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Abstract

Frequency-dependent gain adjustments are routine in hearing-aid fittings, whether in matching to real-ear targets or fine-
tuning to patient feedback. Patient feedback may be unreliable and fittings inefficient if adjustments are not discriminable. To
examine what gain adjustments are discriminable, we measured the just-noticeable differences (JNDs) for level increments in
speech-shaped noises processed with prescription gains. []NDs were measured in the better ears of 38 participants with
hearing impairment using a fixed-level, same-different task. J]NDs were measured for increments at six individual frequency-
bands: a 0.25-kHz low-pass band; octave-wide bands at 0.5, I, 2, and 4 kHz; and a 6-kHz high-pass band. JNDs for broadband
increments were also measured. JNDs were estimated at d’ of | for a minimally discriminable increment in optimal laboratory
conditions. The JND for frequency-band increments was 2.8 dB excluding the 0.25-kHz low-pass band, for which the JND
was 4.5 dB. The JND for broadband increments was 1.5 dB. Participants’ median frequency-band and broadband JNDs were
positively correlated. J]NDs were mostly independent of age, pure-tone thresholds, and cognitive score. In consideration of
self-fitting adjustments in noisier conditions, J]NDs were additionally estimated at a more sensitive d’ of 2. These JNDs were
6dB for bands below | kHz, and 5dB for bands at and above | kHz. Overall, the results suggest noticeable fine-tuning
adjustments of 3 dB and self-fitting adjustments of 5dB.
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Introduction . - o
curves which maximize objective benefit may depend on

Frequency-dependent gain is the hearing-aid parameter
fundamental to restoring audibility to listeners with
hearing loss. This parameter, which we will refer to as
the frequency-gain response (FGR), is most commonly
set by the application of a prescription formula to pure-
tone thresholds. The FGR is then verified by real-ear
measurements (REMs) which assess the gains delivered
to the tympanic membrane, allowing the clinician to
account for ear canal resonance properties and fitting
software errors. While presenting speech-shaped noises
(SSNs) or recorded speech, gains at frequency bands are
adjusted to prescribed targets via hearing-aid fitting soft-
ware. FGR curves based on fitting software commonly
deviate from real-ear gains, and REMs help ensure that
prescription targets are met (Aazh & Moore, 2007; Aazh
et al., 2012; Leavitt et al., 2017).

This procedure does not guarantee objective benefit
nor patient satisfaction. Pure-tone thresholds do not pro-
vide a comprehensive measure of hearing status; FGR

abilities such as suprathreshold loudness perception, fre-
quency resolution, and even cognitive capacity (Amlani
& Schafer, 2009). Prescription formulas are constructed
on average data; while they can provide a competent
starting fit, patients often have their own preferences
and clinicians are required to make adjustments accord-
ingly (Dreschler, Keidser, Convery, & Dillon, 2008;
Jenstad, Van Tasell, & Ewert, 2003; Keidser, Dillon,
Carter, & O’Brien, 2012; Kuk, 1999; Nelson, 2001).
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Fine-tuning is the patient-centered practice of adjusting
parameters following the initial-fit or REM, and is largely
focused on the FGR (Anderson, Arehart, & Souza, 2018;
Jenstad et al., 2003; Thielemans, Pans, Chenault, &
Anteunis, 2017). Naturally, the literature largely examines
controlled and systematic fine-tuning (such as adaptive
fine-tuning or fine-tuning with ecological stimuli); this is
different from the unstructured fine-tuning routinely per-
formed in a quiet room to live voice. Troubleshooting
adjustments are also commonly made after a period of
real-world use in response to reports of hearing difficulty
or poor sound quality. These practices are often pro-
tracted, and there is a lack of both scientific evidence
and clinical guidelines on how to optimally adjust even
fundamental parameters (Anderson et al., 2018). Moore,
Alcantara, and Glasberg (1998) reported that an adaptive
fine-tuning gain procedure led to greater subjective and
objective benefit versus a manufacturer’s initial fit. Several
studies report that it is valuable to gradually adjust the
FGR to aid acclimatization and avoid overamplification
with first-time hearing-aid users (Marriage, Moore, &
Alcantara, 2004; Smeds, 2004). A pilot study by
Cunningham, Williams, and Goldsmith (2001) reported
no difference in objective and self-reported benefit
between groups of first-time hearing-aid users who did
and did not receive fine-tuning, suggesting that it is an
inefficient practice. Saunders, Lewis, and Forsline (2009)
similarly reported that fine-tuning had no effect on self-
reported benefit or satisfaction, although objective benefit
was not measured; it is possible that fine-tuning led to
some objective improvement that was not noticeable by
participants. Saunders et al. did however report some
benefit in that participants who received fine-tuning
wore their devices more. Self-adjustment technology is
becoming increasingly available, allowing patients to
instantly fine-tune their devices in highly acoustically vari-
able environments (Keidser & Convery, 2016). Evidence
suggests that these adjustments vary widely among lis-
teners, although the effect of such adjustments on
speech intelligibility is unclear (Boymans & Dreschler,
2012; Nelson, Perry, Gregan, & Van Tasell, 2018). The
efficacy and implementation of fine-tuning and self-adjust-
ment technology requires greater research. Even so,
adjusting the FGR—whether matching to a target with
REMs, fine-tuning the initial fit, or troubleshooting
to follow-up complaints—is a key component of the fit-
ting process.

There are no guidelines on the scale of adjustments that
should be made when fitting the FGR. Clinical practice
varies widely and hearing-aid fitting software permits gain
adjustments at levels of 1 dB (or less) at a range of manipu-
lable frequency handles. Fine-tuning could be unreliable
and inefficient if patients are unable to discriminate FGR
adjustments (frequency-specific or broadband changes in
output). It is unlikely that an FGR adjustment of a

magnitude less than what is discriminable will elicit
authentic patient feedback. This problem could be particu-
larly apposite for paired comparison fittings and self-fitting
technologies, in which empirically different parameter
alternatives could be perceptually indiscriminable, particu-
larly when in acoustically noisy environments. If adjust-
ments improve audibility, but are not noticeable, then self-
reported outcome measures will unlikely reflect an
improvement. Further, a patient may expect adjustments
to be immediately noticeable, which may lead to dissatis-
faction and nonuse if they are not (Demorest, 1984).

Even with REM adjustments, discrepancies occur
between the real-ear and target gain (Munro, Puri,
Bird, & Smith, 2016); current clinical guidelines suggest
fitting gain to prescription targets within tolerances
of £5dB for octave bands ranging from 0.25 to 6kHz
(British Society of Audiology, 2018), although there is an
absence of direct perceptual evidence on which to base
these values. Therefore, it is important to investigate the
just-noticeable differences (JNDs) for FGR adjustments.

Discrimination of spectral peaks in complex stimuli
is most germane to discrimination of FGR adjustments.
Turner and Holte (1987) compared the abilities of five
participants with normal hearing and eight participants
with hearing impairment to discriminate a second-for-
mant peak (1.82kHz, 0.65kHz bandwidth) in the vowel
/e/ at a range of presentation levels. A JND of 4 dB was
asymptotic at presentation levels of 40dB SPL and
above for participants with normal hearing. Four par-
ticipants with hearing impairment performed similarly,
and for several, discrimination improved with level.
JNDs for the remaining participants with hearing
impairment were greater than 9dB, only improving to
5dB with high-pass (HP) gain. Using three trained par-
ticipants with normal hearing, Moore, Oldfield, and
Dooley (1989) tested 1- and 8-kHz peak discrimination
in broadband noises. Stimuli surrounding the peak were
either presented at 30dB SPL (where level cues were
present) or a random level between 24 and 36dB
SPL; 1-kHz and 8-kHz JNDs were 2.1 dB and 2.5dB,
respectively, for peaks with bandwidths 0.5 times
their center frequency. Varying the presentation level
of stimuli had no effect on the JNDs. The disparity in
results between the two studies may be because of
stimulus differences or differences in the psychophysical
procedures; Moore et al. used a two-alternative forced-
choice task (2AFC) whereas Turner and Holte used a
4AFC task.

Profile analysis is an experimental paradigm which
tests the ability to discriminate variations in spectral
shape, typically an increment of a single pure-tone com-
ponent relative to background components (Green,
1988). Roving level across stimuli (within trials) is a fun-
damental technique employed to ensure that discrimin-
ation is performed on the basis of a change in spectral
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shape, rather than a change in the output of the auditory
filter centered at the increment. The application of pro-
file-analysis thresholds to FGR discrimination is there-
fore limited, as a gain increment at a frequency-band
may be discriminated based on the output of the corres-
ponding auditory filter or a change in spectral shape.
Lentz and colleagues (2003, 2004) were one of the few
to examine the effect of hearing impairment on profile
analysis. A negative effect was only identified when pre-
senting narrowly spaced stimuli. This suggests that the
excitation patterns of broadened auditory filters are
smoothed with this type of stimuli. Therefore, adjust-
ments within spectrally dense stimuli such as speech-
shaped noises or speech may be more challenging for
listeners with hearing impairment to discriminate,
although profile analysis has been seldom examined
with complex stimuli. Furthermore, weighting strategies
varied among participants, reflecting coding difficulties
not quantified by the audiogram. These results suggest
that the exact strategies used by listeners with hearing
impairment to discriminate spectral shape likely vary
from listeners with normal hearing.

There has been previous research into the broadband
FGR adjustments required to elicit a differing percept.
Dirks, Alstrom, and Noffsinger (1993) had nine partici-
pants with hearing impairment make same-different
judgments on varying FGR curves. Judgments were
based on speech intelligibility and sound quality attri-
butes. Presented over earphones, FGR curves were
adjusted from an National Acoustics Laboratory -
Revised (NAL-R) prescription reference for speech in
noise at 62dB SPL with a 3-dB signal-to-noise ratio
(SNR). Adjustments of at least 4dB were required to
elicit a different judgment for over half of participants.
The remaining participants—generally with more severe
impairments—could not differ between FGR curves with
adjustments as high as 11dB. In a similar pilot study,
Jenstad et al. (2007) had 23 participants with hearing
impairment complete loudness ratings and speech recog-
nition tasks with devices adjusted in overall gain. Speech
was presented at a baseline level of 60dB SPL. A nom-
inal adjustment of 4.5dB (from the fitting software) was
reported to be judged different. In a brief discussion,
Byrne and Dillon (1986) examined data from a separate
study (Byrne, 1986), which had 11 participants with
hearing impairment compare FGR curves presented
over headphones. An adjustment of 3dB or more
resulted in a statistically significant difference in intelli-
gibility and pleasantness ratings, however, the exact
methodology and analysis were not discussed in detail.
Importantly, these studies reported values based on pref-
erence and intelligibility judgments, rather than discrim-
ination  tasks.  Subjective  attributes—such  as
pleasantness—are defined by a listener’s own experience,
whereas discrimination, the perception of a physical

change in a stimulus, is performance-based, and yields
objective psychophysical measures. Previous study has
shown that the minimum SNR adjustments required to
elicit differing preferences and behavior changes are
much greater than the minimum SNR adjustments that
can be discriminated (McShefferty, Whitmer, &
Akeroyd, 2016).

Previous psychophysical evidence on the ability to dis-
criminate narrowband (%-'%: octave) adjustments in a
broadband stimulus varies from 2 dB for trained listeners
with normal hearing (Moore et al., 1989) to 4 to 9dB for
listeners with hearing impairment (Turner & Holte,
1987). Previous clinical evidence from pilot and supple-
mental studies has inferred from preference and intelli-
gibility judgments that the broadband JND for speech
stimuli is 3 to 4dB (Byrne & Dillon, 1986; Dirks et al.,
1993; Jenstad et al., 2007). Because of the variation in
method and result, it is not clear from the previous lit-
erature (a) what is the JND for frequency-band adjust-
ments from prescribed gain, (b) if the JND is dependent
on hearing loss, and (c) if the frequency-band JND is
center-frequency dependent.

In the current study, we measured the JNDs for fre-
quency-band increments to verify REM tolerances and
ascertain discriminable step-sizes for adjusting the FGR.
We also measured the JNDs for broadband increments,
analogous to traditional level discrimination. Participants
were either hearing-aid candidates, or users. We presented
SSNs, a common test signal for REMs (British Society of
Audiology, 2018; British Society of Audiology & British
Academy of Audiology, 2007), and employed a same—dif-
ferent task, eliciting a judgment appropriate to the
clinic. SSNs were presented over headphones in quiet to
better ears.

We additionally examined age and cognitive ability as
mediators of discrimination (Gatehouse, Naylor, &
Elberling, 2006; Lunner, 2003). Working memory, the lim-
ited, temporary store of information, is a crucial cognitive
ability for auditory processing, and is particularly compro-
mised with age (Babcock & Salthouse, 1990). While exam-
ined with a variety of methods, there is evidence that
working memory capacity can inform optimal parameter
fitting (Akeroyd, 2008; Roénnberg, Rudner, & Lunner,
2011). Lunner (2003) reported that hearing-aid users with
high working-memory capacity were better at identifying
the effects of amplification schemes varying in gain and
compression than hearing-aid users with low working-
memory capacity. There is also evidence that auditory dis-
crimination is mediated by working memory, although
these studies tested adults much younger than a typical
audiological sample (Troche, Wagner, Voelke, Roebers, &
Rammesayer, 2014; Zhang et al., 2016). Gilbert, Akeroyd,
and Gatehouse (2008) postulated that large variation in
release time discrimination among participants with hearing
impairment may have been influenced by cognitive ability.
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Methods
Participants

In total, 38 participants (14 females) were recruited from
local audiology clinics. The median age of participants
was 63.5 years, ranging from 37 to 74 years. Participants
had varying degrees of hearing loss. Unmasked pure-
tone thresholds were measured immediately prior to
the experiment (British Society of Audiology, 2011).
The median better-ear four-frequency pure-tone average
(BE4FA, calculated as the average of thresholds at 0.5, 1,
2, and 4kHz) was 30dB HL, and ranged from 3 to 63dB
HL. Figure | shows the median audiogram across all 38
participants. Most participants had high-frequency slop-
ing sensorineural hearing loss. Four participants had
conductive elements to their hearing loss; this was
based on differences between air and bone conduction
thresholds exceeding 20dB when averaged over three
out of five frequencies at 0.5, 1, 2, 3, and 4kHz
(British Academy of Audiology, 2016). Eighteen partici-
pants were hearing-aid users; the median hearing-aid
experience was 3 years, and ranged from 1 month to 36
years. In terms of proportion of life with a hearing-aid,
the median experience was 0.04, and ranged from 0.004
to 0.80.

This study was approved by the West of Scotland
research ethics service (WoS REC(4) 09/S0704/12).
Informed written consent was obtained from all partici-
pants prior to the experiment.
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Figure 1. Median pure-tone thresholds as a function of fre-
quency across all 38 participants. Error bars show =+ | standard
deviation. The dashed lines show the better-ear thresholds of
participants with the three lowest and three highest BE4FA
thresholds.

BE4FA = better-ear four-frequency pure-tone average.

Stimuli

All stimuli were SSNs with gains independently digitally
generated in MATLAB (version 9.0.0, The Mathworks,
Inc., Massachusetts, USA) with a sampling rate of
44.1kHz and sampling depth of 16 bits. Stimuli were
presented monaurally via circumaural headphones
(AKG K702, Vienna, Austria) to better (BE4FA) ears
at 60dB SPL prior to the application of gain.

Standard spectra were SSNs plus prescribed gains.
The speech spectra were based on averaged male and
female speech from 12 languages (Byrne, Dillon, &
Tran, 1994). Gains were prescribed by applying the
NAL-R formula (Byrne & Dillon, 1986; Dillon, 2012)
to the audiogram for each participant’s better (BE4FA)
ear. While NAL-R is an older formula, it provides a
sufficient FGR baseline for linear gain adjustments,
and also prescribes similar gains to more recent non-
linear formulae at the presentation level used in this
study (Byrne, Dillon, Ching, Katsch, & Keidser, 2001;
Dillon, 2012). Prescribed gains were applied to six fre-
quency bands: a low-pass (LP) band with a cut-off fre-
quency of 0.25 kHz, four octave-wide bands centered at
0.5, 1, 2, and 4kHz, and a HP band with a cut-off fre-
quency of 6 kHz. Figure 2 shows the median NAL-R
prescription FGR across all 38 participants. Alternate
spectra for the frequency-band conditions were SSNs
plus prescribed gains, plus a fixed-level increment (AL)
of 3, 6,9, or 12dB in one of six frequency bands, which
were the same bands to which the gains were applied.
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Figure 2. Median NAL-R prescription gains as a function of fre-
quency across all 38 participants. Error bars show =+ | standard
deviation. LP refers to the 0.25 kHz low-pass band, while HP refers
to the 6 kHz high-pass band. The dashed lines show the prescribed
FGR curves of participants with the three lowest and three highest
BE4FA thresholds.

BE4FA = better-ear four-frequency pure-tone average;

FGR = frequency-gain response.
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Alternate spectra for the broadband condition were
SSNs plus prescribed gains plus a AL of 1, 2, 3, or
4 dB applied across all six frequency bands. To generate
stimuli, standard and alternate spectra were first multi-
plied with the complex spectra of independently gener-
ated Gaussian noise in the frequency domain, and then
converted into the time domain using an inverse Fourier
transform.

Standard stimuli were calibrated (using a Bruel &
Kjaer Artificial Ear 4152 and Sound Level Meter 2260,
Nerum, Denmark) so that the overall A-weighted pres-
entation level was 60 dB SPL prior to the application of
gain. Alternate stimuli were calibrated to confirm the
ALs. Audibility was subjectively checked with partici-
pants after practice trials. The duration of each stimulus
was 500ms (including 20ms raised cosine onset and
offset ramps), separated by silent interstimulus intervals
(ISIs) of 375ms. Presentation level was roved across
trials by a randomized amount chosen from a flat distri-
bution of +3 dB.

There were four possible stimulus combinations for
each trial: two same (standard-standard or alternate—
alternate) and two different (standard—alternate or
alternate—standard). Stimulus combinations were coun-
terbalanced and presented randomly.

Procedure

The experiment was conducted in a single, one-and-a-
half~hour session. A screening questionnaire of basic
patient details including hearing-aid status was com-
pleted, and unmasked pure-tone thresholds were mea-
sured. Cognitive ability was estimated after pure-tone
audiometry. Following this, participants started the
experimental task of discriminating frequency-band
and broadband increments in SSNs. Participants were
seated in a sound-proof audiometric booth, and stimuli
were presented monaurally to their better-hearing ear.
Participants completed two blocks of trials with a
break between, each lasting approximately 15 to 20 min-
utes. Twenty practice trials were embedded into the start
of each block.

A fixed-level, same-different task was utilized.
Participants were asked to listen to each presentation
and decide “Were the sounds the same or different?”
Participants responded by choosing the appropriate
button (“‘same” or “different”’) on a touch screen moni-
tor. Visual feedback (““correct” or “incorrect’) was pro-
vided following each response.

Twenty-eight ALs were presented: four ALs (3, 6, 9,
and 12dB) for each of the six (0.25 kHz;p, 0.5-2kHz
octave and 6 kHzyp) frequency-band conditions, and
four ALs (1-4dB) for the single broadband condition.
Coupled with four stimulus combinations (two same,
two different) repeated twice, there were 224 trials

(excluding practice trials), presented in randomized
order, per block. Each participant completed two
blocks, resulting in 64 trials per psychometric function
per participant for each of the seven conditions.

In a pilot study, we measured increment and decre-
ment JNDs—negative adjustments to the prescription
FGR—of 26 participants using a one-up, three-down
adaptive, three-interval, 3AFC task. Decrement JNDs
were difficult to measure; 21% of the total were excluded
because of ceiling effects, poor adaptive tracks (the
standard deviations of the final four reversals were
3dB or greater), and failed adaptive tracks which termi-
nated without a threshold estimate. While it is possible
that this difficulty was influenced by the procedure, pre-
vious research has also reported difficulties in measuring
decrement discrimination, which is suggested to be
poorer than increment discrimination because of
coding differences (Moore et al., 1989; Rinne, Sarkka,
Degerman, Schroger, & Alho, 2006). Therefore, this cur-
rent study only examines increment discrimination.

Cognitive Tasks

Visual letter monitoring (VLM) and visual digit moni-
toring (VDM) tasks were used to estimate cognitive abil-
ity. Both tasks incorporate working memory, attention,
reaction time, and continuous performance processes,
and have been used previously in auditory research
(Cox & Xu, 2010; Foo, Rudner, Ronnberg, & Lunner,
2007; Gatehouse et al., 2006; Knutson et al., 1991;
Lunner & Sundewall-Thoren, 2007; Rudner, Foo,
Sundewall-Thoren, Lunner, & Rénnberg, 2008).

In the VLM task, single consonants and vowels were
presented alternately on a touch screen monitor, and
participants identified three-letter consonant—vowel-con-
sonant words. In the VDM task, single digits were pre-
sented, and participants identified even—odd-even
sequences. Participants completed two runs for each
task with ISIs of 1,000 and 2,000ms, respectively.
Participants completed a practice run with a 2,000-ms
ISI prior to the formal runs. The task order was rando-
mized across participants, although a 2,000-ms ISI run
was always tested first. Correct hits and false alarms were
measured and cognitive scores were expressed with d’
values. A single d’ score was aggregated across test
types and speeds for each participant. Five partici-
pants—who were either dyslexic or nonnative English
speakers—did not complete the tasks.

Analysis

Discrimination in the same-different task was expressed
with d’ values for each AL. d’ is a measure of sensitivity
approximately linearly associated with signal strength,
which increases with hit rate and decreases with false
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alarm rate (Klein, 2001; Macmillan & Creelman, 2005).
d’ can also be seen as procedure-free as it varies accord-
ing to the number of stimulus presentations within a trial
and percent correct values in forced choice tasks.
Logistic functions were fit to d values, and
thresholds—JNDs—were estimated based on line fits to
d’=1. Thresholds associated with d’=1 were estimated
to provide a JND commensurate with other psychophys-
ical research as well as a baseline for what is the minim-
ally discriminable adjustment in our optimal listening
conditions. For a fixed-level, same-different task where
the participant is unbiased, d’=1 is approximately equal
to 55% correct (assuming a differencing strategy), cor-
responding to 76% correct in a 2AFC task (Green &
Swets, 1966; Macmillan & Creelman, 2005).

These analyses were performed with equations and
routines from Macmillan and Creelman (2005) and the
Palamedes Toolbox (Prins & Kingdom, 2009). Our calcu-
lations assumed that participants adopted a differencing
strategy of discrimination (Macmillan & Creelman, 2005).
We estimated bias using false alarm rates, which were
substituted into iterative calculations to estimate sensitiv-
ity. The log-linear rule correction factor for extreme data
was applied across the dataset (Hautus, 1995; Stanislaw &
Todorov, 1999), in which 0.5 was added to the number of
hits and false alarms, and 1.0 was added to the number of
targets.

Two types of INDs were estimated: increment JNDs
in six frequency bands (0.25 kHzp, 0.5-2kHz octave
and 6 kHzyp) and broadband (across frequencies) incre-
ment JNDs. JNDs were determined by fitting logistic
functions to d’ data, with a JND corresponding to the
AL dB estimated at line fits to d’=1. Figure 3 shows
examples of the psychometric functions calculated.
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Figure 3. Example psychometric functions from a single partici-
pant’s six frequency-band conditions. The solid line shows logistic
functions fit to d’ data, represented as circles. The dotted line
shows the d’= | threshold, while the dashed line shows the d’=2
threshold.

The Shapiro-Wilk test (Shapiro & Wilk, 1965)
indicated that JNDs were not normally distributed. This
was the case for frequency-band JNDs (W=0.90;
p<.001), as well for broadband JNDs (W =0.90;
p < .01). We therefore report median JNDs and nonpara-
metric inferential statistical analyses for JND comparisons.
Twenty-three INDs (approximately 9% of the total) were
excluded because of poor fits resulting in extreme values.
These were identified by visualizing fits and assessing their
associated root-mean-square error values.

JNDs for Noisier Conditions

We additionally estimated JNDs as above at d’ =2, which
corresponds to greater sensitivity for discrimination in
noisier conditions, both acoustically and experimentally.
We assume that JNDs at d’=1 measured in noisy condi-
tions would be greater (poorer) than the current JNDs at
d’=1. Considering this, we additionally report JNDs esti-
mated at a more sensitive d’=2, given the greater sensi-
tivity required to discriminate in noisier conditions
relative to the sensitivity required to discriminate in opti-
mal conditions. This was done considering the increasing
availability of technologies which allow for self-adjust-
ments to highly complex stimuli in highly variable envir-
onments (Keidser & Convery, 2016; Nelson et al., 2018).
For a fixed-level, same—different task where the partici-
pant is unbiased, d’=2 is approximately equal to 68%
correct, which corresponds to 92% correct in a 2AFC
task (Macmillan & Creelman, 2005). Thirteen JNDs at
d’=2 (approximately 5% of the total) were excluded
because of poor fits resulting in extreme values.

Results
Just-Noticeable Differences

Figure 4 shows JNDs at d’=1. A Wilcoxon (1945)
signed-rank test of paired samples with Holm—
Bonferroni corrections for multiple comparisons
(Holm, 1979) revealed no significant differences between
frequency-band JNDs, except between the 0.25 kHz;p
and 1kHz JNDs (Z =2.80; p <.001). Because of this dif-
ference, the 0.25 kHz; p JND is reported separately from
the “frequency-band JND”’ grouping. Across all partici-
pants, all octave bands (0.5-4kHz) and the 6 kHzyp
band, the median JND was 2.8dB, 95% CI [2.5, 3.0].
For the 0.25 kHz; p band, the median JND was 4.5dB,
95% CI [3.7, 5.2]. The median broadband JND was
1.5dB, 95% CI [1.2, 1.8]. Frequency-band JNDs were
significantly greater than broadband JNDs (Z=4.40
and 3.59 for the 0.25 kHz;p and median frequency-
band JNDs respectively; p <.001 for both).

Pearson correlation coefficients revealed a positive cor-
relation between participants’ median frequency-band
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Figure 4. Box plots of JNDs (d’= 1) across all 38 participants. Notches on each interquartile-range display the 95% confidence interval
around the median (red line). Median JNDs for each condition are displayed above the plots. Confidence limits that are greater than
quartiles suggest uncertain medians. Whiskers extend to the most extreme JNDs that are within 1.5 x the interquartile range. Pluses

indicate outliers outside 1.5 x the interquartile range.
JND = just-noticeable difference.

(across all except the 0.25 kHz; p band) and broadband
JNDs (r=0.47; p <.01). Frequency-band JNDs were not
correlated with each other when adjusting for multiple
comparisons (all p >.05). There was only one significant
correlation between frequency-band JNDs and pure-tone
thresholds at the corresponding frequency when adjusting
for correlations between thresholds and age: a positive
correlation between participants’ 6-kHz threshold and
their 6-kHzyp JND (r=0.39; p<.05). The 6 kHzyp
JNDs increased (i.e., were poorer) with increasing pure-
tone threshold. There were no significant correlations
between either BE4FA or age and individual JNDs (fre-
quency-band or broadband) when adjusted for the correl-
ation between BE4FA and age (all p >.05). A Wilcoxon
rank-sum test revealed no significant differences between
hearing-aid users’ and non—hearing-aid users’ median fre-
quency-band and broadband JNDs (p > .05). There was
no significant correlation between the proportion of life
with a hearing-aid and median frequency-band or broad-
band JND (p > .05 for both).

Cognitive Tasks

Across 33 participants (median age of 62+ 8.0 standard
deviation years), the average cognitive score was 1.9 out
of a total of 3.6. Age was negatively correlated with cogni-
tive score (r=—0.38; p<.05), as was BE4FA (r=0.27;
p < .05). We calculated standard coefficients as opposed to
partial coefficients as neither age nor BE4FA correlated
with JNDs. Frequency-band JNDs were not correlated
with cognitive score (r=0.26; p > .05). Broadband JNDs
were negatively correlated with cognitive score (r= —0.50;
p < .05). Figure 5 shows cognitive score scatterplots.
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Figure 5. Scatterplots between individual cognitive scores and
several variables: age (Panel A), BE4FA (Panel B), median fre-
quency-band JND (calculated from all bands apart from the 0.25
kHz p band, Panel C), and broadband JND (Panel D). Correlations
with asterisks were statistically significant (p <.05).

BE4FA = better-ear four-frequency pure-tone average; JND = just-
noticeable differences.

JNDs for Noisier Conditions

Figure 6 shows additional JNDs estimated at d’=2.
Similar to the JNDs at d’=1, the 0.25 kHzLP JNDs
were significantly different to the 1-, 2-, and 4-kHz
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Figure 6. Box plots of JNDs (d’=2) across all 38 participants.
See Figure 4 for description.

JNDs were (Z=3.80, 2.62, and 2.76, respectively; all
p<.05). In this dataset, the 0.5-kHz and 1-kHz JNDs
were also significantly different (Z=3.80; p <.01). The
remaining JNDs comparisons were not significantly dif-
ferent. Across all participants, the median JND for
higher frequency bands (1-4 kHz octave and 6 kHzyp)
was 4.8dB, 95% CI [4.4, 5.1]. The median JND for lower
frequency bands (0.25 kHz;p and 0.5kHz octave) was
5.4dB, 95% CI [4.6, 6.2]. The median broadband JND
was 2.6dB, 95% CI [2.2, 3.0]. Frequency-band JNDs
were significantly greater than broadband JNDs
(Z=5.01 and 4.38 for lower and higher frequency
bands, respectively; p <.001 for both).

Discussion

We measured increment discrimination in six individual
frequency-bands of SSNs. Participants had varying
degrees of hearing impairment, and stimuli were presented
at a baseline of 60dB SPL plus individually prescribed
gains. The frequency-band JND was 2.8dB, and 4.5dB
for the 0.25 kHz; p band. We identified a positive correl-
ation between participants’ median frequency-band and
broadband JNDs, suggesting some consistency between
the discrimination of frequency-band and broadband
increments.

These results are congruent with previous literature.
Using a 2AFC task with a one-up, two-down adaptive
procedure (converging on 71% correct, approximately
d’=0.77), Moore et al. (1989) measured a 1-kHz JND
of 2.1dB for three trained participants with normal hear-
ing. In the current study, the 1-kHz JND was 2.4 dB. The
similarity between these trained normal-hearing and our
participants’ JNDs may be because of the NAL-R gains
applied to our presentations; using a 4AFC task with a
one-up, two-down adaptive procedure (converging on
71% correct, approximately ¢’=1.52), Turner and
Holte (1987) reported a 5-dB second-formant peak
JND for participants with normal-hearing and also par-
ticipants with hearing impairment who were prescribed
with constant HP gain. This second-formant peak JND
is similar to our 2-kHz JND of 4.8dB at d’=2.

JNDs did not correlate with BE4FA hearing ability.
Correlations between frequency-band JNDs and pure-
tone thresholds were absent apart from a positive correl-
ation between 6 kHz pure-tone thresholds and 6 kHzyp
JNDs. It is possible that the gains prescribed at the
6 kHzyp band may not have been sufficient for partici-
pants with more steeply sloping losses around 6kHz,
particularly when considering that the NAL-R formula
includes an average of pure-tone thresholds at 0.5, 1, and
2kHz as a factor. Participants with the most severe
6 kHz pure-tone thresholds had 6 kHzyp JNDs greater
than 10dB, and removing a single of these elevated
JNDs eliminates any statistically significant correlation.

The median broadband JND was 1.5dB. Presenting
stationary SSNs in a 2AFC one-up, three-down adaptive
procedure (converging on 79% correct, approximately
d’=1.16), Whitmer and Akeroyd (2011) measured simi-
lar broadband JNDs of 1.3dB and 1.0 dB with unaided
and aided participants, respectively. These broadband
JNDs were independent of BE4FA hearing ability and
age, as with the current study. Dirks et al. (1993) and
Jenstad et al. (2007) reported that participants could dis-
tinguish between FGR curves with an adjustment of
4.5dB. It seems reasonable that this is greater than our
broadband JND; the current study’s participants made
discrimination judgments on SSNs in quiet, rather than
preference judgments on speech in noise.

Lunner and Sundewall-Thoren (2007) reported an
average VLM score of 2.0 with 23 hearing-aid users
(mean age of 65.6 years). We measured an average
VLM score of 1.8, suggesting that our samples were
similar on this specific cognitive measure. Cognitive
score was negatively correlated with age in the current
study. Gatehouse et al. (2006) did not report a significant
correlation using the same tasks, and neither did Foo
et al. (2007) using a VLM task: When analyzing only
VLM scores, our correlation becomes insignificant, sug-
gesting that the VLM task may be a poorer predictor of
age than the VDM task. Correlations between partici-
pants’ cognitive score and median frequency-band
JNDs were insignificant. There was, however, a negative
correlation between participants’ cognitive scores
and broadband JNDs, suggesting that patients with
poorer cognitive abilities may require greater broadband
FGR adjustments to be noticeable. The frequency-band
discrimination task may not have elicited similar cogni-
tive processes to those elicited in the VLM and VDM
tasks, particularly when considering that these cognitive
tasks are visually based as opposed to aurally based.
These tasks have not been used in examination with
more basic auditory discrimination as in the current
study. Previous research that investigated the link
between auditory discrimination and cognitive ability
utilized different tasks (Troche et al.,, 2014; Zhang
et al., 2016), as did several studies which reported
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relationships between hearing-aid processing schemes
and cognitive ability (Foo et al., 2007; Lunner, 2003;
Rudner et al., 2008).

JNDs at d’=1 suggest initial frequency-band adjust-
ments of 3 dB to be immediately noticeable in a quiet
clinic. The additional JNDs at d’=2 suggest initial fre-
quency-band adjustments of 5 dB to be immediately
noticeable in noisier conditions. A hearing-aid user
should not notice a difference if the FGR is adjusted
by a value lower than a JND at the respective band.
However, fine-tuning in the clinic as well as self-adjust-
ments in less controlled environments are typically
tested with speech, and therefore it would be appropriate
to measure JNDs with speech stimuli in a future
study. We expect speech JNDs to be greater than
SSN JNDs given the highly complex spectro-temporal
properties of speech. It is of note that the JNDs at
d’=2 mostly corroborate recently revised REM toler-
ances of £5dB across frequencies (British Society of
Audiology, 2018).

Stimuli in the current study were processed linearly,
while most modern hearing aids utilize wide-dynamic
range compression. Compression, which reduces gain
with increasing input, should make increment discrimin-
ation more difficult. However, compression is usually
applied prior to, or with the application of gain, and
therefore should have a limited effect on discrimination
of gain adjustments in the clinic. Furthermore, studies
using clinically relevant compression ratios (between
1.1:1 and 2:1) have reported little difference between
level-based discrimination measured with and without
compression (Akeroyd, 2010; Whitmer & Akeroyd,
2011). In addition, evidence suggests that listeners with
hearing impairment are only sensitive to compression
adjustments under optimal listening conditions (Gilbert
et al., 2008; Nabelek, 1984; Sabin, Gallun, & Souza,
2013). Musa-Shufani, Walger, Von Wedel, and Meister
(2006) did report that interaural level difference JNDs
measured with narrowband noises were greater when
measured with compression than when measured linearly,
although the compression ratios were strong (3:1 and 8:1).
While measured with localization tasks, this study sug-
gests that strong compression can affect level-based JNDs.

There was a fair amount of variance across partici-
pants, similar to previous research examining the detec-
tion and discrimination abilities of listeners with hearing-
impairment (Gilbert et al., 2008; Lentz & Leek, 2003;
MacPherson & Akeroyd, 2014; Turner & Holte, 1987).
The variance in frequency-band JNDs was not predicted
by age, BE4FA, or cognitive score, and was only pre-
dicted by pure-tone thresholds to a small extent. The
variance in broadband JNDs was not predicted by age
or BE4FA, although broadband JNDs did correlate with
cognitive score, suggesting that some variance in level
discrimination may be because of variances in cognitive

ability. Unexplained variance among JNDs may have
been influenced by unquantified cochlear or high-level
processing deficits in participants.

Summary

We measured frequency-band and broadband JNDs for
gain increments in SSNs. Participants had varying degrees
of hearing loss and were provided with prescribed ampli-
fication. Frequency-band JNDs at d’=1 were mostly
independent of centre frequency; the median frequency-
band JND was 2.8dB, and the 0.25 kHz;p JND was
4.5dB. The broadband JND was 1.5dB. JNDs were
also mostly independent of pure-tone threshold.
Although frequency-band JNDs were greater than broad-
band JNDs, correlations suggest some relationship
between frequency-band and broadband discrimination.
While frequency-band JNDs were not correlated with
cognitive score, broadband JNDs were. JNDs at d’=1
suggest initial frequency-band gain adjustments of 3dB
to be noticeable in a quiet clinic. JNDs at d’=2 suggest
initial frequency-band gain adjustments of 6 dB for fre-
quencies below 1 kHz, and 5dB for frequencies at and
above 1 kHz in noisier environments.
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