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ABSTRACT: The purpose of this study was to develop a predictive model of the
amorphous stability of drugs with particular relevance for poorly water-soluble
compounds. Twenty-five representative neutral poorly soluble compounds with a
diverse range of physicochemical properties and chemical structures were systematically
selected from an extensive library of marketed drug products. The physical stability of
the amorphous form, measured over a 6 month period by the onset of crystallization of
amorphous films prepared by melting and quench-cooling, was assessed using polarized
light microscopy. The data were used as a response variable in a statistical model with
calculated/predicted or measured molecular, thermodynamic, and kinetic parameters as explanatory variables. Several multiple
linear regression models were derived, with varying balance between calculated/predicted and measured parameters. It was
shown that inclusion of measured parameters significantly improves the predictive ability of the model. The best model
demonstrated a prediction accuracy of 82% and included the following as parameters: melting and glass transition temperatures,
enthalpy of fusion, configurational free energy, relaxation time, number of hydrogen bond donors, lipophilicity, and the ratio of
carbon to heteroatoms. Good predictions were also obtained with a simpler model, which was comprised of easily acquired
quantities: molecular weight and enthalpy of fusion. Statistical models are proposed to predict long-term amorphous drug
stability. The models include readily accessible parameters, which are potentially the key factors influencing amorphous stability.
The derived models can support faster decision making in drug formulation development.
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■ INTRODUCTION

Amorphization1 is a strategy that is increasingly employed to
improve dissolution rates and hence bioavailability of poorly
water-soluble drugs. The principal disadvantage of this
approach is the risk of premature drug recrystallization from
its formulation, leading to reduced bioavailability. Water-soluble
polymers are commonly mixed with drugs to form amorphous
solid dispersions or solid solutions in order to improve the
physical stability of an amorphous compound.2 Polymer
selection is generally based on experience and some knowledge
of the physicochemical properties of the constituent materials.
To determine a suitable formulation, typically, different drug−
excipient combinations and ratios are prepared and tested. This
is both time-consuming and can be challenging when a limited
quantity of a compound is available, as is typically the case at
the early stages of drug-product development.3 The efficiency
of this screening process for a particular poorly soluble drug
could be significantly improved by the development of
predictive models as a basis for the rational selection of
suitable manufacturing and formulation strategies.4,5 With the
current study in mind, such models could predict the stability
of pure amorphous drugs at an early stage of the development

based on their properties and indicate the applicability of
amorphous formulation strategies.
Amorphous drug stability is influenced by many factors

independent of the drug molecule itself, which renders its
prediction difficult.6 These factors include environmental
conditions (e.g., humidity, temperature, mechanical stress),7,8

the preparation method (e.g., solvent evaporation, melting-
quench-cooling and cryo-milling),7,9 and preparation con-
ditions (e.g., cooling rate, processing temperature, and time).7

Thus, different stability values may be reported by different
independent research groups. Nevertheless, a number of
compound properties which influence the glass-forming ability
(GFA) and physical stability have been suggested to date.6,7

Using principal component analysis (PCA)10,11 for a set of
51 compounds, it was found that compounds with compara-
tively high molecular weight (Mr) and complex molecular
structure displayed increased GFA. Mahlin et al.12 used partial
least-squares discriminant analysis to predict the GFA from
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molecular structure. Their model suggested that molecular
descriptors related to size, symmetry, branching, number of
aromatic rings, and distribution of electronegative atoms
impacted the GFA for 75% of their test compounds. In
another study Mahlin and Bergström13 derived a rule of thumb
that molecules with Mr > 300 can easily be transformed to an
amorphous state. Most of these studies identified parameters,
which are likely to influence GFA only. Their impact on
amorphous stability, however, was not further explored.
The relationship between amorphous drug stability above the

glass transition temperature (Tg) and thermodynamic param-
eters was studied by Graeser et al.,9 employing univariate
correlation analysis. It was found that the configurational
entropy (Sc) displayed stronger correlation with physical
stability than configurational enthalpy (Hc) and free energy
(Gc). Mahlin and Bergström13 showed that Tg and Mr can be
used to predict the physical stability upon storage for 78% of
compounds which they used to build their model. In addition,
they found a strong relationship between stability and
crystallization temperature (Tc).
The results gathered from these studies are very promising.

However, since only a small number of parameters were
investigated, correlations between different properties were not
identified, and the results are not consistent. Furthermore, the
materials studied were often not selected to be representative of
a larger group of compounds. Due to these limitations, no
generally applicable model is available for the prediction of
amorphous drug stability. Our research sought to bridge this
gap by exploring factors which influence the crystallization
tendency of a group of structurally and physicochemically
diverse poorly soluble compounds and by using these data to
develop a predictive statistical model for amorphous drug
stability.

■ MATERIALS AND METHODS
Database Building and Selection of a Sample Set.

Descriptors used for compound selection were chosen from a
group that are known most commonly to contribute to
AstraZeneca models of drug metabolism and pharmacokinetics
properties of “small molecules” (personal communication,
AstraZeneca). These descriptors have also been shown to
have an impact on GFA, amorphous stability,10,12 compound
bioavailability,14 and the stability of drugs formulated as a solid
dispersions.15 The descriptors were either calculated directly
from 2D molecular structure or predicted using established
structure−activity relationship models. AstraZeneca’s in silico
predictions portal, C-Lab,16,17 was used to calculate and predict
Mr, the number of nonterminal rotatable bonds (rotB),
aromatic rings, hydrogen bond donors (HBD), hydrogen
bond acceptors (HBA), heavy atoms, polar surface area (PSA),
and lipophilicity (clogP) from Daylight/Biobyte molecular
fingerprints of all compounds in the database. Algorithms
implemented in C-Lab and ALOGPS18 (www.vcclab.org) were
used for the estimation of intrinsic aqueous solubility (logSw).
A diverse sample set of 25 compounds (Table 5; Supporting

Information) was selected from the database of 1327 marketed
pharmaceutical compounds (Figure 1) available from the
DrugBank repository, www.drugbank.ca. The database was
initially reduced to 533 poorly soluble (logSw < −4; Sw < 10−4

M)19 and low-mass drug molecules (Mr < 800). Compounds
exhibiting predicted poor chemical stability (e.g., those with
disulfide bonds and conjugated double bonds), a permanent
charge, or zwitterions were excluded. To eliminate complex

effects of ionization on solubility, the present study was further
limited to 171 neutral compounds (Figure 2 A; blue and violet
squares), defined as molecules that are uncharged within the

Figure 1. Illustration of the sampling design applied in this study.

Figure 2. (A) PCA scores plot of neutral poorly soluble compounds.
Compounds with the most diverse physicochemical properties are
shown as purple squares. The numbers represent the selected
compounds (Table 5, Supporting Information). (B) PCA loading
plot showing descriptors used for selection of compounds.
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gastro-intestinal pH range (1.2 < pH < 6.5), i.e. acidic
compounds with pKa > 8.5 and basic compounds with pKa <
4.5.
In practice, compound selection was also constrained by

material availability, cost, and safety considerations, which, for
example, ruled out the inclusion of controlled drugs. Also, due
to practical limitations, compounds with a Tg < 0 °C were
excluded, as were drugs that degraded on heating above their
melting temperature.
To ensure that the sample set was representative of the

chemical and physicochemical diversity of neutral poorly
soluble drugs in the database, the compounds were chosen
using principal component analysis (PCA) as shown in Figure
2A. The variables responsible for the observed diversity within
the compound set are shown on the PCA loading plot (Figure
2B). For instance, compounds in the upper right quadrant of
the PCA plot (Figure 2A) tend to have comparatively high Mr

and a high number of rotB (Figure 2B). Physicochemically
diverse compounds were selected with the Maximin I option in
AstraZeneca’s in-house software, IDEAL, by minimizing the
distance between any two compounds.20 The PCA was
performed using three principal components PC 1, PC 2, and
PC 3, which, respectively, explained 45.83%, 28.75%, and
13.05% of the variation in the input parameters.
These data were preprocessed by mean-centering and scaling

each of the variables in the data set to have unit variance.
Simultaneously, using the FLUSH cluster option in IDEAL, all
neutral compounds were grouped into 35 clusters by applying a
0.55 Tanimoto similarity threshold21 (Figure 9; Supporting
Information). Each cluster consisted of compounds with a
similar chemical structure. Molecules were compared on the
basis of binary fingerprints (www.daylight.com). For the sample
set, compounds were selected from different clusters to ensure

chemical diversity. Because some clusters were larger than
others, the probability of selecting compounds from these
clusters was higher, which led to a few similar chemical
structures in the final sample set (e.g., felodipine and
nifedipine). Despite the structural similarity between these
two compounds, they were shown to have different amorphous
stability.22 Individual parameters which may be responsible for
these differences could be investigated in detail in future
studies.
The selected sample set was assessed to be representative for

the database of 533 poorly soluble drugs using side-by-side
histograms (Figure 3) of calculated and predicted variables. For
Mr, HBD, HBA, rotB, heavy atoms, rings, and logSw, the sample
set was representative of the poorly soluble drugs because the
two distributions showed the same mean location and variance.
For PSA and clogP, the sample was not entirely representative
of the population because the two distributions were not
coincident. This could be related to a possible bias present in
the data due to the applied sample selection criteria. The values
of molecular descriptors for the selected compounds are
presented in Table 6 (Supporting Information).

Measurements of Amorphous Stability at Temper-
atures below Tg. Amorphous stability, measured at temper-
atures below Tg, was used as a response variable for the
development of a statistical model. In order to obtain the
amorphous form of a compound, the as-received material was
spread uniformly between two glass cover slides and heated to
20 °C above its respective melting point and then quench-
cooled to 0 °C at a nominal rate of 130 °C/min using a heating
stage (Linkam; THMS600).
The absence of chemical degradation resulting from the heat

applied to melt the samples was confirmed with differential
scanning calorimetry (DSC; Q 2000, TA Instruments, New

Figure 3. Histograms comparing the distributions of the selected sample set (in red) and 533 poorly soluble drugs (in gray) for calculated and
predicted variables.
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Castle, DE, U.S.A.) and solution nuclear magnetic resonance
spectroscopy. The amorphous nature of the freshly prepared
samples was determined by the absence of birefringence under
cross-polarized light.10 Subsequently, the samples were stored
in a MetzSyn48 reaction station at 5, 10, 20 and 40 °C below the
Tg of each drug down to a minimum of 0 °C. Even though in
practice the same storage temperature is often used, in our
work compounds were kept at individual sub-Tg temperatures
to avoid fast nucleation and crystallization due to increased
molecular mobility above Tg. Individual sub-Tg temperatures
were selected for each compound to ensure a similar decrease
in mobility for each compound. In addition, this approach
ensures that new compounds studied in the future can easily be
compared to the data reported here without the need of
studying at a new temperature.
In order to minimize the effect of atmospheric moisture on

crystallization during storage, the sandwiched samples were
subjected to a constant flow of dry nitrogen. Three samples of
each compound were evaluated with a polarized light
microscope (PLM), an Olympus IX 50 equipped with a
video camera, for the presence or absence of amorphous
material. Samples were scheduled to be tested at different
storage times of 1 h, 3 h, 1 day, 1 week, 1 month, 2 months, 4
months, and 6 months. Due to practical circumstances, these
times were shifted slightly for some compounds; for example,
felodipine and celecoxib were analyzed after 5 and 6 days,
respectively, rather than 1 week. This approach differs from that
reported in the literature,9,13 where a compound was defined as
stable on storage if it lost less than 50% of the amorphous
content during a 1 month period, determined with DSC. The
samples were discarded after analysis to avoid effects due to
changing temperatures and in order to avoid possible
contamination with atmospheric moisture after removal from
the controlled storage environment. For that reason, a total of
96 samples of each compound were prepared (3 samples
analyzed at 4 different storage temperatures at 8 time intervals).
Crystallization of the studied compounds typically initiated at

the circumference of the glass slides and then progressed
toward the interior of the amorphous film (Figure 4).
Flutamide and compound Y, however, crystallized in the

opposite fashionfrom the interior rather than the edge of the
film. It was observed that compounds stored at higher
temperatures tend to be less stable than compounds stored at
lower temperatures. As the variability in crystallization tendency
between all compounds was the highest at a storage
temperature of Tg − 5 °C (Figure 4), the amorphous stability
at this temperature was used as the response variable in the
statistical model. The strength of its linear relationship with
explanatory variables was improved by expressing the stability
values on a logarithmic scale which was used throughout this
study. The values of amorphous stability of selected
compounds are presented in Table 6 (Supporting Information).

Measurements of Thermodynamic and Kinetic Pa-
rameters. Thermodynamic and kinetic parameters were
measured for the compounds in the sample set and were
used together with molecular descriptors as explanatory
variables in a statistical model. In particular, other workers
have shown previously that higher values of Tg, Sc, and low
molecular mobility are correlated with greater amorphous
stability for the compounds studied therein.6,7

Measurements of melting temperature (Tm), Tg, and
enthalpy of fusion (Hf) for all compounds in the sample set
were performed by DSC. Samples of 3−5 mg were analyzed in
both as-received crystalline powder and amorphous form.
Amorphous material was obtained by heating the crystalline
solid at a rate of 10 °C/min to 10 °C above the Tm followed by
rapid cooling to 0 °C at a nominal rate of 30 °C/min. To avoid
absorption of moisture by the samples and to protect from
oxidative chemical degradation, the heat cool/cycle was
performed under a flow (50 mL/min, nominal) of dry nitrogen.
Heat capacity (Cp) values were used to calculate configura-

tional thermodynamic parameters, Hc, Sc, and Gc at Tg, based
on thermodynamic formulas.23 As the configurational param-
eters are related to the supercooled liquid state,9 Tg was
considered the closest temperature to the glassy state where the
amorphous stability is measurable. To accurately measure Cp
values for both the crystalline and amorphous form,24,25 quasi-
isothermal modulated DSC was used. A temperature amplitude
of 1 °C, a modulation period of 100 s, an isothermal
temperature of 0 °C, an isothermal time of 10 min, and a

Figure 4. Cross-polarized optical micrographs show the onset of crystallization at the sample circumference and the interior from initially amorphous
films for representative compounds stored at Tg − 5 °C. Crystallization is visible as birefringence under cross-polarized light; compound X remained
amorphous for the complete duration of the study.
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temperature increment of 5 °C were used such that the number
of increments was dependent on the melting temperature of the
tested material (e.g., Tm = 210 °C results in 42 increments). To
ensure reproducibility of the Cp measurements through
improved contact of the sample with the DSC pan, powdered
samples (10−20 mg) were compacted into 5 mm diameter
discs26 using an IR press (Specac, U.K.) with a 2 ton
compression applied for 30 s. For the Cp measurements,
Tzero DSC pans with pinholes (TA, New Castle, DA) were
used to allow volatile products to escape during heating. The
measurement accuracy was also controlled by comparing the
measured and tabulated Cp values of the sapphire standard
every 3 runs and ensuring that they did not differ by more than
5% from the literature value.
The relaxation time (τ) was obtained through enthalpy

relaxation experiments, performed using conventional DSC
according to methods reported in the literature.22,27 Initially, all
amorphous compounds were held for 10 min at 20 °C above
their respective Tg and were subsequently cooled at a rate of 30
°C/min to their respective annealing temperatures (Ta) of 23
°C below Tg corresponding to the maximum enthalpy recovery
proposed in another study.22 A sample was held at the selected
Ta for a period of 0, 2, 5, 10, and 15 h. After annealing, the
sample was reheated at a rate of 10 °C/min and an endotherm
of varying magnitude in the glass transition region was
observed. The size of the resulting endotherm was dependent
on compound properties and storage time. It represented the
recovery of the enthalpy (ΔH) which was lost during structural
relaxation upon sample storage below Tg and is directly related
to the molecular mobility of the sample under the applied
conditions. Curve-fitting the Kohlrausch−Williams−Watts
(KWW) equation27 to the measured data for each compound
was used to determine τ. The values of thermodynamic and
kinetic parameters for selected compounds are presented in
Table 6 (Supporting Information).
Multiple Linear Regression Model Selection. Multiple

linear regression modeling of the compound stability data was
carried out using the publicly available software R (http://
www.r-project.org/). All utilized packages are available under
the general public license at http://cran.r-project.org/web/
packages/. The software package leaps28 was used to perform
multiple linear regression. Calculated, predicted, and measured
parameters of the selected sample set were used unit-less as
explanatory variables in the derived model equations. In order
to select parsimonious models (the simplest of models which
explains the data equally well) and to penalize overfitted ones,
different model selection algorithms (backward, forward,
stepwise, and best subset) and selection criteria (adjusted R2,
Bayesian Information Criterion (BIC), Mallows’ Cp)29 were
used. The listed selection criteria penalize models according to
the number of independent variables and help to select
parameters that improve the model more than would be
expected by chance.

■ RESULTS AND DISCUSSION
Influence of Measured, Calculated, and Predicted

Parameters on Amorphous Drug Stability. Correlations
observed between the amorphous drug stability and phys-
icochemical parameters are shown in Figure 5, where asterisks
denote parameters which are significantly correlated with
amorphous stability at a 5% significance level (see key
nomenclature in Table 4). It was found that Hf is significantly
negatively correlated with amorphous stability. No evidence of

such a good correlation between Hf and the amorphous stability
was found in the literature, although it has been frequently
emphasized that Hf is an important driving force for
crystallization.7,10,11 This indicates that the amount of energy
supplied to break intermolecular interactions in a crystalline
material during melting is associated with compound
crystallization tendency. As melting precedes the formation of
the amorphous state, the energy supplied during melting
increases the internal energy of the amorphous compound and
thus lowers its physical stability.
In addition, in the present study, it was observed that

compounds with high amorphous stability have a higher Mr, a
higher number of heavy atoms and a larger number of rotB.
The correlation with rotB was, however, not significant at the
5% level. It has been postulated that the higher amorphous
stability of these compounds is the result of the complex and
flexible molecule structures impeding orientation in a crystal
lattice.10 Conversely, the exceptionally low stability of flutamide
(≤1 h) is probably driven at least in part by its very low Mr and
relatively planar structure, which promotes crystallization.
Amorphous stability was also moderately correlated with the
number of HBD at a 5% significance level, and less so with the
number of HBA. Nevertheless, a stronger correlation would
have been expected based on previous studies, which postulated
that hydrogen bond interactions increase the stability of the
amorphous state by formation of poorly packed aggregates that
impede crystal formation.30 It was also reported that the ability
to form an amorphous state can be dependent on the location
and symmetry of hydrogen bonding groups.31

Interesting observations were made when the correlations
between drug stability and measured parameters were
investigated further. The correlation between each of the
three configurational thermodynamic parameters, Hc, Sc, and
Gc, and the physical stability of the 25 compounds in this study
is very weak. It can be observed, however, that the correlation
with Gc is stronger than with Hc and Sc. It was previously
suggested for nifedipine that Hc is one of the key factors
governing fast recrystallization from the amorphous state.22 It
was also postulated that compounds having lower Sc can be
more easily orientated to undergo crystallization.26 For
instance, fast crystallization of amorphous griseofulvin was
reported to be linked with low configurational entropy and high
molecular mobility.6 This correlation was shown to be much
stronger than with Gc. Contrary to other studies,9,26 our results

Figure 5. Correlation between amorphous stability and calculated,
predicted and measured parameters. Error bars denote standard
deviation. Asterisks indicate parameters which are significantly
correlated with amorphous stability at a 5% significance level.
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show that Gc has a more pronounced effect on amorphous
stability than Sc or Hc. The negative correlation indicates that
an increase in Gc is related to a lower physical stability.
The underlying reasons for the correlations of some

parameters with amorphous stability remain unclear. A positive
correlation was observed for PSA, although it is thought that
anisotropic interactions between polar molecules should favor
the formation of a crystalline structure. In agreement with this
hypothesis, the ratio of carbon to heteroatoms (CHA) and
clogP were positively correlated with amorphous stability and
logSw negatively so, although these correlations were very weak.
Interestingly, a moderate positive correlation was found
between the amorphous stability and the number of both
aromatic and aliphatic rings, with a slightly higher R value for
the latter parameter. It is thought, however, that molecules with
a high number of aromatic rings are generally planar and thus
should have a higher tendency to crystallize.12 Similarly to
findings in the literature,9 only a small correlation was observed
between amorphous stability and τ even though τ is thought to
be involved in crystallization processes.7 Although for Tg, a
parameter which is commonly considered as a good indicator of
amorphous stability,32,33 the correlation was important at a 5%
significance level, it was found to be only moderately correlated
(R = 0.43). The relationship between amorphous stability and
Tm was also extremely low for the studied compounds, although
it can be speculated that materials with higher Tm should be
more stable in a crystalline form because these require more
energy to disrupt molecular interactions. Thus, a negative
correlation with amorphous stability should be prominent. The
discussed data (Figure 5) indicate that a single factor is not
sufficient to explain the complex crystallization behavior.
Selection and Validation of Statistical Models. Several

parsimonious multiple linear regression (MLR) models were
derived to predict amorphous drug stability. The chosen
iterative procedure to select the optimal model algorithm and
analysis criterion is illustrated in Figure 6. For each selection

method the model with the largest adjusted R2, minimum BIC
or minimum Mallows’ Cp (approximately equal to the number
of parameters in the model) was selected. For a fixed criterion
and selection method 25 resampling iterations were performed,
where each compound in the sample set was left out for the
model generation and used to test the derived model. Based on
all iterations, the average mean square error (MSE) for the
selected method and criterion was calculated (Table 1). The

stepwise selection method and BIC criterion were chosen as
optimal based on the lowest relative MSE (Table 1; in bold
italic). MSEs for 64% of compounds were <0.5 with the
stepwise selection method and BIC criterion, which indicated a
good fit (Figure 7). Models tested using flutamide (iteration
13), amcinonide (iteration 25), and indapamide (iteration 24)
were, however, characterized by relatively high MSE (>1). This
is probably a result of extreme values of measured parameters,
for instance Tg, which were not used in the compound selection
process.
At each resampling iteration, a different best model equation

was estimated, because the model was fitted to a slightly
different training set. Model 1 eq 1 was derived most frequently
during the resampling process. The coefficients, however,
changed for each iteration depending on the training set. The
coefficients in Model 1 eq 1 were therefore calculated on the
basis of the entire sample set. The standard errors of the

Figure 6. Iterative determination of the best model selection method and criterion.

Table 1. Average MSE Based on Different Model Selection
Procedures and Criteriaa

forward backward stepwise best subset

BIC 2.651 2.742 0.787 2.795
adjusted R2 2.484 3.623 0.932 3.033
Mallows’ Cp 2.272 2.718 0.789 2.847

aThe lowest MSE (in bold italic) is obtained using the stepwise
selection method and BIC criterion.
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coefficients are as follows: 0.007 (Tm), 0.008 (Hf), 0.008 (Tg),
0.070 (Gc), 0.004 (τ), 0.145 (HBD), 0.082 (clogP), and 0.067
(CHA). The adjusted R2 value of this model equation was 0.82,
which indicates a very good fit. This promising result may be
partially due to incorporating 8 variables in the model, out of 18
tested, which is relatively high, taking into account the sample
set size of 25 compounds.
Interestingly, Model 1 does not include Mr, which was shown

to be significantly correlated with amorphous stability. Instead,
however, it incorporates HBD, which is correlated withMr (R =
0.70). As the two variables contribute in a similar way to the
amorphous compound stability, only HBD was eventually
selected by the “stepwise” algorithm. Nevertheless, some of the
correlated variables, Tm and Tg (R = 0.83) and Hf and Gc (R =
0.69), are present in Model 1, making its interpretation less
than straightforward. The value and sign of the regression
coefficients can therefore not be directly interpreted as a
measure of the relationship between the predictors and
stability.29 For example, Hf is strongly negatively correlated
with amorphous drug stability (Figure 5). A small increase in Hf
implies that much more energy is required to disrupt the
crystalline structure. In contrast eq 1 suggests a small decrease
in stability only. Similarly, Gc has a weak negative correlation
with amorphous drug stability (Figure 5), which indicates that
the free energy difference between the amorphous and
crystalline states is of little importance in prediction of
amorphous drug stability. The high value and positive sign of
the coefficient in eq 1 suggests, however, that Gc is more
strongly related to stability than Hf. This disagrees with our
earlier observations and can be explained by cross-correlations
with other variables. These cross-correlations lead to a change
in the importance of the predictors (coefficients).29 As this
study aimed to derive a predictive rather than explanatory
model of amorphous stability,34 single coefficients in this
equation do not have to be interpretable.

τ= − − + + −

+ − + +

T H T GModel 1: log Stability 0.02 0.05 0.03 0.28 0.01

0.23HBD 0.28clog P 0.17CHA 6.42

m f g c

(1)

The summary plot of the measured stability as a function of
the predicted stability using Model 1 is shown in Figure 8. The
black data points represent all compounds in the training set.
They lie nearly on the best-fit regression line (red dotted line),
which highlights a good fit. Only 24 out of 25 data points are
visible because two overlap at 2.23 log(days) measured stability
and 2.13 log(days) predicted stability. The black dotted lines
indicate the 95% confidence intervals. These lines are not
smooth as they are based on 8 predictors. It can be noticed that
some data points in Figure 8 lie on a vertical line instead of

being randomly distributed (values of approximately 0 and 2 on
the abscissa; indicated by arrows). The physical stability was
measured at defined time intervals. All compounds at a value of
0 were stable for less than 1 day and compounds with a value of
2 were stable for greater than 168 days. The time of
crystallization was, however, not determined precisely as the
samples were not monitored continuously. The vertical
arrangement of measured stabilities at discrete times is
therefore an artifact, but the predictions from the derived
model incorporate scatter.
For the best model, residuals29 were calculated as differences

between measured and predicted values of the response
variable for each compound. The compliance with the
underlying assumptions of multiple linear regression was then
evaluated. The first assumption, that the residuals should have a
constant variance across all predicted values of stability, was
satisfied for all four models. In addition, the residuals of the
best models selected with backward and stepwise selection
methods were approximately normally distributed. The analysis
of residuals reflected how different the predicted values of
stability are from the observed values based on the training set
only. In order to further demonstrate how well the model
performs for compounds outside of this study and to avoid an
overfitting bias, an external validation is required.
Some predictors in Model 1 (i.e., Gc) and τ need to be

measured experimentally using the procedures described earlier,
and these experiments require several days to complete. From a
practical point of view, it is desirable to make use of the
predictive power of models in which all values needing time-
consuming, and/or technically challenging measurements, or
variables which are difficult to predict, are excluded. Table 2
shows a selection of equations that are based on calculated and
easily predicted input parameters only. A parameter that is easy
to predict is clogP. Conversely, logSw is more difficult to predict
in part due to the lack of reliable and reproducible data from
solubility measurements.35,36 Other equations include only
parameters that can easily be calculated, predicted, or measured

Figure 7. Predictive performance of models selected with stepwise
selection method and using the BIC criterion; mean square error
(MSE) on a log scale calculated for each resampling iteration.

Figure 8. Summary plot of MLR model selected with stepwise
selection method. Line of best fit is shown in red. Dotted lines are 95%
confidence intervals; lines are not smooth because they are based on
several predictors. The arrows indicate data points which lie on a
vertical line instead of being randomly distributed due to stabilities
measured at discrete times.
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with conventional DSC such as Tm, Hf, and Tg. It should be
noted, however, that the model equations based only on
calculated or predicted parameters have a low adjusted R2 value
of 0.33. These models have, therefore, a relatively poor
predictive capability. In contrast, including measured variables
significantly increases the prediction accuracy to an adjusted R2

value of 0.70 (Model 4) and 0.82 (Model 1). This implies that
some measured parameters are necessary to be incorporated in
to the model to achieve a sufficiently accurate prediction of the
amorphous drug stability.
Three model equations, Models 4, 5, and 6, with moderate

adjusted R2 values and easily accessible parameters, were tested
on external data obtained from the publication of Baird and
Taylor10 (Table 3). These three models correctly predicted
60% of compound stabilities with differences of less than 4
days. In addition, the stability of felodipine predicted with
Model 4 was closer to the observed value than the one
predicted with Models 5 or 6. This close agreement for all three
models was achieved despite different sample selection criteria,
preparation methods, and storage conditions used for the

compounds in Table 3 compared to this work. Model 6 was
tested on 6 additional compounds (Table 3; the identities and
some of the physicochemical properties of these compounds
are not revealed on request of AstraZeneca). This latter model
consists of two parameters, Mr and Hf only, which are highly
correlated with amorphous drug stability. For the entire test-set
consisting of 11 compounds, Model 6 correctly predicted 64%
of compound stabilities. This is in line with the determined R2

value of the model derived for the initial data set.
These results indicate the applicability of these simple model

equations outside the scope of the sample set. In particular,
Model 6 is promising due to its moderately high predictive
power and its structural simplicity. It is expected that the
prediction accuracy of Model 1 will be better due to the higher
adjusted R2 value. However, this still remains to be
demonstrated on external data.

■ CONCLUSIONS

In this study, several multiple linear regression models based on
calculated/predicted and measured parameters were derived to

Table 2. Model Equations with Readily Available Predictors

model input parameters model equation R2
adjusted

R2

2 calculated, predicted log Stability = 0.005Mr+ 0.12aliphatic rings − 1.2 0.44 0.33

3 calculated log Stability = 0.005Mr + 0.12aliphaticrings − 1.2 0.44 0.33

4 calculated, predicted, quickly
measureda

log Stability = −0.04Hf + 0.02Tg + 0.12rotB − 0.22clogP + 0.17ALOGPSlogSw +
0.22CHA − 0.22aliphatic rings + 3.89

0.80 0.70

5 calculated, easily predictedb, quickly
measureda

log Stability = −0.04Hf + 0.02Tg − 0.003Mr + 0.17rotB −
0.2clogP + 0.2CHA − 0.2aliphatic rings + 3.48

0.77 0.69

6 high correlation with stability log Stability = 0.003Mr − 0.03Hf + 1.92 0.63 0.59
aEasily measured parameters: Tm, Hf, and Tg (but not Hc, Sc, Gc, and τ) bEasily predicted parameters: clogP (but not logSw)

Table 3. Two External Validation Setsa

source compound
Mr

(g/mol)
Hf

(J/g)
Tg
(°C) rotB clogP CHA

aliphatic
rings

ALOGPS
logSw

observed stability
(days)

predicted stability
(days)

Baird and Taylor10 indoprofen 281.3 128.1 50 3 2.84 4 1 −3.3 0.004 0.4a

0.1b

1.6c

droperidol 379.4 105.5 29 6 1.92 4 1 −3.6 1 3.9 a

0.9 b

5.1 c

nifedipine 346.3 110.2 45 6 2.31 2 1 −4.3 1 1.2 a

0.5 b

3.9 c

clotrimazole 344.8 96.7 30 4 5.19 7 0 −5.4 84 3.8 a

1.7 b

6.3 c

felodipine 384.3 80.6 45 6 2.24 3 1 −4.7 84 27.1 a

9.4 b

12.7 c

AstraZeneca
Macclesfield, U.K.

1 471.5 86.7 - - - - - - < 14 12 c

2 492.6 95.2 - - - - - - 5−14 8.3 c

3 473.0 127.6 - - - - - - 0 1 c

4 487.4 6.4 - - - - - - >40 1806.9 c

5 575.8 100.0 - - - - - - 168 11.2 c

6 530.5 55.4 - - - - - - 0 123.6 c

aThe amorphous drug stabilities were predicted with Model 4 (a), 5 (b), and 6 (c), as indicated by the superscripts.
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predict the long-term amorphous stability of neutral poorly
soluble drugs. Care was taken to avoid overfitting of the models
by the systematic selection of the compound training set
through the application of different selection algorithms and
selection criteria which penalized overparameterized models. By
varying the balance between calculated, predicted, and
measured parameters, it was shown that inclusion of measured
parameters improves the predictive ability of the models more
than 2-fold.
By means of univariate analysis, it was demonstrated that the

amorphous stability of the representative sample set is
moderately correlated with Mr (R = 0.59) but more strongly
correlated with Hf (R = −0.73). The model equation
incorporating these two variables only resulted in a prediction
accuracy of 59%. It was possible to improve the model
predictions up to 82% by incorporating more parameters. The
best predictive accuracy was found when Tm, Tg, Hf, Gc, τ,
HBD, clogP, and CHA were included in the model. The leave-
one-out validation of this model showed a small mean square
error which highlighted the high quality of fit.
This work demonstrates that long-term amorphous drug

stability can be predicted with a good degree of confidence
using a combination of easily calculated, predicted, or measured
parameters. The correlations of these parameters with the
amorphous stability provide insight into the key factors that
influence mechanisms which drive crystallization. The authors
realize the importance of using an expanded sample set to
confirm the discussed findings in the future. However, for this
study, the best use of available resources was made by a careful
selection of representative compounds. Nevertheless, the
predictive power of the selected models should be further
validated on a larger external data set. Once successfully
validated, such models could assist in faster and more cost-
effective decision making, especially in preformulation phases of

drug development where amorphous drug formulation
strategies are under consideration.
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