE MAPPING
HDR image tone mapping aims to reproduce high dynamic
range radiance maps in low dynamic range reproduction
devices. Tone mapping operators can be classified as global
operators and local operators. Global operators [21]–[23]
usually employ the same mapping function for all pixels and
can preserve the intensity orders of the original scenes to
avoid ‘‘halo’’ artifacts, however the global operators will gen-
erally cause loss of details in the mapped image. In contrast,
local operators [4], [24], [25] use mapping functions which
vary spatially across the image.Most local operators employ a
pipeline to decompose an image into different layers or scales
and then recompose the mapped results from various scales
after contrast reduction. However, the major shortcoming of
local operators is the presence of haloing artifacts. In addi-
tion, global operator is used in the local regions to repro-
duce local contrast and ensure better quality [26]. In order
to quantitatively evaluate HDR tone mapping algorithm or
multi-exposure image fusion, several objective quality

assessment algorithms [27]–[29] are proposed recently.
What’s more, an up-to-date, detailed guide on the theory
and practice of high dynamic range imaging is included in
the book [30], which also provides MATLAB code for com-
mon tone mapping operators and TMQI index. In this paper,
we use their code to reproduce previous methods.

D. IMAGE QUALITY METRICS
The choice of image quality metric is essential for image
transformation tasks. Standard pixel-by-pixel measurement
likemean square error is problematic and the resultant images
are often of low quality. This is because the measurement is
poorly correlated with human perception and can not capture
the perceptual difference and spatial correlation between two
images. Better metrics have been proposed for image qual-
ity assessment in recent years. Structural similarity (SSIM)
index [9] is one of the most popular metrics, which computes
a matching score between two images by local luminance,
contrast, and structure comparisons. It has been successfully
used for image downscaling [1] and super-resolution [31].
As mentioned in the previous sections C2G-SSIM index [20]
and TMQI index [27] are commonly used objective quality
assessment for decolorization and HDR image tone mapping
algorithm.

E. RELEVANT DEEP LEARNING/CNN LITERATURE
Recently, there has been an explosion of publications on
deep learning/CNN, we here briefly review the most closely
related publications to our current work. A number of papers
have successfully generated high-quality images based on
the high-level features extracted from pretrained deep
convolutional neural networks. By optimizing individual
deep features [7], [32]–[34], better visual quality images
can be generated, which in turn can help understand the
learned representations of deep networks. Additionally [35]
have achieved style transfer by minimizing content and style
reconstruction loss which are also based on features extracted
from deep networks. Other works try to train a feed-forward
network for real-time style transfer and super-resolution [36].
Different loss functions are compared for image restoration
with neural networks [37]. In addition image-to-image trans-
lation framework [38] are proposed to generate high quality
images based on adversarial training.

It is worth noting that the downscaling problem studied
in this paper has the opposite goal to super-resolution. Deep
CNN based super-resolution training data has a unique cor-
responding target for a given input image. The downscaling
operation, however, there is no known target in the train-
ing data for a given input. Therefore, existing end to end
super-resolution learning [36], [39], [40] and other similar
CNN based image processing techniques such as coloriza-
tion [41], [42] cannot be directly applied to the problems
studied in this paper.

III. METHOD
We seek to train a simple convolutional neural network as a
non-linear mapper to transform an input image to an output
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FIGURE 3. Transformation neural network architecture for image downscaling, decolorization and HDR image tone mapping. (a) Image downscaling.
(b) Image decolorization. (c) HDR image tone mapping.

image following what we call the deep feature consistent
principle. The schematic is illustrated in Fig. 2. Our system
consists of two components: a transformation network TW (x)
and a loss network 8(x). The transformation network is a
convolutional neural network parameterized by weights W ,
which transforms an input image x to an output image x̂, i.e.
x̂ = TW (x). The other component is the loss network8which
is a pretrained deep convolutional neural network to help
define the feature perceptual loss function for training TW (x).
We feed both the original image x and the transformed image
x̂ to8 and compute the feature perceptual lossL(x, x̂). Train-
ing TW (x) is to find the weightsW that minimize L(x, x̂), i.e.

W ∗ = argmin
W

Ex[L(x,TW (x))] (1)

Equation (1) can be seen as an extension of the concept of
perceptual loss, e.g. [36] and others. However, the three new
applications we consider here are very different from those
studied by others. These extensions are non-trivial and non-
obvious; each requires in-depth understanding of the problem
and ingenuity that cannot be readily derived from existing
works. Unlike previous applications, none of our problems
has a known ground truth or target for a supervised learning
network. Instead, we have to reason about the suitable target
and develop solutions to construct the perceptual loss for each
application accordingly. In downscaling, we created a percep-
tual loss to match two images with different shapes (sizes).
In decolorization, we constructed a perceptual loss to match
two images with different number of color channels. In HDR
tone mapping, we introduced a perceptual loss to match two
images with different dynamic ranges.

A. DEEP FEATURE BASED FEATURE PERCEPTUAL LOSS
As alluded to earlier, the spatial correlation of an image is a
major determining factor of the visual integrity of an image.
The goal of image transformation in Fig. 2 and the tasks
in Fig. 1 is to ensure x̂ preserves the visual integrity of x. This
can be alternatively stated as making the spatial correlations
in x̂ consistent with those in x. Instead of using handcrafted

functions to describe an image’s spatial correlations, wemake
use of a pretrained deep CNN. The hidden layers outputs,
which we call deep features, capture the spatial correlations
of the input image.

Specifically, let 8i(x) represent the ith hidden activations
when feeding the image x to 8. If the ith is a convo-
lutional or ReLU layer, 8i(x) is a feature map of shape
[Ci, Wi, Hi], where Ci is the number of filter for the ith

convolutional layer,Hi andWi are the height and width of the
given feature map respectively. The feature perceptual loss
Li(x, x̂) for a given layer of two images x and x̂ = TW (x)
is defined as the normalized Euclidean distance between the
corresponding 3D feature maps. The final loss Li(x,TW (x))
is the total loss of different layers as follows.

Li(x,TW (x)) =
1

CiWiHi

Ci∑
c=1

Wi∑
w=1

Hi∑
h=1

(8i(x)c,w,h

−8i(TW (x))c,w,h)2 (2)

L(x,TW (x)) =
∑
i

Li(x,TW (x)) (3)

It is worth noting that8 is pre-trained and fixed during the
training of TW (x), it is used as convolutional filters to capture
the spatial correlations of the images.

B. TRANSFORMATION NETWORKS ARCHITECTURE
The transformation networks are convolutional neural
networks based on the architecture guidelines from
VGGNet [43] and DCGAN [44], and the details of
the architecture vary with different image transformation
tasks (Fig. 3).

1) IMAGE DOWNSCALING
For image downscaling we use strided convolutions to con-
struct the networkswith 4× 4 kernels. The stride is fixed to be
2 × 2 to achieve in-network downsampling instead of deter-
ministic spatial functions such as max pooling and average
pooling. The ReLU layer is used after the first convolutional
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FIGURE 4. Nearest neighbor upsampling for the transformed image. The
upsampled image contains the same amount of information as the
downscaled image and is the same size as the original input image.

layer as non-linear activation function. Thus after two strided
convolutions, the size of the input image can be downscaled
to 1/4. In order to compute the feature perceptual loss we
need to make sure that the transformed image and the origi-
nal image have the same shape by a predefined upsampling
method. In our experiments we apply a 2D upsampling of
a factor of 4 over every channel of the transformed output
(see Fig. 4), thus upscaling the downscaled image back to the
same size as the original input. The simplest nearest neighbor
upsampler is chosen to ensure the upsampled image has the
same information as the downscaled image. Thus we can
feed the upscaled version and the original image into the loss
network to compute the feature perceptual loss.

2) IMAGE DECOLORIZATION
The image decolorization transformation only affects the
color of the input images, and there is no need to incor-
porate downsampling architecture in the network. We use
3 × 3 kernels with 1 × 1 stride for all the convolutions.
In addition, each feature map of a given input is padded by
1 pixel with the replication of the input boundary before the
convolution operation. Thus the convolutional layers do not
change the size of the input image. Like the image downscal-
ing network we use ReLU layer after the first convolutional
layer, but only a single filter for the last convolution to
represent the transformed grayscale image. What we desired
is the deep feature consistency of the decolorized output and
the original image. We replicate the single channel of the
decolorized output to a 3 channel color image (3 channels are
identical), which is then fed to the loss network8(x) to calcu-
late the feature perceptual loss with the original input. This is
designed to ensure the replicated 3 channel color image have
the same amount of information as the decolorized output.

3) HDR IMAGE TONE MAPPING
The network architecture for HDR image tone mapping is
similar to the one used in image decolorization above. We use
replication to pad the input boundary, and all the convolu-
tions are 3 × 3 kernels with 1 × 1 stride. The difference is
that 3 filters are needed for the last convolutional layer for
reproducing a color image. The output layer is a scaled Tanh
layer, restricting the pixel value of the transformed image to
the displayable range [0, 255] from a high dynamic range.

During the training we seek the deep feature consistency of
the tone mapped and the original high dynamic range image.
Specific implementation details of each of the applications
are described in the experiments section.

IV. EXPERIMENTS
We present experimental results on three image transfor-
mation tasks: image downscaling, image decolorization and
HDR image tone mapping to demonstrate the effectiveness
of our method. We also investigate how the feature percep-
tual loss constructed with different hidden layers of the loss
network affects the performances.

A. TRAINING DETAILS
Our image downscaling and decolorization transformation
CNNs are trained offline using Microsoft COCO dataset
released in 2014 [45], which is a large-scale dataset con-
taining 82,783 training images. We resize all the image to
256 × 256 as the final training data, and train our models
with a batch size of 16 for 10 epochs over all the training
images. Once the transformation CNN is trained, it can be
used to perform downscaling or decolorization.

For HDR image tone mapping, the transformation CNN is
trained online, i.e., an HDR image is compressed using the
transformation CNN trained with its own data. The practical
consideration is that it is difficult to collect large enough
training dataset.With large enough collection of training data,
the model can also be trained offline.

For training, Adam [46] method is used for stochastic
optimization with a learning rate of 0.0002. A pretrained
19-layer VGGNet [43] is used as loss CNN 8 to compute
feature perceptual loss which is fixed during the training of
the transformation CNN. When constructing the feature per-
ceptual loss for a pretrained network, the first step is to decide
which layer (layers) should be used. Unlike image generation
works [7], [36] using ReLU layers, we use convolution layers
for feature extraction. This is because the ReLU activation
is just the corresponding convolutions output thresholded
at 0, the convolutions could contain more subtle informa-
tion when compared with ReLU output. Specifically we
experiment feature perceptual loss by using convolutional
layer conv1_1, conv2_1, conv3_1, conv4_1, conv5_1 and
conv123_1 for comparison. The convi_1 (i = 1, 2, 3, 4, 5)
and conv123_1 represent the five convolutional layers of
VGGNet and the combination of the first 3 layers respec-
tively. Our implementation is built on open source machine
learning framework Torch [47].

B. IMAGE DOWNSCALING
Image downscaling is trying to transform a high-resolution
input image to a low-resolution output image. In our exper-
iments we focus on the × 1/4 image downscaling similar
to previous works [1], [8]. This seemingly simple routine
image operation is actually a technically challenging task
because it is very difficult to define the correct low-resolution
image. Based on our DFC-DIT framework, we ensure that the
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FIGURE 5. A comparison of natural images downscaled by different methods. The results are downscaled by a factor of × 1/4 while the
original inputs are resized for better display. For each image, results of common filters such as Bicubic, Bilateral, Lanczos and
Subsampling are shown in the first row. Results of recent methods, generalized sampling [48], content-adaptive [8] and SSIM-based
downsampling [1] and ours are shown in the second row. Our conv123_1 results are produced by a model trained with a combined loss of
convolutional layers conv1_1, conv2_1, and conv3_1. The bottom row of the second image shows a local region of the downscaled image
by different methods. All the images are courtesy of [1]. The results are best viewed in native resolution electronically.

downsampled image and the original image will have similar
deep features which means that the output will maintain the
spatial correlations of the original image thus keeping the
visual integrity of the original image.

1) QUALITATIVE RESULTS
Although our network is trained on images of shape
256× 256, it can be adapted to any image sizes because of its
fully convolutional architecture. After training, we evaluate
our method on the testing images from [1]. We first show
the qualitative examples and compare our results with other
state-of-the-art methods. We then evaluate how perceptual
losses constructed at different convolutional layers affect the
performances.

Fig. 5 shows qualitative examples of our results, other
common techniques and state-of-the-art methods. We only
show results of downscaling by a factor of× 1/4, the original

images are resized for better display. We can see that bicubic
filter is known to lead to oversmoothing results and cannot
preserve fine structures such as the fence area highlighted by
the red rectangle (Fig. 5(b)). Other filters such as bilateral
filter and Lanczos filter achieve sharper downscaled results,
however these filters are also problematic. Bilateral filter can
lead to ringing artifacts (the hair in Fig. 5(a)), and Lanczos
filter could not preserve small-scale features such as the fence
area in Fig. 5(b). More advancedmethods such as generalized
sampling [48], and content-adaptive downscaling [8] and
SSIM-based downscaling [1] could produce better results,
but still cannot preserve all perceptually important details.
In contrast our method trained by a feature perceptual loss
constructed using layer conv1_1, conv2_1 and conv3_1 deep
features can capture important fine textures and produce bet-
ter transformed results, visually closer to the original high-
resolution inputs. From Fig. 5(b), the fine textures of the
fence area can be seen clearly in the downscaled image.
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FIGURE 6. A comparison of natural images downscaled with the DFC-DIT framework with different levels of feature perceptual loss. The
examples, from left to right, are × 1/4 downscaling results with perceptual losses computed with individual hidden layers of
VGGNet (from layer 1 to layer 5). The last column is the results based on a perceptual loss combining the first 3 layers.

FIGURE 7. A comparison of decolorized images by different methods. We compare our method trained with conv4_1 layer with standard luminance
and other recent methods [11], [12], [18], [49]. The C2G-SSIM index value (Q) [20] is also shown for each decolorized image. The results are best
viewed electronically.

Although simple (nearest neighbor) subsampling can also
achieve sharper images, the results are sometimes noisy and
suffer from aliasing (see the hair in Fig. 5(a)). Our algorithm
avoids both oversmoothing and aliasing problems and pro-
duces a crisp and noise-free image. These results demonstrate
that by keeping the deep features of the downscaled image
consistent with those of the original can indeed preserve the
visual integrity of the input.

2) DEEP FEATURE CONSISTENCY AT DIFFERENT LAYERS
Fig. 6 shows results of DFC-DIT downscaled images
using perceptual losses computed using conv1_1, conv2_1,
conv3_1, conv4_1 and conv5_1 layer of the VGGNet indi-
vidually. We find that keeping the deep feature consistent at
these individual layers can in general preserve the original
texture or content well. However for the high level layers,
the downscaled images could lose detailed pixel information
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FIGURE 8. A comparison of decolorization by our methods trained with different level feature perceptual loss. The examples are trained from
low level to high level layers in VGGNet. The C2G-SSIM index value (Q) [20] is also shown for each decolorized image. The results are best
viewed electronically.

such as pixel color. For example, results of conv4_1 and
conv5_1 in Fig. 6 have higher color contrasts. We also found
that by combining the first three layer deep features in general
works very well.

C. IMAGE DECOLORIZATION
Like image downscaling we also train a four-layer convo-
lutional network to transform color images into grayscale
images using the DFC-DIT framework. One of the major
problems in traditional approach to this task is that in iso-
luminant areas the color contrasts will disappear in the
grayscale image because even though the pixels have differ-
ent colors their luminance levels are the same. In our neural
network based nonlinear mapping framework, we enforce
deep feature consistency which means that the spatial cor-
relations of the color images are preserved in the grayscale
image. Thus even in iso-luminant regions, the color contrasts
will be preserved as grayscale contrasts.

1) EXPERIMENTAL RESULTS
Again, our fully convolutional neural network architecture
can be applied to process images of any sizes even though
the training images have a fixed size. Fig. 7 shows several
comparative results against standard luminance and recent
color to grayscalemethods [11], [12], [18], [49]. Our training-
based approach can preserve the color contrasts of the original
images, the grayscale images appear sharp and fine details are
well protected. In addition, we adopt C2G-SSIM index [20]
as the objective quality metric for quantitative evaluation.

C2G-SSIM index is designed to evaluate the luminance, con-
trast and structure similarities between the reference color
image and the decolorized image. The quality index values
are shown in Fig. 7 for each decolorized image. Furthermore,
a visual demonstration is shown in Fig. 9 where the bright-
ness indicates the magnitude of the local C2G-SSIM index
values. As it can be seen, the decolorized images converted
by our algorithm and [18] can better preserve the contrast and
structure in flat area, but stronger penalty (dark pixel in the
map) is given at several color edges.

It is interesting to note that unlike previousmethods, we did
not explicitly compute color contrasts and grayscale con-
trasts, instead we only enforce deep feature consistency of
the color and the decolorized images. From these examples,
we have shown convincingly that our DFC-DIT framework is
an effective decolorization method.

2) DEEP FEATURE CONSISTENCY AT DIFFERENT LAYERS
We also conduct experiments to evaluate how deep feature
consistency at different hidden layers of the loss network
affects the decolorization results. Converted grayscale images
produced by models trained with perceptual loss of differ-
ent hidden layers are shown in Fig. 8 and the C2G-SSIM
index are calculated for each images. Again we can see
that all the transformed images are able to reconstruct the
content of the original color image and preserve the con-
trasts. Compared to lower layers, the decolorized images from
higher layers generally have higher C2G-SSIM values and
do a better job at reconstructing fine details, especially the
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FIGURE 9. Decolorized images and their corresponding quality C2G-SSIM
index [20] maps. (a) is the reference color image. (b) and (c) are the
decolorized images produced by our algorithm and [lu2014contrast].
(d) and (e) are the corresponding C2G-SSIM index maps of (b) and (c)
respectively. For C2G-SSIM index maps, brighter indicates better quality.

contrast preservation that is desired. Specifically the results
from lowest layers, i.e., conv1_1 are similar to the luminance
channel (Fig. 7), isoluminant regions are mapped onto the
same output intensity and global appearance is not well pre-
served. Constructing feature perceptual loss from higher layer
is better for contrast preserving. However when using the
highest conv5_1 layer (Fig. 8), the contrast of the outputs is
too high that makes the decolorized images look unnatural.
Our best model is trained by using conv4_1 layer.

D. HDR IMAGE TONE MAPPING
Unlike image downscaling and decolorization where a single
model is trained offline using a large collection of training
images and used to process all testing images, we adapt one
network to a single HDR image due to the lack of large HDR
dataset available for training. This can be seen as an online
process where we use an HDR image’s own data to optimize
its own transformation function. It is important to note that
this approach is realistic in practice as the process only needs
the HDR input to produce its tone mapped output and there is
no need to use any other extra information. The only slight
disadvantage is that it requires online training the neural
network using an HDR image’s own data before outputting
the final tone mapped image. Comparing with training the
model offline using a large collection of training images, this
online approach will be slower because it needs to adapt the
neural network to the current testing image before producing
the output tone mapped image. In our implementation on
a machine with an Intel Core i7-4790K CPU and a Nvidia
Tesla K40 GPU, it takes around 20 seconds to tone map a
768 × 512 HDR image.
It is a common practice to process the HDR radiance map

in the logarithmic domain, we feed the logarithm of the

radiance signal to the transformation CNN. Dynamic range
compression is achieved by a Tanh function in the last
layer of the transformation network (Fig. 3(c)). In practice,
the dynamic range of the input HDR radiance signal is
compressed to the displayable range [0, 255]. Following the
principle of DFC-DIT, the HDR tonemapping transformation
network is optimized by enforcing deep feature consistency
between the transformation output image and the original
HDR radiance map.

1) RENDERING DISPLAY IMAGE
The output of the transformation network will have the cor-
rect dynamic range suitable for display, however, its color
may not be correct due to the nonlinear mapping operations
of the transformation CNN. We therefore need to render the
output of the transformation network to have the correct color
for display. As in other tone mapping method [23], the final
tone mapped image is rendered as

Rout =
(Rin
Lin

)γ Lout (4)

Gout =
(Gin
Lin

)γ Lout (5)

Bout =
(Bin
Lin

)γ Lout (6)

where Rout , Gout and Bout are the final tone-mapped RGB
channels, Rin, Gin and Bin are the original radiance values in
the corresponding HDR channels, and γ can be used to render
the correct display color. Lin and Lout are respectively the
luminance value of the HDR radiance map and the luminance
value of the transformation image by the transformation
CNN. According to the literature, γ should be set between
0.4 and 0.6 and we set it to 0.5 in all our results.

2) EXPERIMENTAL RESULTS
Fig. 10 and Fig. 11 display examples of tone mapping results
of some HDR radiance maps of real scenes that are widely
used in the literature, i.e., ‘‘Stanford Memorial Church’’ and
‘‘Vine Sunset’’. We compare our results with some of the
best known and latest methods in the literature including
Larson et al. [3], Expoblend [50], Lischinski et al. [51],
Reinhard et al. [25], gradient domain [5], fast bilateral fil-
tering [24] and Kim and Kautz [52]. In addition, TMQI
(tone-mapped image quality index) [27] is used for quanti-
tative comparison, which is a widely-used objective quality
assessment algorithm for tone-mapped images by combin-
ing a multi-scale signal fidelity measure on the basis of a
modified SSIM [9] and a naturalness measure on the basis
of intensity statistic of nature images. The corresponding
TMQI index value is given for each tone mapped image
in Fig. 10 and Fig. 11. We can see that our method is able to
render the images with excellent visual appearances to keep
tiny details and contrast of the radiance map and produce
high TMQI index values, which are at least as good as those
produced by the best methods.
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FIGURE 10. Stanford Memorial Church displayed using different methods with corresponding TMQI index value [27]. We show those of Larson et al. [3],
Expoblend [50], Lischinski et al. [51], Reinhard et al. [25], gradient domain [5], fast bilateral filtering [24] and Kim and Kautz [52]. Our results are based on
feature perceptual loss of 3 layers conv1_1, conv2_1 and conv3_1.

FIGURE 11. Sunset image displayed using different methods with corresponding TMQI index value [27]. We show those of [3], Expoblend [50],
Lischinski et al. [51], Reinhard et al. [25], gradient domain [5], fast bilateral filtering [24] and Kim and Kautz [52]. Our results are based on feature
perceptual loss of 3 layers conv1_1, conv2_1 and conv3_1. Our results are based on feature perceptual loss of 3 layers conv1_1, conv2_1 and conv3_1.

3) DEEP FEATURE CONSISTENCY AT DIFFERENT LAYERS
In Fig. 12 we show how feature perceptual loss from dif-
ferent hidden layers affect the tone mapped images of the

DFC-DIT framework for HDR tone mapping. Overall the
tone mapped images based on perceptual losses from the
middle level (conv2_1 and conv3_1) have a good balance
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FIGURE 12. A comparison of HDR image tone mapping by our methods trained with different level feature perceptual loss. The corresponding TMQI index
value [27] is given for each image. The results are best viewed electronically.

FIGURE 13. A demonstration of the effects of logarithmic compression based on feature perceptual loss of 3 layers conv1_1, conv2_1 and conv3_1. The
corresponding TMQI index value [27] is given for each image.

between local and global contrasts and also produce high-
est TMQI index values. Combining the perceptual losses of
first several layers together tend to produce somewhat better
results than using a single layer. The tone mapped outputs
based on higher layers (conv4_1 and conv5_1) have a rela-
tively lower TMQI index values and appear slightly bumpy
effect on different regions.

4) THE EFFECTS OF LOGARITHMIC COMPRESSION
As mentioned above, we first compress the HDR radiance
map with the logarithmic functions and try to seek the deep
feature consistency in the logarithmic domain. We can mul-
tiply the compressed radiance map with a factor α to control
the logarithmic transformation. The tone mapping results and
corresponding TMQI index values with different α are shown
in Fig. 13. It can be seen that a higher α can lead to a more
noticeable local contrast and crisp appearance of the tone
mapped results. In our experiments, we find that a proper α
is critical for our algorithm to produce high quality images.
Specifically the tone-mapped results tend to be too dark and
lack of contrast when α is too small, while a too big α could
result in over-sharpen images and cause very unnatural and
unattractive results, which can be also reflected by a relatively

lower TMQI index values. This is because the compressed
HDR radiance map with a higher α retains a higher dynamic
range in logarithmic domain with more local details, as a
result, global naturalness of the outputs could be sacrificed
when the algorithm puts more effort on the local details.
In our experiments, it works well when α is around 0.5 and
our method can extract exquisite details from high-contrast
images.

E. SUBJECTIVE EVALUATION OF DFC-DIT FRAMEWORK
We have conducted a subjective evaluation of results of
downscaling, decolorization and HDR tone mapping of the
new DFC-DIT framework. For each transformation, we eval-
uate our technique against several best techniques in the
literature. For downscaling, we use bicubic, bilateral, lanczos,
subsampling, generalized sampling [48], content-adaptive [8]
and SSIM based method [1] as the benchmarks. For decol-
orization, we use luminance the methods of Smith et al. [12],
Kim and Kautz [49], Gooch et al. [11] and Lu et al. [18] as
benchmarks. For HDR tone mapping we use Larson et al. [3],
fast bilateral filtering [24], gradient domain [5],
Expoblend [50], Kim and Kautz [52], Lischinski et al. [51]
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FIGURE 14. Subjective evaluation results. The red areas represent the percentage that our algorithm is selected, green areas for no preference and the
blue ones for the other methods.

and Reinhard et al. [25] as benchmarks. For each image,
we show the original input image (in the case of HDR
tone mapping, the original radiance map cannot be shown),
a version produced by our method and a version of one
benchmark technique to subjects and ask which version
they prefer or indicate no preference. 50 undergraduate sci-
ence and engineering students from our university evaluated
10 pairs of images for image downscaling and 8 pairs of
images for image decolorization and HDR tone mapping.
Fig. 14 shows the voting results. We can see that there is an
obvious preference for our method against all other methods
for all the transformation tasks. These results demonstrate
DFC-DIT framework is comparable to or better than state-of-
the-art techniques. In image downscaling, subsampling and
SSIM-based are two competingmethods to produce sharp and
crisp downscaled images, however subsampling sometimes
suffer strong aliasing artifacts like the hair in Fig. 5. In image
decolorization, the method of Lu et al. [18] is the best
competing candidate that maximally preserves color contrast.
However some participants prefer ours than theirs because the
decolorized versions of Lu et al. [18] may show too strong
contrast while the corresponding color images in fact have
low contrasts. For HDR image tone mapping, fast bilateral
filtering [24] is the best comparable tone mapping operator
in our study.

V. CONCLUDING REMARKS
This paper has successfully introduced the DFC-DIT frame-
work which unifies several common difficult image process-
ing tasks. This is also the first time that deep learning has been
successfully applied to image downscaling, decolorization
and high dynamic range image tone mapping. Experimental
results have demonstrated the effectiveness of the method and
its state-of-the-art performances.

One fundamental problem for traditional image transfor-
mation tasks like image downscaling, image decolorization
and HDR image tone mapping is that the problems are inher-
ently ill-posed, because there is no unique correct ground
truth. For image downscaling fine details should be preserved
from visually ambiguous high-resolution inputs; for image
decolorization the gray image should be semantically similar
to the original color version and preserve the contrast as

much as possible in spite of drastic loss of color information;
for HDR image tone mapping we want to compress the
scene radiance to displayable range while preserving details
and color appearance to appreciate the original scene con-
tent. Therefore, success in these image transformation tasks
requires semantic and perceptual reasoning about the input.

It is very difficult to design a numerical image quality
metric to measure the perceptual similarity between the trans-
formed outputs and the original input. Based on two cru-
cial insights into the determining factors of visual quality
of images and the properties of deep convolutional neural
network, we have developed the deep feature consistent deep
image transformation (DFC-DIT) framework which unifies
common and ill-posed image processing tasks like downscal-
ing, decolorization and HDR tone mapping. We have shown
that the hidden layer outputs of a pretrained deep CNN can
be used to compare perceptual similarities between the input
and the output images. One possible explanation is that the
hidden representations of a pre-trained CNN have captured
essential visual quality details such as spatial correlation
information and other higher level semantic information.
Exactly which hidden layer represents what kind of essential
visual quality details is not very clear and we have shown
that perceptual losses constructed with different hidden layer
features can affect the final results. Future researches are
needed to understand better the kinds of visual semantics
captured by the hidden features of the pre-trained CNN in the
context of the DFC-DIT framework. A better way to combine
(e.g. weighting) different level deep features may lead to
better and more consistent results.
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