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Abstract: Equilibrium and non-equilibrium molecular dynamic simulations, predicting the

dielectric properties of near-critical and supercritical methanol and ethanol at microwave

frequencies have been carried out. The autocorrelation functions of the dielectric relaxation, show

dependency on the slow component at the near-critical region for both alcohols. At the supercritical

region, two competing relaxation mechanisms are observed, related to the large breakdown of the

hydrogen-bonding network and the degree of clustering between the molecules. This approach

closely matches experimental data at microwave frequencies and identical temperature and

pressure conditions, validating the predictions of how the molecular structure and dynamics

manifest themselves into the complex permittivity and dielectric relaxation behaviour. Thus,

introducing a modelling-based solution to deliver accurate dielectric property values for materials
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at supercritical conditions for “a priori” screening of solvents, whilst removing the need to

overcome engineering and safety challenges associated with the development of experimental

equipment to practically generate such data.

Keywords: Complex permittivity, dielectric relaxation times, molecular dynamics simulations,

Drude polarisable force-field.

1. Introduction

Recent years have witnessed an increased interest and shift towards more sustainable “green”

processes in the chemical and engineering communities [1-3]. Supercritical fluids are prime

candidates for use as solvents in such chemistries as the majority of them are compatible with the

environment and generally possess enhanced transport properties for reactions [4].

Knowledge of the dielectric properties of supercritical fluids is important in determining the

effect that the solvent has on the equilibrium of the reactions occurring at these conditions [5].

Recent experimental work in the field of green chemistry has also highlighted the potential benefits

of combining the chemical properties that supercritical and near critical fluids can exhibit with the

excellent heating potential offered by microwave energy during chemical reactions [6-7].

Microwave energy is capable of heating a material volumetrically and rapidly [8]. This in

conjunction with the excellent microwave absorption properties of alcohols and water has led to

novel research in the development of equipment capable of producing supercritical or near critical

fluids with the use of microwaves for chemical reactions [9], or carrying out reactions with

microwave energy at high pressures [10]. The optimum design and development of such

equipment requires intimate knowledge of the dielectric properties of the materials subjected to

microwave heating [8]. The term “dielectric properties” typically refers to the knowledge of the

complex permittivity ε* of a medium. Complex permittivity consists of two parts, a real part which 
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is termed the dielectric constant, ε', and an imaginary part called dielectric loss, ε'' [11]. The first 

is related to the polarisation and energy stored within a material in the presence of an external

electric or electromagnetic field, and the latter correlated to energy lost in the material [12].

Dielectric properties are essential in understanding the fundamental properties of polar fluids [11]

and their response to microwave fields. This is could be particularly important since a substantial

number of solvents used in supercritical chemistry (water, alcohols etc.) are extremely polar under

ambient conditions.

Consequently, a significant range of dielectric property measurement techniques has been

established by the scientific community to generate such data [13-15]. However, in practice these

measurements are very difficult to conduct under extreme experimental conditions, such as high

temperature and pressure. In particular, the integration of the sensitive electronic equipment

required to make the measurement into the experimental apparatus has proved challenging. Also

experimentation at high pressures and temperatures constitutes an inherent safety hazard with risks

that needs to be carefully mitigated. Typically, all experimental equipment used for that purpose

need to be enclosed in a bulletproof cage as a potential explosion can be catastrophic. As a result,

there are very few reports in the literature relating to these types of measurements [16-18], despite

the potential benefits that such knowledge of the dielectric properties of systems at the near-critical

or supercritical state might have. Therefore, an alternative method that overcomes the difficulties

associated with the measurements in these challenging environments would potentially be very

valuable. Dielectric property measurements can be directly linked to the molecular orientation of

a specific entity within the electric field. Thus, validated molecular dynamics (MD) simulations

are potentially an extremely useful method for understanding, interpreting and even predicting

experimental data relating to these processes, with atomistic topological and sub-picosecond
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temporal resolution, possibly alleviating the need of using onerous experimental methodologies to

generate such data.

Studies of different molecules under ambient conditions have utilized molecular dynamics

(MD) in order to calculate the molecular dielectric response. Gnanasekaran and Leitner have

investigated the dielectric response of the photoactive yellow protein [19] following an S1  S0

electronic transition, using correlation functions to estimate the dielectric response. Fourier

transforms of the correlation function indicated the excited-state interactions between amino acid

residues, in agreement with experiment. The dielectric relaxation properties of ethanol at room

temperature have also been studied with MD [20]. The dielectric properties of supercritical water

were reported by Guàrdia and Martí [21]. In this study, the authors found that, as water reached

the supercritical phase, rotational correlation times of the water molecules became important as

the hydrogen bond network broke down, leading to a more “gas-phase” behaviour. Additionally,

several studies on non-critical mixtures of methanol, ethanol, water and other alcohols have been

successfully studied using MD simulations [22-25].

In the present study, we consider the dielectric relaxation of near-critical and supercritical

methanol and ethanol using MD with a polarisable force-field and comparing with our previously

obtained experimental dielectric measurement data. The choice of ethanol and methanol was

purely based on the fact that both are extremely common solvents, having a relative low

environmental impact. This provides us with a computational approach which is able to predict

the dielectric properties of near- and super-critical fluids, which otherwise are very difficult to

measure experimentally, allowing an effective method of “screening” different molecular

compositions before undertaking dedicated experimental measurements.

2. Computational Details
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The all-atom force-field for methanol and ethanol were employed [26], within the Drude

polarisable force-field framework [27-29]. The initial structure(s) consisted of 3200 alcohol

molecules, using cubic symmetry. Initially, 250 steps of steepest-descent minimization were used

to remove any bad contacts, followed by a further 2000 steps of adapted basis Newton-Raphson

(ABNR) minimization. Equilibration dynamics were performed initially using a 1 fs time step for

300 ps with a non-bond cutoff of 16 Å, with the switching function starting at 10 Å and eliminating

all pair contributions at 12 Å. Long-range electrostatics were treated using the Particle Mesh

Ewald (PME) algorithm, using a 6th-order spline interpolation. Langevin temperature control was

used, with damping of 10 ps-1. Periodic boundary conditions were used, using cubic symmetry.

The SHAKE/Roll and RATTLE/Roll algorithms were employed to constrain covalent bonds to

hydrogen. A dual Langevin thermostat was used, such that the Drude particles were kept at ~ -

272°C (1 K), while the real atoms were kept close to 100°C, 120°C, 135°C, 150°C, 165°C, 180°C,

200°C and 250°C. The canonical ensemble (NVT) was chosen in order to maintain the correct

densities required for direct comparison with experimental data of near-critical and supercritical

methanol and ethanol (densities used are given in Table 1, along with experimental densities

[30,31]). Preliminary isobaric-isothermal ensemble (NPT) simulations at the experimental

pressures were also performed; where experimental densities were not available, the calculated

densities from these NPT simulations were used in the main NVT simulations, as they were found

to agree well with the experimental densities for ethanol. Equilibration lasted for 20 ns, while

production dynamics were carried out under the same conditions (without temperature rescaling)

for a total of 100 ns per temperature simulated. Two separate simulations were performed at each

temperature; one as described above, and a second, non-equilibrium simulation, with an applied

oscillating electric field at a frequency of 2.45 GHz (most commonly used for laboratory scale

microwave heating experiments), and an intensity of 2000 Vm-1 (it must be noted that the field is
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substantially higher to what a measuring instrument such as a vector network analyser can

generate; it was chosen in order to investigate the presence of any potential perturbations at the

molecular level). All of the simulations were performed with the CHARMM MD software [27].

The equilibrium simulations were used to determine the dielectric relaxation properties, while we

calculated the polarisation response within the non-equilibrium simulation to confirm that the

experimentally applied microwave field intensity we have previously used [18] is sufficiently low

as not to alter the system characteristics, while obtaining reliable dielectric measurements.

3. Results and Discussion

Autocorrelation functions of the dielectric relaxation for ethanol and methanol were calculated

at each of the temperatures studied from the equilibrium MD simulations. The curves were fitted

to an exponential function of the form:

1)( 

t

AetF


 (1)

where τ1 is the slow component of the dielectric relaxation. The calculated slow-component

dielectric relaxation times are given in Table 2. The relaxation times are in within 10 % of

experimental results under similar conditions [32, 33]. The exponential form of the dielectric

relaxation profiles indicate that the dielectric response of the near-critical alcohols follows Debye

relaxation. At 250 oC, essentially identical relaxation times for both ethanol and methanol are

observed. The supercritical relaxation time is discussed in more detail below.

In the analysis of the MD trajectory, the Drude particles were allowed to relax while keeping

the atomic coordinates fixed to understand the effect of polarisation. The average change in the

dipole moment was small, at approximately 0.2 D (for all temperatures), in both the equilibrium

and non-equilibrium simulations.

The static dielectric permittivity, s, was calculated according to Eq (2):
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Here, M and V refer to the total dipole moment and volume of the simulation box, respectively.

T is the temperature and D is the Debye constant [33]. Using the relaxation times, , calculated

earlier and the static dielectric permittivity (s), the complex permittivities were calculated as

 
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(3)

assuming a dielectric permittivity at infinite frequency (∞) of 1.92 [34], where  is the angular

frequency of the applied field (herein taken as 2.45 GHz). It should be noted that ε is dependent

on density, and as such this parameter should be varied accordingly. However, for the present

work, we choose to use this particular value as it is experimentally validated at T = {25 – 325 °C}

and P = {6.1 MPa and 15.1 MPa}, conditions which are close to those that we have employed in

the present study, while there is not a large amount of data about ε at different densities. Also, the

degree that ∞ can influence the calculated values of complex permittivity is typically small and

only becomes significant at high temperatures where s decreases substantially [34].

Presented in Fig. 1 are the computed complex permittivities for methanol and ethanol from the

equilibrium MD simulations, calculated using the Debye relation. These are in excellent agreement

with the reported experimental data [18], with an average deviation of less than 5%. It must be

noted that the experimental results were also subject to a standard deviation (shown in Fig. 1) in

the measurement of the dielectric properties, mainly due to the minor changes in the electrical

length of the measurement sensor (compression of the sapphire bead in the coaxial line) imposed

by the high pressure conditions during the experiment. These changes in the geometry of the sensor

with pressure explain also the experimental observation that ʹ is typically associated with larger
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standard deviations compared to ʹʹ, since ʹ is related to the phase shift of the reflection coefficient

() which is intimately linked to the length of the coaxial line. On the other hand, ʹʹ depends on

the amplitude of  which in general remains unaffected by the experimental conditions. The small

deviations from the experimental values of ʹ could be either due to the choice of density values,

given the difficulty in accurately determining these experimentally or due to the experimental error

introduced by the change in the effective electrical length of the sensor as described previously.

The deviations for the real part of the dielectric permittivity are more significant in the supercritical

region, especially for ethanol. The components of the complex permittivity (ʹ and ʹʹ) of ethanol

and methanol decrease with increasing temperature, due to the combined effect of a reduction of

the static permittivity and relaxation time. Both the static permittivity and the relaxation time will

decrease with temperature (which results to a relaxation frequency shift towards higher values).

Since we are carrying out our measurements at 2.45 GHz this will cause both the real part of

permittivity (due to the decrease in static permittivity) and the imaginary part of permittivity (due

to the displacement of the relaxation frequency further away from our measuring frequency) to

decrease.

The hydrogen bond lifetimes and occupancies are given in Fig. 2 for methanol. For the current

work, a hydrogen bond is considered to exist if the distance between the donor and acceptor atoms

is less than 2.4 Å, while all angles are allowed. We allowed all angles, since there would still be

an interaction even if not considered strictly a hydrogen bond. The lifetime is defined as the

average time of all hydrogen bonds within the system, while occupancy is defined as the fraction

of hydrogen bonds observed (for each donor) compared with the theoretical maximum number of

hydrogen bonds for each donor. The hydrogen bond network breaks down with increasing

temperature, with a much larger change at 250 °C, when the methanol is in the supercritical state.
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Importantly, we note that this process is dependent on the temperature and independent of the

applied microwave electric field intensity, by comparison of the equilibrium and non-equilibrium

MD simulations. This breakdown of hydrogen bonding network is also important when

considering the dielectric relaxation time. Given in Fig. 3 are the autocorrelation functions of the

dielectric relaxation of supercritical methanol and ethanol (250 °C). It is interesting to note that

the curves for methanol and ethanol exhibit very similar profiles; this may be a consequence of the

sampling frequency we have used in analysing the MD trajectories. The curves deviate

substantially from the trend that could be expected for a process described by an exponential

function, in contrast to the curves observed at lower temperatures (Fig. 4), with the initial part of

the curve displaying a “backscattering-like” minimum, as has been observed experimentally [35]

and is attributed to the free rotor frequency. This is due to the re-orientational correlation time of

the molecule(s) to reorient around a given molecular axis and is representative of the system

approaching gas-phase behaviour, as would be expected in the supercritical region. In the non-

supercritical region, the hydrogen bonding network remains strong, with hydrogen bond

occupations > 0.3, while the supercritical region sees a substantial breakdown of hydrogen bonds.

However, it must be noted that during our simulation studies a complete disassociation between

all the alcohol molecules at supercritical conditions was not observed. Molecules are able to retain

a fraction of hydrogen bonding (approximately 0.1) whilst the hydrogen bond lifetimes are reduced

to below 2 ps. In Fig. 5 are the calculated radial distribution functions for the distance between

oxygen atoms of the methanol and ethanol molecules in the supercritical phase. We can observe a

greater degree of clustering for methanol than ethanol in this phase. Indeed, methanol is known to

form 3-5 molecule clusters around the hydroxyl hydrogen at its supercritical state [30] whereas

ethanol exhibits a significant smaller degree of clustering [36]. For comparison, we also include a

representative radial distribution function for methanol in the sub-critical phase (150°C) and see a
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slightly different structure to that observed in the supercritical phase, although the supercritical

phase still exhibits strong molecular structuring due to clustering at short separations. We can

speculate that the calculated dielectric relaxation time within the supercritical region will have

significant error bars attached, as there are two processes occurring within this timeframe.

For non-equilibrium MD simulations, one should first consider the polarisation response, Ep,

of the system to the applied field:

0

P
E p (4)

Where, P is a multipole expansion given by:

 321 : PPPP (5)

The first term in Eq (5) is the dipole moment density, which can be shown to be equivalent to

the charge density, while the other terms relate to higher-order (non-linear) polarisation responses

[37]. By calculating the change in the polarisation response between the equilibrium MD

simulation and the non-equilibrium simulation with respect to the applied field, it is possible to

show that the response is first-order. In fact, for both systems studied here, at the applied field

given above, the polarisation response is vanishingly small, suggesting that this field intensity is

suitable to study dielectric properties experimentally without perturbing the system of interest.

Finally, we note that the preliminary NPT simulations (with pressures of 9 MPa for methanol

and 7 MPa for ethanol) gave almost identical results to the NVT simulations at the non-critical

temperatures, with densities in agreement with those chosen for the NVT simulations. However,

in the supercritical region, the calculated densities deviated by more than 50 % from the

experimentally determined values for both alcohols; we can therefore conclude that the use of the

NVT ensemble is essential to describe the supercritical conditions and dielectric properties.
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4. Conclusions

We have investigated the dielectric response of near-critical and supercritical methanol and

ethanol by MD simulations employing a polarisable force-field. The dielectric relaxation was

shown to follow an exponential decay for both methanol and ethanol, supporting a Debye-like

dielectric response in the near-critical region. At the supercritical state there is still a significant

fraction of hydrogen bonding present in both systems, although methanol exhibits a higher degree

of clustering than ethanol. Nevertheless it is doubtful whether a single Debye relaxation can be

used to describe adequately the dielectric behaviour in the supercritical region. Non-equilibrium

MD simulations have revealed no dependence of the relaxation process to the intensity of an

externally applied electric microwave field as high as 2000 V/m. Therefore, we can conclude that

the intensity of the electric field used by typical dielectric spectroscopy techniques does not perturb

the system under measurement. Calculated dielectric relaxation times are in agreement with the

reported experimental values, leading to complex dielectric profiles that are in excellent agreement

with the experimental data in the subcritical regime. Also the computational study has revealed

that in the supercritical region the use of the NVT ensemble is essential in order to describe the

dielectric properties. Through validation of the computed results with experimental data under

extreme conditions, we have shown that MD simulations show qualitative and quantitative

agreement in the interpretation, analysis and prediction of the dielectric properties of alcohols in

the near-critical regime, with good qualitative agreement in the supercritical regime, allowing us

to have a safe and effective method for the screening of molecular systems before employing very

complex experimental measurements. Such data generated by MD simulations, could potentially

be used at the initial design stages of experimental equipment utilising microwave energy as

heating source for carrying out chemical reactions in the presence of solvents, as well as solvent

screening at the near-critical or super-critical state. However, we note that accurate predictions
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using classical MD approaches are reliant on high quality force-fields being available for the

molecule(s) of interest.

Fig. 1. Variation of the computed real and imaginary parts of the complex permittivity versus

temperature for methanol (closed circles, open circles for experimental results18) and ethanol

(closed triangles, open triangles for experimental results18) from the MD simulations at pressures

of 9 MPa (methanol) and 7 MPa (ethanol) and a frequency of 2.45 GHz.
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Fig. 2. Average hydrogen bond lifetime (open squares for methanol) and fraction of hydrogen

bonding (open circles for methanol; closed circles for ethanol) versus temperature.
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Fig. 3. Autocorrelation function for the dipole relaxation calculated for supercritical methanol

(top) and ethanol (bottom) at 250 °C.
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Fig. 4. Autocorrelation function showing the dipole relaxation for methanol (upper panel) and

ethanol (lower panel), at various temperatures in the sub-critical region.
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Fig. 5. Calculated radial distribution function of the O – O distance between methanol molecules

(solid line) and ethanol molecules (dashed line) in the supercritical phase. The radial distribution

function of methanol at 150°C (dotted line) is given for comparison.
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Table 1. Densities used in the NVT simulations of the alcohols (g cm-3). Experimental densities

are given in parentheses. (a) Reference [25]; (b) Reference [26].

Temp /

°C

100 120 135 150 165 180 200 250 255 260

Methanol 0.712 0.686 0.664 0.639 0.610 0.576 0.513 0.453

(0.453)a

0.441 0.427

Ethanol 0.720

(0.720)b

0.711 0.692 0.670

(0.670)b

0.650 0.626 0.600

(0.600)b

0.229

(0.229)b

0.209 0.199
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Table 2. Calculated dielectric relaxation times (ps). *Note that the interval for saving data to the

trajectory file is 2.0 ps.

Temp / °C 100 120 135 150 165 180 200 250 255* 260*

Methanol 12.0 8.7 6.9 5.3 5.0 3.7 3.1 2.0 2.0 2.0

Ethanol 33.2 21.4 14.8 10.4 6.5 4.7 3.0 2.0 2.0 2.0
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