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Abstract: The Global Positioning System (GPS) based monitoring technology has been recognised 

as an essential tool in the long-span bridge health monitoring throughout the world in recent years. 

However, the high observation noise is still a big problem that limits the high precision displacement 

extraction and vibration response detection. To solve this problem, GPS double-difference model 

and many other specific function models have been developed to eliminate systematic errors e.g. 

unmodeled atmospheric delays, multipath effect and hardware delays. However, relatively less 

attention has been given to the noise reduction in the deformation monitoring area. In this paper, we 

first proposed a new carrier phase elevation-dependent precision estimation method with Geometry-

Free (GF) and Melbourne-Wübbena (MW) linear combinations, which is appropriate to regardless 

of Code Division Multiple Access (CDMA) system (GPS) or Frequency Division Multiple Access 

(FDMA) system (GLONASS). Then, the method is used to estimate the receiver internal noise and 

the realistic GNSS stochastic model with a group of zero-baselines and short-baselines (served for 

the GNSS and Earth Observation for Structural Health Monitoring of Bridges (GeoSHM) project), 

and to demonstrate their impacts on the positioning. At last, the contribution of integration of GPS 

and GLONASS is introduced to see the performance of noise reduction with multi-GNSS. The 

results show that the higher level receiver internal noise in cost effective receivers has less 

influences on the short-baseline data processing. The high noise effects introduced by the low 

elevation satellite and the geometry variation caused by rising and dropping satellites, can be 

reduced by 10%-20% with the refined carrier phase elevation-dependent stochastic model. 

Furthermore, based on observations from GPS and GLONASS with the refined stochastic model, 

the noise can be reduced by 30%-40%, and the spurious signals in the real-life bridge displacements 

tend to be completely eliminated. 
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1 Introduction 

Global Navigation Satellite System (GNSS) is now gradually recognized as an essential tool 

for Structural Health Monitoring (SHM) of bridges, high-rise buildings, dams and other civil 

engineering infrastructures. In recent years, a large number of case studies on deformation 

monitoring of large bridges using GNSS have been carried out (Meng et al., 2003, Meng et al., 2004, 

Chan et al. 2006, Meng 2007, Psimoulis et al., 2008, Moschas and Stiros 2011, Yi et al., 2013, Yu 

et al., 2014, Han et al., 2016), and its ability of providing 10-20 mm precision displacement and of 

identifying up to 10 Hz frequency vibration signal has been acknowledged. The natural frequencies 

of the bridge could even be detected with the spectral content of the signal-to-noise (SNR) of GPS 

signals (Peppa et al., 2018). The latest advancements on GNSS based SHM method and platform 

development can be found from Yu et al. (2016), Jiang et al. (2017), Xiong et al. (2017), Roberts et 

al. (2017), Peppa et al. (2018) and Meng et al. (2018). 

Generally, for bridge deformation monitoring, Real-time Kinematic (RTK) GNSS data 

processing is always applied to provide instantaneous three-dimensional (3D) positions of 

monitoring points (Tamura et al., 2002, Guo et al., 2005, Elnabwy et al., 2013, Górski 2017). For 

attaining high precision, one or more reference station(s) will be established near the bridge at a(the) 

stable place(s) to form short baselines (<5 km) with monitoring stations. Due to the short baseline, 

double-difference (DD) technology is widely used to eliminate the common errors in both stations’ 

GNSS measurements. To further improve the efficiency of positioning, the baseline length 

constraint, monitoring station coordinate constraint and triple difference methods were proposed. 

All of them have been confirmed a good performance in the real-life bridge monitoring experiments 

(Dai et al., 2007, Liu et al., 2011). 

However, the large background noise commonly exists in the GNSS observation. Hence, the 

low-frequency component (primarily under 0.05 Hz) of the displacement time series will contain 

bias, and, in the high-frequency component, the vibration amplitude of the response under the 

ambient excitation will contain false distortion signal or be covered by noise (Górski 2017). This is 

still a big problem that prevents the GNSS based monitoring technology to extract displacements in 
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high accuracy and to detect correct vibration response. However, the noise level control method in 

deformation monitoring is still rarely studied. 

The GNSS observation noise mainly comes from receiver internal noise, multipath effects and 

residual atmosphere delays, etc. (Amiri-Simkooei and Tiberius, 2007, Amiri-Simkooei 2009). Apart 

from the functional model of the GNSS data processing, a stochastic model describes the 

observation precision relating receiver internal noise and residual errors, and the correlations 

between the variables (Li et al., 2015a, Li 2016, Li et al., 2017a). The adequate stochastic model is 

a precondition for the reliable ambiguity resolution and precise positioning (Teunissen 2007, Amiri-

Simkooei et al., 2016). Hence, significant research efforts have been put in refining the GNSS 

stochastic model, and the elevation dependence characteristic of GNSS, the cross-correlation 

between observation types and time-correlation have been acknowledged (Amiri-Simkooei et al., 

2013a, Amiri-Simkooei 2013b, Li et al., 2015b). However, the empirical elevation-dependent models 

are still widely used in the GPS data processing software, for instance, GAMIT and Bernese (Dach 

et al., 2007, Herring et al., 2010). This may result in a lower integer ambiguity resolution successful 

rate and positioning accuracy (Li et al., 2008, Yang et al., 2017, Schön and Brunner 2008). In this 

case, for the high accuracy monitoring of displacements, the realistic stochastic model estimation 

and application could be a way to deal with the high level noise in SHM and needs to be further 

studied. In addition, much efforts have been made in positioning with data from multiple GNSS 

(Multi-GNSS). Its great advantages include the increasing of the number of visible satellites, the 

strong geometric strength, the rapid ambiguity resolution and the high positioning precision 

(Odolinski et al., 2015, Teunissen et al., 2014, Yu et al., 2017, Li et al., 2017b, Liu et al., 2017, Geng et 

al., 2017). As a consequence, multi-GNSS could be an another way to reduce the noise level and 

eliminate the false distortion signals. However, the methods often used are only appropriate to 

CDMS system, such as GPS and BeiDou Navigation Satellite System (BDS). 

In this study, we firstly proposed a new single differential (SD) geometry-free method to 

estimate the carrier phase elevation-dependent precisions of GPS and GLONASS with MW and GF 

combinations. Then, based on a testing platform served for the GeoSHM project, a project sponsored 

by the European Space Agency, the internal noise of two receiver brands and a realistic stochastic 

elevation based model was built with a group of zero baselines and short baselines. Thirdly, the 

effect of the realistic GNSS elevation-dependent weighting and integration of GPS and GLONASS 
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on positioning are numerically analysed. Finally, a real-life bridge monitoring data set is applied to 

demonstrate the performance of the realistic GNSS elevation-dependent stochastic model and the 

multi-GNSS application in the false distortion signal elimination. 

2 Elevation-dependent precision estimation with SD geometry-free method 

2.1 The SD Geometry-free functional model 

As pseudorange is easily contaminated by multipath and hardware delays, biases in the 

pseudorange are significant (Yu et al., 2017, Chu and Yang 2018, Chu et al., 2016). Hence, only 

carrier phase observations are usually used in our monitoring work and only the elevation-dependent 

precision of carrier phase is estimated in this study. As proposed by Li et al. (2016), SD geometry-

free stochastic model estimation has the advantages of only one satellite involving in a SD 

observation and no mathematical correlation between satellites, which is suitable for the stochastic 

modelling estimation. On ultrashort (shorter than 10 m) or zero baselines, the systematic errors can 

be assumed to be completely eliminated in a SD observation. In this way, only the pure random 

errors remain, which can help us to estimate the precision of the satellite-specific variances (the 

stochastic model). 

Then the single-epoch, single-frequency between-receiver SD geometry-free GPS or 

GLONASS phase observation equation can be read 

 j j s j j je t N              (1) 

where the subscripts j  is the frequency number ( 1,2j  ); s  is the number of tracked GPS or 

GLONASS satellites, 1, ,[ , , ]T

j j s j       is the vectors of the j-frequency SD phase 

observations expressed in cycles; 
1[ , , ]s T       denotes the vector of s SD satellite-

receiver ranges; se  denotes the s-column vector with all elements of ones; jt  is the SD receiver 

clock errors for phase measurements and also including hardware delays; j  is the wavelength of 

the j-th frequency; 1, ,[ , , ]T

j j s jN N N     is the SD integer ambiguity vector of the j-th 

frequency, which are expressed in cycles. Note that in this study, the receivers we use are with the 
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same hardware configuration (i.e., same manufacturer, receiver type, firmware version, and antenna 

type) for GLONASS data. Thus, the inter-frequency bias (IFB) will be out of the consideration [44]. 

In this study, the zero baseline and ultrashort baseline are used, and the antennas are set on the 

known positions. In theory,   equal zeros in the zero-baseline or obtained by the known short-

baseline, which can be moved to the left side of the observation equations. Then, the parameters

jt  and jN  are left. However, Eq. (1) is rank-deficient since the coefficients of jt  and 

jN  satisfy  

 1[ , ] 0
j

s j s s

s

e I
e


 

 
 

 
 (2) 

That means jt  are dependent on the SD ambiguities jN  with rank deficiency 1. In this case, 

we propose a new method to obtain the fixed SD ambiguities jN  in Eq. (1) directly for every 

satellite without reference satellite. 

Geometry-Free (GF) and Melbourne-Wübbena (MW) linear combination are two 

combinations often used in the cycle slip detection and the ambiguity resolution, due to the 

advantages of eliminating the satellite clock offset, the receiver clock error and the distance-

dependent term (such as tropospheric and ionospheric delay). The single difference MW and GF 

combinations with the dual-frequency carrier phase are: 
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 (3) 

where 2

1

f
g

f
 . 1f  and 2f  are frequencies of GPS or GLONASS dual-frequency observation; 

1P  and 2P  are SD pseudorange observations, and 1 , 2  are the corresponding 

wavelengths. The standard deviation of MW and GF combinations are  
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where   and P  are the undifferenced standard deviation in theory. 

Based on Eq. (3), the float solution of SD ambiguities in the two frequencies can be solved as: 
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 (5) 

Table 1 GPS and GLONASS dual-frequency signals. (k is a frequency number of the signals transmitted by 

GLONASS satellites.) 

Sat. System L1 (MHz) L2 (MHz) 

GPS 1,575.42 1,227.60 

GLONASS 1,602+k*0.5625 1,246+k*0.4375 

According to the frequencies of GPS and GLONASS dual-frequency signals in Table 1, Eq. 

(5) can be rewritten as 
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  (6) 

and the accuracy of SD ambiguities are 
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With Eq. (4) and Eq. (7), the accuracy of estimated SD ambiguities can be obtained. To fixed 

the ambiguities estimated in Eq. (6), in this study, a small search produce is applied and the search 

space is decided by the accuracy of the float SD ambiguities, as 
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 (8) 

where 1N  and 2N  is the candidates and “    ” means rounding up to the nearest integer. 

“round” indicates fixing to its nearest integer. Generally, without significant disturbed delays and 

multipath effects, we assume the standard deviation of undifferenced carrier phase and code 

measurements are 0.5 cm and 1 m. 
1
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2
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N


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 will be limited into only 2 cycles. 

Then, 1N  and 2N  are fixed ambiguities with the candidates 1N  and 2N  who satisfy  
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 (9) 

After fixing the SD ambiguities, the Eq. (1) can be rewritten as  

  j j s jE e t     (10) 

where 

 j j j j j j jN l             (11) 

and only jt  left to be estimated. To resolve parameters, the least squares model was applied, 

read as 

 , ( )y yyy Bx Q blkdiag Q    (12) 

where 1, ,[ , , ]T

j s jy l l ; 2 sB I e   is the design matrix; and [ ]T

jx t  . The symbols   

is Kronecker product. y  is the random observation noise assumed to be normally distributed with 

zero mean and covariance matrix of yyQ . yyQ  is the covariance matrices of SD phase 

observations. 
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The benefit of this method is that it not only can be used in CDMA systems, including GPS, 

BeiDou and Galileo, but also available for FDMA system (GLONASS). 

2.2 Carrier Phase Elevation-Dependent Precision Estimation 

In this study, we only consider the effect of elevation-dependent precision on structural 

monitoring, and the cross and time correlation within observations are ignored, due to they have a 

marginal effect on positioning solutions (Li 2016). 

In general, the variance of satellites’ observations is constant for a slight elevation angle 

variation. Meanwhile, in order to smooth the noise in MW observations mainly caused by 

pseudorange measurements to improve the reliability of SD ambiguity fixing, n consecutive epochs 

over a short time duration are resolved together. The observation equation of n epochs are read as 

 ( )n yy I B x     (13) 

where 1[ , , ]T

ny y y ; 1[ , , ]T

nx x x  . Since the variance is unique over these n  epochs 

for one satellite, the stochastic model for Eq. (13) can be written as  

 
jnyy

Q I Q    (14) 

where  

 
2 2

1, ,2 ([ , , ])
j j s jQ diag      (15) 

is the variance matrix of SD phase observation on j-frequency, and ,i j  is the precision of 

undifferenced observation for the i-th satellite. It can be estimated by Eq. (16) (Li et al., 2015a) 
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i j
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 (16) 

where 
,i j

k

y  is the residual SD residuals of the j-frequency of the i-th satellite at k epoch. ,i jr  is 

the redundancy of the i-th satellite. It can be calculated by 

 , ( 1) /i jr s s    (17) 

For more details regarding derivation of Eq. (16) and (17), please see Li et al. (2015a). 
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Finally, the precisions of phase observations for the i-th satellite associate with the mean value 

of elevation angles over n epochs can be obtained by Eq. (16). In this paper, we estimate the 

precision of phase observation every 1° elevation angle. 

3 Experiments and result analysis 

3.1 Data description 

GeoSHM (GNSS and Earth Observation for Structural Health Monitoring of Bridges) is a 

feasibility study project funded under the Integrated Application Promotion (IAP) program of the 

European Space Agency (ESA) in August 2013 (Meng et al., 2018). It is a system that uses 

integrated GNSS, Earth Observation technologies and environmental data to offer bridge owners an 

effective tool to assess the operational conditions of their assets. In order to make a system that is 

more robust, accurate, useful, reliable and cost-effective, a receiver assessing and data quality 

testing platform served for GeoSHM with zero-baselines and short-baselines was established on the 

roof of the Nottingham Geospatial Building on the Jubilee Campus of the University of Nottingham, 

UK.  

A GNSS reference station (named SHM7) with a Leica GM30 receiver and a LEIAR 10 

antenna was set on a permanent point and four receivers with two LEICA GM30 receivers (named 

SHM5 and SHM6) and two PANDA TI4100 receivers (named SHM8 and SHM9), developed by 

Wuhan University in China, were connected via a signal splitter (GPS RMS18 splitter) with a 

LEIAR 10 antenna on an experiment point (monitoring station). In this case, the monitoring station 

with four receivers is the zero baseline. The short baseline is formed by the reference and monitoring 

stations, and linked to the baseline length 6.97 m. Both antennas were mounted in an open sky 

environment. Fig 1 illustrates the configuration of the baselines includes the receivers and the 

splitter used in this experiment. 

 

 

Fig 1 Zero and short baseline experiment setup, the receivers and the splitter. 
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All the LEICA receivers were set to collect GPS and GLONASS data, and the PANDA 

receivers collect only GPS data. The data were collected for two days (48 hour) with a sampling 

interval of 1 s. The cutoff elevation was set to 10°. Fig 2 shows the sky plot of the GPS and 

GLONASS visibility and the number of satellites observed with its corresponding Position Dilution 

of Precision (PDOP) values during the whole day. In the experimental session, 31 GPS satellites 

were tracked without G04 and 23 GLONASS satellites without R12. From right panel of Fig 2, it 

can be seen that the number of GPS satellites observed at one epoch over the whole day is more 

than 8 mostly. However, the PDOP values change dramatically for GPS, due to the variation of 

geometry strength. For GLONASS, the visible satellite is almost less than 8 at one epoch. If assumed 

8 satellites are needed to achieve reliable positioning, the GLONASS only data processing will not 

be shown in this paper. After integrating GPS and GLONASS data, more than 15 satellites can be 

observed and the PDOP value changes around 1.3. Thus, a stable precision of positioning could be 

shown in the GPS+GLONASS data processing. 

 

Fig 2 Sky plot and the number of visible satellites with PDOP time series for the whole day. (In the right panel, G 

– GPS only; G+R - GPS+GLONASS) 

3.2 Receiver internal noise assessment 

Generally, the stochastic properties of observations are affected by both receiver-specific 

internal noise errors and environmental errors. At first, the zero baseline pairs SHM5-SHM6 

(LEICA) and SHM8-SHM9 (PANDA) were processed respectively to assess the receiver internal 

noise. Based on the SD geometry-free function model, we first fixed the SD ambiguities of every 

satellite by MW and GF combinations with n=300 epochs, and then obtained the residuals of GPS 

and GLONASS satellites. The mean precisions of each satellite for every elevation interval of 1° 
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were estimated with Eq. (16). Finally, the overall precisions of all of the frequency types with 

elevation variation are calculated by averaging the mean precisions of all satellites. The residual 

time series as a function of the elevation for all of the satellites are shown in Fig 3, and the estimated 

precisions of L1 and L2 are shown in Fig 4. The red dash line in Fig 3 is the mean value of all of 

the precisions for each frequency. 

 

Fig 3 Residual time series of all satellites changes with elevation variation from 10° to 90°. The red dash line is the 

mean precision of all satellite observation. 

For Fig 3 and Fig 4, the results show that the residuals and precisions of phase observations 

are elevation-dependent for both systems, both frequencies and both receivers. However, different 

features shown in different systems, frequencies and receivers. For GPS, the residuals series of L1 

are overall better than L2 in both receivers, especially in elevations lower than 40°. From the 

perspective of receivers, LEICA is slightly better than PANDA receivers on L1. However, on L2, 

the residuals from the PANDA receiver pairs are extremely larger than the LEICA ones. That means 

for two receiver pairs, the noise in L1 is smaller than L2, and the internal noise of the PANDA 

receiver is higher than the LEICA receiver. In contrast, for GLONASS system, the noise is lower 

for L2 than that of L1, and the elevation-dependent characteristic is not that obvious as GPS. 
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Fig 4 Estimated elevation-dependent precisions and their modeling with the two predefined models. 

As proposed by Li et al. (2015a, 2016), the predefined functions of elevations, exponent type 

and sine type, can achieve a good result in descripting the observation precisions with elevation 

changes. Then, we employ the following two models to fit the precisions: 

 
0 1 0

2 2 2

: exp( / )

: / sin ( )

A c c

B a b

  

 

   


 

 (18) 

where 0c , 1c , 0 , a , and b  are the fitting parameters. Model B is an classic empirical model 

(Herring et al., 2010, Qian et al., 2016, Li and Zhang 2014) often used in the GPS data processing, and 

the values of a  and b  are usually set to 3 mm. The fitted curves of Model A and Model B are 

shown in Fig 4, and the estimated fitting parameters can be found in Table 2. 

It is clearly shown that, from Fig 4, the two models can fit the overall elevation-dependent 

precisions very well and they show a high agreement with each other. For L1 observations, the 

precision is higher than 1 mm for all data set. Except for GLONASS L2 observations whose 

precision is also better than 1 mm, the internal noise is larger than 2 mm for GPS at elevation 10°. 

The lowest precision is shown in L2 frequency of the PANDA receivers with larger than 4 mm for 

10° elevation. However, the precisions tend to be constant to 0.5 mm for the elevation upper than 

30° for all observations. 
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Table 2 Fitting parameters of two predefined elevation-dependent models. 

 L1 L2 

 Model A Model B Model A Model B 

 
0c  

1c  
0  a  b  0c  

1c  
0  a  b  

LEICA GPS 0.25 1.04 15.71 0.22 0.15 0.36 4.71 9.46 0.01 0.33 

LEICA GLONASS 0.48 0.44 28.69 0.53 0.13 0.38 0.63 15.86 0.38 0.12 

PANDA GPS 0.31 1.10 16.99 0.29 0.18 0.50 5.79 13.49 0.01 0.60 

3.3 GPS/GLONASS carrier phase elevation-dependent precision estimation with short 

baselines 

In this section, SHM7 with LEICA GM30 receiver served as the reference station and four 

receivers connected with a single antenna set to be a monitoring station were formed a group of 

short baselines. Same as zero-baselines, at first, we estimated the observation precisions based on 

the SD geometry-free method, and get the residuals of L1 and L2 of the four baselines for the two 

systems. The residual time series as a function of elevations for all satellites are shown in Fig 5. 

 

Fig 5 Residual time series changes with the elevation for all satellites. The red dash line is the mean precision of 

all residuals. 
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As it is shown, the carrier phase residuals for all data are overall elevation-dependent. The 

mean precision is slightly better for L1 observations than L2. Even though the high level of internal 

noise, the highest precision are both found in PANDA results for the two frequencies. For the 

residual changes with elevation, when the elevation is lower than 30°, the maximum residual can 

even reach up to 4 cm, mostly within 2.5 cm in GPS. GLONASS is slightly lower, within 2 cm and 

2.5 cm for L1 and L2 observations respectively. For the elevation higher than 30°, the residual time 

series tend to converge within 4 mm with the increasing of elevation angles until to 90°. It 

demonstrates that the value of 3 mm usually used as the prior precision of GNSS measurements is 

unrealistic. Fig 6 gives the residual and elevation time series of PRN 1 satellite for the LEICA and 

the PANDA receivers in two consecutive days. We can see that the maximum residual is about 2.5 

cm and the large residuals are shown when the elevation angles are lower than 30°. For the time 

series of two consecutive days, they match very well with each other when the time series of the 

second day was moved backward for 240s to consider sidereal day effects of GPS. It can 

demonstrate that the precision characteristic of GNSS measurements in a specific environment is 

repeatable for a sidereal day. In this case, a realistic stochastic model can be established for a 

permanent monitoring point like this in the application of SHM to describe the precision of GNSS 

measurements. 

 

Fig 6 Residual and elevation time series of PRN 1# in two consecutive days. The residual time series of day of 

year 23 was moved backward for 240 seconds (16 epochs for 15s sampling rate). 

Table 3 Fitting parameters estimated of two predefined elevation-dependent models. 

 L1 L2 

 A B A B 
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0c  

1c  
0  a  b  0c  

1c  
0  a  b  

LEICA_SHM5 GPS 0.85 10.26 24.89 0.01 1.67 1.02 9.83 25.41 0.85 1.66 

LEICA_SHM6 GPS 0.84 10.18 25.21 0.01 1.67 1.02 9.78 25.49 0.86 1.66 

LEICA_SHM5 GLONASS 1.36 5.89 34.10 2.10 1.21 2.47 10.54 14.82 2.10 1.50 

LEICA_SHM6 GLONASS 1.33 5.67 34.12 2.09 1.19 2.02 10.44 15.02 2.09 1.51 

PANDA_SHM8 GPS 0.76 9.64 25.96 0.16 1.59 1.03 10.15 24.92 0.73 1.69 

PANDA_SHM9 GPS 0.74 9.51 26.41 0.17 1.58 0.97 9.91 25.79 0.78 1.67 

Like what we have done for the zero-baselines, we estimated elevation-dependent precision 

and fitted curves with Model A and B for the short-baselines in Fig 7, and the estimated fitting 

parameters are shown in Table 3. It can be seen that Model A has a better fitting performance than 

Model B. However, the fitted curves and parameters estimated are quite similar for the two 

frequencies and two receiver brands. Although the receiver noise level is high for the PANDA 

receiver, they give almost the same result with the LEICA receiver. Based on this experiment, we 

know that the higher internal noise of receivers in millimeter level will not influence the baseline 

solution too much. The cost effective receivers can also give the same performance compared with 

the high quality equipment. 

 

Fig 7 Estimated elevation-dependent precisions and their modelling with two predefined models in short-baselines. 
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To further analyse the effect of the refined stochastic model in positioning, we processed the 

data of the short-baseline formed by the LEICA receiver pair and the PANDA receiver pair with the 

home-made GNSS real-time data processing software named GNSSDEM. The GNSSDEM 

software now supports dual- and triple-frequency data processing with GPS, BeiDou, GLONASS 

and integrated GPS, BeiDou and GLONASS using the double difference (DD) method. 

Table 4 GPS and GLONASS data processing models and strategies used in GNSSDEM. 

Options Processing Strategy 

Ephemeris GPS and GLONASS broadcast ephemeris 

Signals GPS L1/L2, GLONASS L1/L2 

Elevation cutoff angle 10° 

Troposphere modeling Corrected with GPT2w model (Lagler et al. 2013) 

Ambiguity resolution and validation Wide-lane (WL) and Narrow-Lane (NL) ambiguities are solved by 

LAMBDA with ratio = 2 

Cycle slip detection SD MW+GF observations and DD ionosphere-free (IF) observations for 

GPS and SD MW+GF observations for GLONASS 

GLONASS IFB Out of the consideration for receivers with the same hardware 

configurations 

For this section, only dual-frequency data of GPS and GLONASS were processed. The data 

processing strategies are shown in Table 4. During the data processing, we divided the ambiguities 

into Wide-lane (WL) and Narrow-lane (NL) ambiguities. The WL ambiguities are resolved first 

with LAMBDA. Then, after WL ambiguities are fixed, the normal equation will be updated and the 

LAMBDA will be used to search and fix the NL ambiguities. For comparing purpose, we used the 

Model B with a=b=3mm (Herring et al., 2010, Qian et al., 2016, Li and Zhang 2014) as the empirical 

model and the Model A with parameters estimated in Table 2 as the refined model to process the 

GPS data only, since Model A gives a better fitting performance. The results (only SHM7-SHM5 

and SHM7-SHM8) are listed in Fig 8. Comparing the refined model result with the empirical one, 

we can see that the precision of residual time series with the refined model seem to be improved to 

some extent. At the same time, the LEICA and the PANDA receiver show almost the same results. 

The paper also gives the standard deviations (STD) of the time series, which can be calculated with: 
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where   is the average bias; n  is the number of epochs. The statistical precision of time series 

are shown in Table 5. We can see that the time series with the refined model is higher than the ones 

with the empirical model, with the precision improvement from 10% to 20%, and the four baselines 

show the same STD values with a same model. This also confirmed that the PANDA receiver with 

a higher internal noise level can have the same positioning performance with the high quality ones. 

 

Fig 8 Baseline errors of short-baseline formed by LEICA receiver pair (top) and PANDA pair (bottom) estimated 

with DD method. In the data processing, we use the empirical model and the refined model respectively as the 

observation stochastic model. 

 

Fig 9 Baseline errors of integrated GPS and GLONASS data processing for SHM7-SHM5 with refined stochastic 

model. 
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Then, we process the integrated GPS and GLONASS data for SHM7-SHM5 with the refined 

model in Table 3. The STD values for the baselines solutions are also listed in Table 5. Compared 

with the GPS only empirical model solutions, the precision improves up to 30% to 40%. 

Table 5 STD of short-baseline solutions, and the improvements that the refined model solutions (GPS and 

integration of GPS and GLONASS) have compared with GPS empirical model. 

 G Empirical Model 

(mm) 

G Refined Model 

(mm) 

G+R Refined Model 

(mm) 

Improvement (%) (G Refined Model/ 

G+R Refined Model) 

 N E U N E U N E U N E U 

SHM5-SHM7 3.5 2.2 5.2 2.9 1.8 4.7 2.0 1.5 3.5 17.1/43.9 18.2/31.8 9.6/32.7 

SHM6-SHM7 3.5 2.2 5.2 2.9 1.8 4.7 2.0 1.5 3.5 17.1/43.9 18.2/31.8 9.6/32.7 

SHM8-SHM7 3.5 2.2 5.2 2.9 1.8 4.7 - - - 17.1/- 18.2/- 9.6/- 

SHM9-SHM7 3.5 2.2 5.2 2.9 1.8 4.7 - - - 17.1/- 18.2/- 9.6/- 

 

Fig 10 Box plots of SHM7-SHM5 baseline errors. (GPS E – GPS single system with empirical stochastic model, 

GPS R – GPS single system with refined stochastic model, G+R R – GPS/GLONASS system with refined 

stochastic model) 

Additionally, for better distinction, the box plots of SHM7-SHM5 baseline errors are shown in 

Fig 10. On each box, the central mark is the median, the edges of the box are the 25th and 75th 

percentiles, and the whiskers extend to the extreme data points. We can see the extreme data points 

and the values within the 25th and 75th percentiles are all trend to be smaller after applying refined 

stochastic model and using multi-GNSS observations.  

Fig 11 is presented the spectra of the baseline errors of SHM5-SHM7 in Fig 8 and Fig 9. It is 

found that the three data processing schemes show the same noise characteristics, with 0.001 Hz to 
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0.03 Hz colored noise and white noise in other frequency bands. However, the noise level for GPS-

only with the empirical model is the highest in all directions and all frequency bands and the lowest 

is found in GPS+GLONASS data with the refined stochastic model. Though the noise level 

reduction is small comparing with the empirical model, the refined stochastic model could be 

beneficial for the natural frequency detection in the vibration signals. 

 

Fig 11 Spectral analysis for the data processing of SHM5-SHM7. (GPS E – GPS single system with empirical 

stochastic model, GPS R – GPS single system with refined stochastic model, G+R R – GPS/GLONASS system 

with refined stochastic model). 

To comprehensively state the performance of the realistic stochastic model in GNSS data 

processing, the paper also carried out a single epoch ambiguity resolution test, which means the data 

of one epoch is resolved independently with no precious epochs’ solutions accumulated. Then, the 

single-epoch ambiguity success rate (ASR) is counted, which is the ratio of epochs with correctly 

resolved ambiguities with respect to the number of all processed epochs (Paziewski and Wielgosz 

2017). The ratio threshold is set to 2. To reduce the computation burden, the sampling rate of the 

GPS and GLONASS data is re-sampled to 15s with TEQC software in advance (Estey and Meertens 

1999). That means 5760 epochs in total a day are available for the test. The results are shown in Fig 

12.  
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Fig 12 Ratio of single epoch ambiguity resolution of SHM5-SHM7. (GPS E – GPS single system with empirical 

stochastic model, GPS R – GPS single system with refined stochastic model, G+R R – GPS/GLONASS system 

with refined stochastic model). The sampling rate of the data has been re-sampled to 15s by TEQC software (Estey 

and Meertens 1999). 

One can found that, since the data quality is good enough for this session, the ASR is higher 

than 98% for GPS-only data regardless of empirical and refined model. However, the ASR of 

refined model is slightly better than the empirical model with higher than 99%. After combined with 

GLONASS data, the ASR can achieve to 100% for both of the empirical and refined model. From 

the ratio value of every epoch, however, we can noticed that the refined model is larger than the 

empirical model most of the time. Therefore, the refined stochastic model may give a more realistic 

weight for the observations, which will be beneficial for the ambiguity resolution. 

3.4 Performance of the refined stochastic model and multi-GNSS used on the real-life 

bridge monitoring 

In order to show the application performance of the realistic stochastic model and multi-GNSS 

on the bridge monitoring, we used the refined model estimated previously on the real-life bridge 

monitoring data in GeoSHM project. 

SHM4 is one of the monitoring stations setting on the top of the southern tower of the Forth 

Road Bridge (FRB). The reference station is on the roof of bridge control room. Both of them 

equipped with the LEICA GM30 receivers and the LEIAR 10 antennas (same with the zero-

baselines and the short-baselines experiments). Sampling rate is set to 20 Hz. Fig 13 depicts the 

location of SHM4 on the FRB and the defined Bridge Coordinate System (BCS). As we can see, 

the sky view SHM4 is clear above the elevation angle 10°. 

 

Fig 13 The defined Bridge Coordinate System (BCS) and antenna setting-up at SHM4. 
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Fig 14 Satellite visible during the data session. 

In this study, we selected a specific session during 16:00-17:00 on July 25th 2017, when there 

is an example to demonstrate the application of the realistic stochastic model and multi-GNSS to 

deal with the false distortion signal. However, this is a common phenomenon that can be seen all 

the times at all stations. Fig 14 shows the sky plot of SHM4 during this hour. The right panel gives 

the time lines of the tracked GPS satellites with the elevation variation indicated by color bar, and 

the PDOP values. 

Table 6 Four GNSS data processing schemes applied in the analysis. 

Schemes Satellite System Stochastic Model Cutoff Elevation Angle 

a GPS Model B with a=b=3mm 10 

b GPS Model B with a=b=3mm 15 

c GPS Model A with parameters in Table 3 10 

d GPS+GLONASS Model A with parameters in Table 3 10 

For comparing purpose, we processed the GNSS data of SHM4 in the four schemes listed in 

Table 6. Because Model A always gives the better fitting result, in schemes (c) and (d), Model A is 

applied. Fig 15 denotes the displacement time series with the mean value removed for schemes (a) 

and (b). The high frequency components of the displacement are also shown, which were obtained 

by using the eight-order Type 1 Chebyshev high-pass digital filter with pass-band 0.05 Hz and stop-

band 1.1 Hz (Meng et al., 2007, Górski 2017), as natural frequencies of the bridge are commonly 

shown in this band. 
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Fig 15 Structural displacements and their high frequency components for empirical model schemes (a) and (b). 

For Fig 15(a), the displacements in XB is obvious, which is caused by the traffic load. For YB 

and ZB component, the displacements are small and they are coupled together. After bandpass filter 

processing, the vibration signal in XB is clearly shown. For YB and ZB component, only noise signal 

within 2 mm in YB and 5 mm in ZB exist between 16:00 to 16:30. However, it seems to be an 

excitation at 16:33. The amplitude increases to 5 mm and 10 mm in YB and ZB respectively. After 

checking with wind and traffic data, we know that the wind strength, direction, and the traffic load 

had no distinct variations. As seen in Fig 14, around 16:33, the G17 is rising into the tracked 

satellites list and the elevation is low. Fig 16 depicts the posteriori residuals for GPS L1 observations. 

We can see that the posteriori residuals of G17 is extremely larger than other satellites. Therefore, 

we can conclude that the signal between 16:30 to 16:40 are large noise caused by G17. 

Note that this may cause two problems. Firstly, the large noise can cover the small amplitude 

vibration signals. Secondly, it could be recognised as a signal to be extracted from the displacements. 

In order to reduce the false signal, we rise up the cutoff elevation to 15° in scheme (b). We can see 

that the signal between 16:30 and 16:40 is excluded. However, the noise is still large between 16:45 
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to 17:00. From Fig 14, it indicates that this is because the dropping of G27. The PDOP value is 

changing and the geometry strength is becoming weak. 

 

Fig 16 Posteriori residuals for GPS L1 observations. There is an upward shift of 20 mm successively from G01. 

As previously mentioned, the stochastic model describes the observation precisions and 

weights the observations in coordinate resolution. Joint use of the observations from multi-GNSS 

can enhance the geometry strength. Thus, we process the data with scheme (c) and (d). The results 

are shown in Fig 17. Compared with scheme (a), the amplitude of noise in scheme (c) between 16:30 

to 16:40 reduces to only half the size of scheme (a). However, the large noise is still exist. After 

processing the data with integrated GPS and GLONASS, we can see that the noise is completely 

excluded. As seen in Fig 14, the PDOP values during the whole hour is stable. The rising and 

dropping satellites will not have extreme effects on positioning. More satellites observed can also 

smooth the large residual errors of low elevation satellite, which makes a low level noise and stable 

precision for the bridge monitoring time series. 
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Fig 17 Structural displacements and their high frequency components for refined model schemes (c) and (d). 

 

Fig 18 STD calculations for 6 sessions (every 10 minutes) in YB and ZB directions. 

Fig 18 shows the STD values for every 10 minutes in YB and ZB directions. As shown, even 

though the STDs of displacements in 0.05 Hz - 1.1 Hz are only within several millimeters, the STDs 

of noise variations are larger than 1 mm and 3 mm in YB and ZB directions for GPS with the empirical 

stochastic model, which could be recognized as a response signal. The response signals can also be 

covered by the large noise. Fig 19 shows the spectra of the baseline errors of SHM4-SHM1 for 

scheme a, c, and d. One can clearly notice that, except for the noise level reduction in all frequency 

bands for the refined model, the amplitude of natural frequency of 0.18 Hz are significantly reduced 

in scheme d. However, the spectral peak at 0.18 Hz is still noticed. It demonstrates that the noise 
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amplifies the amplitude of the natural frequency of the bridge, which will provide a wrong parameter 

for the bridge statement assessment. 

 

Fig 19 Spectral analysis for the data processing of SHM4-SHM1. 

 

Fig 20 Ratio of single epoch ambiguity resolution of SHM4-SHM1. (GPS E – GPS single system with empirical 

stochastic model, GPS R – GPS single system with refined stochastic model, G+R R – GPS/GLONASS system 

with refined stochastic model). The sampling rate of the data has been re-sampled to 1s by TEQC software (Estey 

and Meertens 1999). 

In addition, Fig 20 shows the single epoch ambiguity resolution performance with the data of 

SHM4-SHM1. Before the experiment, the data were processed to 1s by TEQC software as well. 

From Fig 20, the same phenomenon found in Fig 12 is shown. With the realistic model, the random 

errors in the GPS/GLONASS measurements can be reasonably described to improve the 

GPS/GLONASS integer ambiguity resolution success rate (Amiri-Simkooei et al. 2016). 

4 Conclusion 

In this study, we first proposed a GPS and GLONASS carrier phase elevation-dependent 

precision modelling method. Then, based on a testing platform served for the GeoSHM project with 

a group of zero-baselines and short-baselines, we analyse the impacts of receiver internal noise and 

refined GNSS stochastic model on the positioning. At last, the contribution of integration of GPS 
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and GLONASS is also introduced. After the experimental analysis, some useful conclusions can be 

summarised as follows: 

- The precision estimated for GPS and GLONASS measurements is overall elevation-dependent 

for both zero-baseline and short-baseline. In the zero-baseline experiment, the internal noise 

features are accounting for the systems, receiver brands and frequencies. For GPS observations, 

the precision of L1 is better than L2. The cost effective receiver PANDA has a high level 

internal noise than LEICA. For GLONASS, the elevation-dependent characteristic is not 

obvious compared with GPS. The precision of GLONASS L2 observation is slightly better 

than L1. 

- In the short-baseline experiment, however, we got almost the same precisions for GPS 

observations in L1 and L2 frequencies. The PANDA receivers with high internal noise can 

have the same performance with the LEICA ones. For GLONASS, the precision of L2 is worse 

than L1, and they show a lower mean precision compared with GPS. However, at low elevation 

region, they show a little bit higher precision than GPS. After fitting observation precisions of 

GPS and GLONASS by elevation-dependent functions, we use them in the DD data processing, 

and compare with the empirical model solutions. We found that the refined model can improve 

the precision of the baseline time series from 10% to 20%. If GLONASS data were joint, the 

precision can further improve by 30% to 40%. From further analysis with box plots, we found 

that the extreme data points and the values within the 25th and 75th percentiles are all trend to 

be smaller after applying the refined stochastic model and using multi-GNSS observations. 

- By using the refined model estimated with the short-baseline data into the real-life bridge 

monitoring data processing, the large noise caused by the observations of the low elevation 

satellites and rising and dropping satellites can be reduced. The integration of GPS and 

GLONASS with refined model tend to completely eliminate the false distortion signals. The 

ambiguity resolution rate is also improved with the refined stochastic model, since the random 

errors in the GPS/GLONASS measurements are reasonably described. 

Finally, the paper suggests that, for the long-term bridge deformation monitoring, the receiver 

internal noise, the realistic stochastic model can be evaluated and estimated in advance. Multi-GNSS 

data could be applied to achieve high precision of displacements and reliable vibration parameters. 
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