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The classical cubic-lattice dimer model undergoes an unconventional transition between a columnar crystal
and a dimer liquid, in the same universality class as the deconfined quantum critical point in spin-1/2 anti-
ferromagnets but with very different microscopic physics and microscopic symmetries. Using Monte Carlo
simulations, we show that this transition has emergent SO(5) symmetry relating quantities characterizing the
two phases. While the low-temperature phase has a conventional order parameter, the defining property of the
Coulomb liquid on the high-temperature side is deconfinement of monomers, and so SO(5) relates fundamentally
different types of objects. Studying linear system sizes up to L = 96, we find that this symmetry applies with an
excellent precision, consistently improving with system size over this range. It is remarkable that SO(5) emerges
in a system as basic as the cubic dimer model, with only simple discrete degrees of freedom. Our results are
important evidence for the generality of the SO(5) symmetry that has been proposed for the NCCP1 field theory.
We describe an interpretation for these results in terms of a consistent hypothesis for the renormalization-group
flow structure, allowing for the possibility that SO(5) may ultimately be a near-symmetry rather than exact.

The classical dimer model on the cubic lattice illustrates
three key mechanisms in three-dimensional (3D) critical phe-
nomena. Two of these are the appearance of artificial gauge
fields, and unconventional phase transitions where topologi-
cal effects play a key role. The third, which we demonstrate
here, is the emergence in the infrared (IR) of unusual non-
abelian symmetries that would be impossible at a conventional
Wilson–Fisher-like critical point.

The close-packed dimer model has a power-law correlated
‘Coulomb’ phase [1, 2], governed by an emergent U(1) gauge
field whose conserved flux arises from a ‘magnetic field’ de-
fined in terms of dimers. A remarkable phase transition [3]
separates this liquid from a ‘columnar’ phase, illustrated in
Fig. 1(a), in which the dimers form a crystal, spontaneously
breaking lattice symmetries. Despite being entirely classical,
this transition is not described by Ginzburg–Landau theory,
but is instead a Higgs transition of the U(1) gauge theory [4–
6]. The effective field theory is the noncompact CP1 model
(NCCP1), in which the gauge field couples to a two-component
bosonic matter field that condenses at the transition.

NCCP1 is also the effective field theory for the ‘decon-
fined’ Néel–valence-bond solid (VBS) phase transition [7, 8]
in 2+1D quantum antiferromagnets [9–18] and a related lat-
tice loop model [19]. This raises the possibility that the dimer
model exhibits a surprising emergent symmetry: Simulations
of the loop model show SO(5) symmetry emerging at large
scales [20]—either exactly or to an extremely good approxi-
mation. Earlier work on topological sigma models for decon-
fined critical points [21, 22] revealed that SO(5) is a consistent
possibility in the IR, despite the fact that it cannot be made
manifest in the gauge theory [38]. The Néel–VBS transition
involves a three-component antiferromagnetic order parameter
and a two-component VBS order parameter; SO(5) allows all
five components to be rotated into each other. This symmetry
can be understood through a set of dualities for NCCP1 and
related theories [23].

Here we use Monte Carlo simulations to demonstrate emer-

gent SO(5) at the dimer ordering transition. This large sym-
metry is particularly striking in a discrete classical model with
no internal symmetries at all, only spatial symmetries together
with a local constraint that is equivalent to U(1) symmetry
in a dual representation. SO(5) furthermore unifies opera-
tors of conceptually distinct types, rotating the crystal order
parameter—a conventional observable in terms of dimers—
into ‘monopole’ operators that insert or remove monomers,
and cannot be measured in the ensemble of dimer configu-
rations. Together these yield a five-component SO(5) super-
spin. The emergent symmetry group is therefore identical
to that of the Néel–VBS transition. But it should be noted
that the microscopic symmetries of the latter—roughly speak-
ing, SO(3) × (lattice symmetries)—are very different from the
(lattice symmetries) × U(1) in the dimer model.
Previously, SO(5) has been demonstrated directly only in

a single lattice model [20], and is also supported by level de-
generacies in the JQ model [24], both realizations of the Néel–
VBS transition. Its presence in the dimer model is particularly
important because the IR behaviour of NCCP1 is subtle and re-
mains controversial [11, 12, 15–19, 23, 25–27]. The simplest
explanation for SO(5) would be flow to a fixed point where

FIG. 1. Dimer model phases and interactions. (a) Columnar phase
(one of six symmetry-related ground states). (b) Disordered con-
figuration, typical of high-temperature Coulomb phase. (c) Pairs of
nearest-neighbor parallel dimers (back face of cube) contribute en-
ergy −v2. (d) Four parallel dimers around a cube contribute v4.
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allowed SO(5)-breaking perturbations are irrelevant, but there
are reasons to doubt this occurs [23]. The transition may ul-
timately be first-order, with an exceptionally large but finite
correlation length. However, even in the absence of a true
continuous transition, the RG flows for NCCP1 may ensure
‘quasiuniversality’ relating these transitions [19, 23], and ap-
proximate SO(5). In this scenario SO(5), though not exact, can
hold to higher accuracy than standard finite-size scaling.

Given this complexity, it is important to test the robust-
ness of SO(5). Finding SO(5) in the dimer model provides
crucial confirmation that this is a generic property of models
coarse-graining to NCCP1, rather than one requiring further
fine-tuning. The most striking feature of our results is that at
length scales accessible numerically (up to linear sizeL = 96),
SO(5) is indistinguishable from an exact symmetry of the IR
theory.

Dimer model The degrees of freedom in this classical
statistical model are dimers on the links of a cubic lat-
tice, illustrated in Fig. 1. Defining the occupation number
d�(r⃗) ∈ {0, 1} on the link joining site r⃗ to its neighbor r⃗ + �⃗�
(�⃗� is a unit vector), the number of dimers at site r⃗ is n(r⃗) =
∑

�[d�(r⃗)+d�(r⃗−�⃗�)]. Close-packed dimer configurations are
those where n(r⃗) = 1 for all r⃗. For any function F of the dimer
configuration, let ⟨F ⟩ = −10

∑

 ∈0 F ( )e
−E ∕T be the av-

erage over the ensemble 0 of close-packed dimer configura-
tions, where E is the energy of configuration  (see below),
T the temperature (kB = 1), and 0 the partition function.
An equal-weight ensemble of all close-packed configura-

tions (i.e., setting E = 0) is a Coulomb liquid, described by
an emergent noncompact U(1) gauge theory [2]. Sites where
n(r⃗) ≠ 1 have charge Q(r⃗) = (−1)rx+ry+rz [n(r⃗) − 1] in this
description, and are hence referred to as ‘monopoles’. A pair
of oppositely-charged test monopoles (for example, one empty
site from each sublattice) is deconfined in the liquid phase.

The model can be driven into a confining, ordered phase
using an energy −v22, where 2 is the number of nearest-
neighbor parallel dimers [3]. For T ≪ v2, the dimers form a
crystal that maximizes 2 and breaks spatial symmetries. A
corresponding order parameter is the ‘magnetization density’

N� =
2
L3

∑

r⃗

(−1)r�d�(r⃗) . (1)

As T increases through a critical value Tc, there is a direct
transition into the dimer liquid [3].

Here, we set v2 = 1 and use a configuration energy E =
−2 + v44, where 4 is the number of cubes of the lat-
tice that contain four parallel dimers [28]; see Fig. 1(d). For
v4 > 0 this is a frustrating interaction which decreases Tc.
More importantly, as v4 is varied, the order of the transition
changes from clearly first order (at v4 < 0) to apparently con-
tinuous (v4 > 0), with an apparent tricritical point near v4 = 0
[28]. This point introduces complications in the scaling anal-
ysis, which we avoid by using large positive v4.
There is no local order parameter for the liquid, which is

instead characterized by monopole deconfinement [1]. Defin-

ing operators '(r⃗) and '̄(r⃗) that respectively decrement and
increment Q(r⃗), the monopole distribution function Gm is

Gm(r⃗+, r⃗−) ≡
1
0

∑

 ∈(r⃗+,r⃗−)
e−E ∕T = ⟨'̄(r⃗+)'(r⃗−)⟩ . (2)

(r⃗+, r⃗−) denotes the ensemble of dimer configurations that
are close-packed except for a pair of monopoles of charge ±1
at sites r⃗±. In the liquid, Gm remains nonzero as |r⃗+ − r⃗−| →
∞ (monopole deconfinement). We define global operators
' = L−3

∑

r⃗ '(r⃗) and '̄.
Continuum theory An action believed to describe the tran-

sition [4–6] involves a noncompact U(1) gauge field A⃗, mini-
mally coupled to a 2-component complex vector z,

 = �
2
|∇⃗ × A⃗|2 + |(∇⃗ − iA⃗)z|2 + s|z|2 + u(|z|2)2 , (3)

with s tuned to its critical value and u, � > 0. In terms of this
theory, referred to as NCCP1, the local magnetization is N⃗ ∼
z†�⃗z and the monopole operator '̄(r⃗) creates a source of the
‘magnetic field’ ∇⃗ × A⃗. This continuum theory also describes
the Néel–VBS transition in spin- 12 antiferromagnets—where
z†�⃗z is the local Néel vector and' is the VBS order parameter
[7, 8]—and the ‘hedgehog-free’ O(3) model [29].
SO(5) symmetry The claim of SO(5) symmetry is that the

critical point has an emergent symmetry under SO(5) rotations
of the five-component order parameter

Φ = (Nx, Ny, Nz, c'x, c'y) , (4)

where'x =
1
2 ('+'̄), 'y =

1
2i ('−'̄), and c is a constant. The

dimer model’s microscopic symmetries [30] are: lattice point
group operations (rotations and reflections), which act both on
the spatial coordinate and on N⃗ ; translation by a lattice vec-
tor �⃗�, which changes the sign of both N� and 'y; and SO(2)
rotations of ('x, 'y). This SO(2) [orU(1)] symmetry is equiv-
alent to the requirement of overall monopole charge neutrality
in correlators (it becomes a conventional symmetry, acting on
dynamical fields in a partition sum, in a dual description). In
order to demonstrate SO(5), the key step is to demonstrate an
emergent symmetry that rotates '⃗ into N⃗ . Any symmetry op-
eration of this type, when combined with microscopic sym-
metry, implies SO(5) [30]. Concretely, we test for invariance
under SO(3) rotations of N⃗ and, crucially, under rotations of
the two-component vector �⃗ = (Nx, c'x), which we denote
SO(2)� . This symmetry implies full SO(5) [30].
Because ' cannot be expressed as a function of the dimer

configuration [39], we cannot measure a probability distribu-
tion of � . Instead, consider the implications of the putative
SO(2)� symmetry for moments ⟨���� ⋯⟩. Some relations
are already guaranteed by the microscopic symmetries under
Nx → −Nx and 'x → −'x. The first nontrivial equality is
[30]

⟨N2
x⟩ = c

2
⟨'2x⟩ , (5)
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implying that ⟨N2
x⟩∕⟨'

2
x⟩ is independent of system size at the

transition.
Defining normalized quantities Ñx = Nx∕⟨N2

x⟩
1∕2 and

'̃x = 'x∕⟨'2x⟩
1∕2 with unit variance, SO(2)� implies the three

nontrivial identities

⟨Ñ4
x⟩ = ⟨'̃4x⟩ = 3⟨Ñ

2
x '̃

2
x⟩ , ⟨Ñ2

x '̃
4
x⟩ = ⟨Ñ4

x '̃
2
x⟩ . (6)

Checking these requires sampling configurations with up to
four monopoles.

Numerical algorithm Correlators containing ' and '̄ are
given by

⟨

F '̄m∕2'm
′∕2

⟩

= �mm′
[(m∕2)!]2

L3m0

∑

 ∈m

F ( ) e−E ∕T , (7)

where m is the set of all configurations with m
2 monopoles of

each sign. In our simulations, the only allowed monopoles are
empty sites, or ‘monomers’. (As a result, the sum defining the
global variable ' runs over only one sublattice, and that for
'̄ runs over the other.) Allowing overlapping dimers would
make no essential difference.

We calculate such expectation values using an extension
of the standard worm algorithm [31–33]. At each iteration,
we either construct a worm, giving a new configuration with
the same monomer number m, or apply a monopole–number–
changing update. If m = 0, the latter attempts to remove a
dimer, leaving behind two neighboring monopoles of opposite
charge. If m = 4, we attempt to add a dimer, annihilating two
monopoles. If m = 2, either addition or removal is attempted,
with fixed relative probability. The location for the attempted
move is chosen randomly and the update is accepted with the
standard Metropolis probability for its energy change.

This procedure effectively samples from the partition sum

eff =
∑

m∈{0,2,4}
fm

∑

 ∈m

e−E ∕T , (8)

with weights fm determined by the probabilities used at each
step (chosen to optimize the algorithm [30]). Comparisonwith
Eq. (7) relates the desired quantities to expectation values in
this ensemble, conditioned on m. Restricting to m ≤ 4 allows
us to calculate quantities with up to four' operators, including
those in Eqs. (5, 6). The algorithm extends straightforwardly
to larger m, allowing higher moments to be calculated, but at
increasing computational cost.

Results We first verify SO(3) symmetry of N⃗ at the crit-
ical point for v4 = 10, extending the results of Ref. [34] at
v4 = 0. Figure 2(a) shows a cross section (with Nz = 0
[40]) through the probability distribution for N⃗ at the criti-
cal temperature Tc. (Tc is determined using the procedure de-
scribed below.) The circular distribution indicates that the mi-
croscopic symmetry under 90◦ rotations of N⃗ is enhanced to
continuous symmetry at criticality. For a quantitative mea-
sure of this emergent symmetry, Fig. 2(b) shows the ratio
6⟨N2

xN
2
y ⟩∕⟨N

4
x +N

4
y ⟩ versus L, at Tc. This ratio approaches

unity as L increases, indicating (at least) an emergent rotation

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Monte Carlo results across the columnar ordering transition
(with v4 = 10). (a) Cross section, with Nz = 0, through the mag-
netization density distribution at the critical temperature Tc [deter-
mined in Fig. 3(a)], labeled by system size L. (b) Ratio of moments
6⟨N2

xN
2
y ⟩∕⟨N

4
x +N

4
y ⟩, equal to unity in the case of SO(3) symmetry,

plotted as a function of L at T = Tc. Inset: absolute difference be-
tween this ratio and unity, on a double-logarithmic scale, along with a
power-law fit. (c) Binder cumulants of magnetization and monopole
operator, over a broad temperature range. Dotted vertical line (this
and subsequent panels) shows Tc. (d) Normalized cumulant ratio
⟨Ñ4

x⟩∕⟨Ñ
2
x '̃

2
x⟩, which equals 3 when SO(5) is present. (e,f) Binder

cumulants close to Tc.

symmetry of order greater than 4 [30]. We argue this provides
strong evidence of continuous SO(3) symmetry.
We now turn to quantities that test for symmetry mixing N⃗

and ', focusing on v4 = 10. We consider comoments of Nx
and 'x (their joint distribution is not directly measurable as '
is not a function of the dimer configuration [39]).
The two Binder cumulants ⟨N4

x⟩∕⟨N
2
x⟩
2 and ⟨'4x⟩∕⟨'

2
x⟩
2

are shown in Fig. 2(c) over a broad temperature range. Both
take the expected values deep within the two phases [30] and
cross at approximately the same temperature, consistent with
a continuous phase transition directly between dimer crys-
tal and liquid. The first hint of SO(5) symmetry is that the
two Binder cumulants take the same value at their crossing
points. It should be noted that this value is not what one
would expect for a Gaussian probability distribution (viz 3),
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(a)

(b)

(c)

(d)

FIG. 3. Monte Carlo results demonstrating SO(5) symmetry at the
transition (again v4 = 10). (a) Ratio ⟨'2x⟩∕⟨N

2
x⟩ of variances. The

temperature of the crossing (vertical dashed line) yields our estimate
of Tc. (b–d) Ratios of cumulants, each constrained to unity by SO(5).
In each panel, the inset shows a log–log plot of the absolute difference
of the ratio from unity versus L, with a best-fit power law.

which would provide a trivial explanation for our SO(5) re-
sults. Next, Figure 2(d) shows, for the same temperature range,
⟨Ñ4

x⟩∕⟨Ñ
2
x '̃

2
x⟩, an example of a ratio constrained by SO(5)

[Eq. (6)]. The ratio indeed takes the expected value of 3 at Tc ,
as we show to much higher precision below, while approach-
ing the expected limits in both phases.

Zooming in on the critical region, Fig. 2(e,f) shows the
above Binder cumulants for Nx and 'x in the neighborhood
of their crossing points. As noted in previous studies of this
transition [28, 33], the crossings drift significantly withL, and
the respective crossing temperatures for the two Binder cumu-
lants differ by a relative amount of order 10−3.
However, the quantity ⟨'2x⟩∕⟨N

2
x⟩ has a remarkably sharp

crossing at a temperature in between the two: see Fig. 3(a).
This crossing is a consequence of SO(5) symmetry [and de-
termines the constant c in Eq. (5)]. Since this crossing point
is much better-defined than that of the Binder cumulants, we
use it as our best estimate of the critical temperature, giving
Tc = 0.6718(1) for v4 = 10.
To quantify the precision of SO(5), we show the ratios

⟨Ñ4
x⟩∕⟨'̃

4
x⟩,

1
3⟨Ñ

4
x⟩∕⟨Ñ

2
x '̃

2
x⟩, and ⟨Ñ2

x '̃
4
x⟩∕⟨Ñ

4
x '̃

2
x⟩, evalu-

ated at this temperature, in Fig. 3(b–d). All three approach
unity, as expected from SO(5) [Eq. (6)]. The corrections are
small in magnitude and decrease approximately as power laws,
∼ L−|yirr|, over the full range of L studied. The effective ir-
relevant exponent yirr is consistent with that observed for the
corrections to the SO(3) symmetry of N⃗ [see Fig. 2(b), inset].

We show results for the transition at smaller v4 in the Sup-
plemental Material [30]. (Recall that there is a critical line
in the plane of the frustrating interaction v4 and temperature,
with v4 ≃ 0 previously identified as separating continuous and
first-order transitions [28].) Importantly, results for v4 = 1 are
similar to v4 = 10: the ratios approach their SO(5)-invariant
values to a similar level of precision at the largest sizes. Re-
sults at v4 = 0.2 are still consistent with emergent SO(5), while
at v4 = 0, close to the apparent tricritical point, the devia-
tion from unity is considerably larger at the largest sizes. Even
here, SO(5) may improve at still larger sizes, but see Discus-
sion for another explanation.
We expect that corrections to SO(5) arise from perturbations

to a hypothetical SO(5)-invariant continuum action that are ef-
fectively irrelevant at least on the scales we access. If the crit-
ical properties are only ‘quasiuniversal’, this SO(5)-invariant
action is not that of an RG fixed point, but instead associ-
ated with a relatively well-defined SO(5)-invariant flow line.
Classifying operators into SO(5) representations, the simplest
possibility is that the leading perturbations arise from a sym-
metric tensor Xabcd [20, 23, 41]. Microscopic dimer model
symmetries allow as perturbations: higher-order asymmetry
between ' and N⃗ ,

∑3
a,b=1Xaabb; and cubic anisotropy for N⃗ ,

∑3
a=1Xaaaa. The consistency of yirr estimates (between −1.4

and −1.2) for distinct ratios at v4 = 10 accords with this pic-
ture. For v4 = 1 we obtain slightly larger values (between
−1.7 and −1.4), while in the loop model a rough estimate gave
yirr ∼ −0.8. In the ‘quasiuniversal’ picture yirr is an effective
exponent which drifts as a function ofL∕L0 with nonuniversal
L0; such drifts may explain the differences in yirr.
Discussion We have presented evidence for SO(5) sym-

metry at the ordering transition in the cubic dimer model,
which is at least as robust as critical scaling. This is an unusual
example of emergent symmetry in a purely classical model, re-
lating the magnetization N⃗ to the monopole operator '.
Because ' is not a local observable in terms of the dimers,

it is not possible to measure its distribution function. We have
instead used identities between comoments to demonstrate a
symmetry rotating '⃗ into N⃗ . Together with microscopic sym-
metry, this implies full SO(5).
These results show that very precise SO(5) is a robust prop-

erty of a large class of models described by NCCP1. Still, it
is possible that NCCP1 does not have a true critical point, but
instead only ‘quasiuniversal’ properties arising from a near-
vanishing of the beta function [19, 23]. The ‘critical’ prop-
erties are then associated with an approximate convergence of
the flows to an SO(5)-invariant flow line, and SO(5) symmetry
is approximate rather than exact [42]. Our results are compati-
ble with this scenario, although over the scales we have studied
SO(5) resembles an exact symmetry of the IR theory, whose
precision improves with L.
This scenario allows a sharp crossover, as a function of ami-

croscopic coupling, between a regime where the transition is
apparently continuous (very weakly first-order) and one where
it is strongly first-order. The ‘tricritical’ point v4 ≃ 0might in
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fact be such a crossover. If so, an analysis of the SO(5) ratios
for v4 ∼ 0 could give useful insight into the RGflows. Another
extensionwould be to reduce the lattice symmetry of themodel
so only 4 of the 6 ordered states remain [6]. This would yield
a platform for investigating the possibility of emergent O(4)
symmetry in the ‘easy-plane’ version of NCCP1 [23, 35, 36].

We thank J. T. Chalker for useful discussions. This work
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