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Abstract 

Selenate-loaded selenium water remediation materials based on polymer fibres have been investigated by 

dynamic nuclear polarization (DNP) enhanced solid-state NMR. For carbon-13 a significant reduction in 

experiment time is obtained with DNP even when compared with conventional carbon-13 NMR spectra 

recorded using larger samples. For the selenium remediation materials studied here this reduction allows 

efficient acquisition of {1H}-77Se heteronuclear correlation spectra which give information about the nature of 

the binding of the remediated selenate ions with the grafted side chains which provide the required ion 

exchange functionality. 

Introduction 

Solid-state nuclear magnetic resonance (NMR) is a powerful method for studying the molecular structure and 

dynamics of a broad range of advanced materials. Solid-state NMR suffers from low sensitivity, because of 

the small nuclear spin polarizations involved even with high magnetic fields, and so long acquisition times or 

large sample volumes are often required. The problem of sensitivity becomes overwhelming for dilute species, 

so that measurements of surface sites, molecules at interfaces or isotopes with low natural abundance are often 

impossible. Fortunately, weak NMR signals can be enhanced by dynamic nuclear polarization (DNP),1-5 which 

involves transfer of electron spin polarization from radicals6-9 implanted in the sample to nearby nuclei. This 

process requires the saturation of the electronic Zeeman transitions and is most efficient at low temperatures 

(<100 K). Until recently DNP has been limited to low magnetic fields because of the lack of high-frequency, 
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high-power microwave sources. However, developments in the design of gyrotrons10 have made DNP 

spectrometers operating at 1H NMR frequencies up to 900 MHz possible. The substantial enhancements (>100-

fold) obtained with DNP make NMR studies of dilute species feasible for the first time and have prompted 

many new NMR applications to catalysts, surfaces and interfaces,11-18 porous materials19-23 and nano- and 

microscale particles.24-26 

Selenium is a minor component of the earth's crust, occurring with an abundance of ~0.05 ppm and often 

appearing in association with sulfur-containing minerals.27  The most significant anthropogenic sources of Se 

contamination in the environment include coal burning, the smelting of sulfide ores and glass manufacture. 

Although elemental Se is an essential trace nutrient which is incorporated into several animal enzymes, many 

water-soluble Se compounds are highly toxic, with a median lethal dose between 1.5 and 6 mg/kg body 

weight in many animal species.28 A maximum concentration of 40 g dm–3 is recommended for drinking water 

by the World Health Organization,29 although many organizations, including the EU,30 decree a lower 

guideline value of 10 g dm–1. In alkaline soils, Se is present as water-soluble selenate (SeO4
2-) which is easily 

leached into rivers, and the concentration of Se in groundwater and surface water in some areas can approach 

as much as 0.4 mg dm-3.28 Reproductive failure in fish occurs at waterborne Se concentrations of just a few g 

dm-3, so aquatic Se contamination can have widespread consequences beyond drinking water issues. 

Efficient Se remediation requires low concentrations of a wide range of Se species to be removed from large 

volumes of water, often in the presence of significantly higher concentrations of sulfur. For example, waste 

water from oil refineries typically contains a few mg dm-3 SeO4
2- and selenocyanate (SeCN-), but more than 10 

times that amount of sulfate (SO4
2-). Hence, many conventional treatment processes, based on natural and 

synthetic absorbents and coagulants are ineffective for removing SeO4
2- from water, often because they lack 

the necessary capacity or selectivity. Current technologies include chemical methods based on reduction by 

nanoscale zero-valent iron, bioremediation by specific bacterial strains in anaerobic tank or packed bed 

reactors, physical approaches, including reverse osmosis and nanofiltration, as well as polymer fibres and 

resins with strong-base ion-exchange functionality.31-34  

The Se remediation material investigated here is based on Johnson Matthey’s Smopex®-103 synthetic 

scavenger,35 consisting of trilobal polypropylene fibres cut to a length of 300 m during manufacturing. This 

contrasts with standard spherical porous resin beads used in common adsorption or ion exchange processes 

where the functionality is not fully exposed to solution, and this results in high capacity loading of SeO4
2- and 
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SeCN- ions. Strong-base functionality, which gives the advantage of a broad pH range, is provided via grafted 

1-(phenyl)-N,N,N-trimethylmethanaminium cation sidechains with chloride exchangeable anions. These 

materials have been shown to give very fast rates of ion exchange and good selectivity in competitive SCN-

/SO4
2- feeds compared to standard resin bead ion exchangers.35 In this paper we describe a DNP-enhanced 

solid-state NMR study of these Se remediation materials aimed at identifying the location and the nature of 

the binding of the SeO4
2- anion after ion exchange. 

Experimental 

Selenate-loaded Materials 

A 5.5 wt% selenate-loaded Smopex®-103 sample was prepared by ion exchange with an aqueous solution of 

NaSeO4. 250 mL of an aqueous solution of sodium selenate were added to 3.4 g (wet weight) of Smopex®-103. 

The ion-exchange process took place overnight on a roller-mixer at room temperature. The resulting solid was 

filtered, washed with demineralized water (3x50 mL), air dried and left overnight in a vacuum oven at 40 °C. 

Conventional solid-state NMR Experiments 

{1H}-13C CPMAS NMR experiments were performed on a Bruker Avance III, equipped with a 4 mm HCN 

triple-resonance MAS probe, operating at a 13C Larmor frequency of 150.9 MHz. Zirconia rotors were used, 

with MAS rates regulated to ± 1 Hz. 13C chemical shifts were referenced to TMS using the high frequency 

resonance of adamantane (38.5 ppm) as an external secondary reference. Further experimental details are 

given in the text and the figure captions. 

DNP-enhanced solid-state NMR Experiments 

For DNP, 32 mg of selenate-loaded Smopex®-103 was wetness impregnated with a 16 mM solution of the 

biradical AMUPol in 20 µL of glycerol-d8/D2O/H2O 60:30:10 v/v/v. The wet solid was packed into a 3.2 mm 

sapphire rotor sealed with a Teflon plug and a zirconia cap. DNP-enhanced 13C and 77Se solid-state NMR 

experiments were performed on a Bruker Avance III HD 600 MHz spectrometer, equipped with a 3.2 mm low-

temperature triple-resonance MAS probe, operating at 13C and 77Se Larmor frequencies of 150.9 MHz and 114.6 

MHz, respectively. DNP was achieved by irradiating the sample with high-power microwaves (10 W at the 

centre of the waveguide) at a frequency of 395 GHz, generated by a gyrotron that operated continuously 

(stability of better than ±1%). Thick-walled sapphire rotors were used for all DNP experiments, with MAS 
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rates regulated to ±10 Hz. The sample temperature was 93 ± 3 K with the microwaves off and 100 ± 3 K with 

the microwaves on. Further experimental details are given in the text and the figure captions. 

Results and Discussion 

Conventional Solid-state 13C NMR 

Figure 1 shows the conventional {1H}-13C CPMAS spectra of (A) unloaded and (B) 5.5 wt% selenate-loaded 

Smopex®-103 recorded using a 4 mm triple resonance MAS probe at a Larmor frequency of 150.9 MHz and a 

MAS rate of 12 kHz. The two spectra are essentially identical, suggesting that this concentration of loaded 

selenate anion does not cause an observable change to the 13C NMR spectrum of the polymer or the 

functionalizing sidechains. In both spectra the 13C resonances from the polypropylene fibres are present at 

approximately 21, 26 and 44 ppm, while the N-methyl groups and the methanaminium carbon from the 

functionalizing N,N,N-trimethylmethanaminium cations appear at 53 and 69 ppm, respectively. Note that the 

spectrum of selenate-loaded Smopex®-103 required 512 scans and, with a relaxation delay of 2.50 s, took 

approximately 10 mins to record. 

 

Figure 1. Conventional {1H}-13C CPMAS spectra of (A) unloaded and (B) 5.5 wt% selenate-loaded Smopex®-

103. The spectra were recorded at ambient temperature and a MAS rate of 12 kHz. Cross polarization was 

achieved by a ramped rf field on the 1H channel rising from 90 to 100% of the maximum 1H rf amplitude and 

lasting for a contact time of 1.50 ms. The relaxation delay was 2.50 s, the full spectral with was 789 ppm and 

the acquisition time was 17.2 ms. During acquisition heteronuclear decoupling was applied at a 1H rf 
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amplitude of 83 kHz using a 1H SPINAL64 sequence.36 A total of 512 scans were coadded for the spectrum 

shown in (B), while 8192 scans were coadded for (A). 

DNP-enhanced Solid-state 13C NMR 

The substantial sensitivity gains that result from DNP are clear from 13C NMR spectra of these Se remediation 

materials. Figure 2(A) shows a DNP-enhanced (microwaves on) {1H} - 13C CPMAS spectrum of 32 mg of 5.5 

wt% selenate-loaded Smopex®-103 impregnated with 20 µL of a 16 mM solution of the radical AMUPol in 

glycerol-d8/D2O/H2O 60:30:10 v/v/v. In the case of water remediation materials an aqueous DNP matrix is 

a more appropriate choice than one based on an organic solvent. Kobayashi et al.37 have shown that a matrix 

based on 100% D2O should be considered for DNP-enhanced HETCOR measurements on hydrogen-rich 

species in order to prevent matrix signals from obscuring those arising from the sample, but we have not 

followed this approach here. The spectrum in (A) was recorded at a MAS rate of 8.8 kHz and used a CP contact 

time of 500 s. This is compared to an identical spectrum in (B) recorded with the microwaves turned off. A 

relatively short contact time was used to reduce the intensity of the glycerol resonances at approximately 65 

and 73 ppm, arising from the DNP matrix. Apart from some small shifts in the line positions, the DNP-

enhanced spectrum and the conventional 13C CPMAS spectrum shown in Figure 1(B) are similar, suggesting 

that neither the polymer fibres nor the grafted strong-base functionality are substantially modified by 

impregnation with the aqueous DNP matrix. To aid comparison the conventional 13C CPMAS spectrum of 

Figure 1(B) and DNP-enhanced spectrum of Figure 2(A) are plotted on the same Figure in the SI (Figure S1(A) 

and (B)). The resulting DNP enhancement, measured from the relative integrated intensity of these two 

spectra, in Figure 2(A) and (B) is 28. For this sample preparation the DNP build-up time (TDNP measured via 

13C CP) was 4.9 s giving an optimal relaxation time of 6.9 s (1.4TDNP). A DNP-enhanced 13C spectrum with 

comparable signal-to-noise ratio (230:1) to that for the conventional spectrum (270:1) in Figure 1(B) can be 

acquired in just 16 scans (compared to 512) using a (less than optimal) 2.5 s relaxation delay which allows a 

better comparison between the two (see Figure S1(C) in the SI). The substantial reduction in experiment time 

is achieved despite the fact that the DNP-enhanced 13C CPMAS spectrum was obtained with a smaller MAS 

rotor (3.2 mm) and a shorter contact time (500 s) compared with its the conventional counterpart (4 mm and 

1.5 ms), as well as a less than optimal relaxation delay. 
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Figure 2(A). DNP-enhanced (microwave on) {1H}-13C CPMAS spectrum of 5.5 wt% selenate-loaded Smopex®-

103 wetness. The spectrum was recorded at a MAS rate of 8.8 kHz. Cross polarization was achieved with a 

contact time of 500 s. The relaxation delay was 5 s, (less than the optimal value of 6.9 s) the full spectral width 

was 502 ppm and the acquisition time was 13.5 ms. During acquisition heteronuclear decoupling was applied 

at a 1H rf amplitude of 86.2 kHz using a 1H swept-frequency TPPM sequence.38 A total of 8 scans were coadded. 

The 13C chemical shift scale was referenced to TMS using glycerol as an internal secondary reference, fixing 

the low frequency resonance to 65.3 ppm. Other parameters are the same as for Figure 1. (B) {1H}-13C CPMAS 

spectrum of 5.5 wt% selenate-loaded Smopex®-103 recorded as for (A) but with the microwaves turned off. 

The reasonable DNP enhancement obtained makes the acquisition of DNP-enhanced two-dimensional {1H}–

13C correlation spectra possible in a reasonable experiment time. Figure 3(A) shows a DNP-enhanced {1H}–13C 

PMLG39 HETCOR spectrum of 5.5 wt% selenate-loaded Smopex®-103 recorded with just 16 scans for each of 

32 t1 increments. The (less than optimal) relaxation delay of 2.85 s gave a total acquisition time of only 24 min, 

but plenty of signal for analysis. This experiment used a short contact time of duration 50 s, which completely 

removes the glycerol resonances arising from the DNP matrix. This allows a cross peak linking a proton 

resonance at around 5 ppm with the methanaminium carbon peak at approximately 68 ppm to be observed, 

but also causes a loss of signal for the quaternary aromatic peak at 146 ppm. In addition, there is a cross peak 

linking the aliphatic proton signal at about 2 ppm to the N-methyl carbons of the grafted N,N,N-

trimethylmethanaminium cation at approximately 50 ppm. For longer contact times (>200 s) a cross peak 

links the aromatic proton signal at about 7.1 ppm to the glycerol 13C resonances at approximately 65 and 73 

ppm (see Figure S2 in the SI), indicating that the DNP solvent was well impregnated into the material. The 

quaternary aromatic peak is evident in the projection parallel to 2 in this two-dimensional spectrum. 
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77Se NMR is challenging for these samples because of the low isotopic abundance (7.63%) combined with the 

modest amount of selenate in the loaded remediation material (5.5 wt%). To our knowledge only one example 

of DNP-enhanced 77Se solid-state NMR has been published previously,40 describing structural studies of CdSe 

quantum dots. Figure 3(B) shows a two-dimensional DNP-enhanced {1H}–77Se PMLG HETCOR spectrum of 

5.5 wt% selenate-loaded Smopex®-103 recorded at a MAS rate of 8.8 kHz with a relatively long contact time 

of 2 ms. This spectrum required 216 scans for each of 32 t1 increments, and with the optimal relaxation delay 

of 6.9 s this gives a total experiment time of 13.2 hr. The experiment is only feasible because of the reasonable 

DNP enhancement obtained. Low sensitivity makes acquisition of a {1H}–77Se CPMAS spectrum without 

microwave irradiation for the purpose of measuring the 77Se DNP enhancement too time consuming to be 

feasible. However, a conventional {1H}-77Se CPMAS spectrum can be obtained at ambient temperature, using 

a 7.5 mm MAS rotor filled with vacuum dried selenate-loaded Smopex®-103 (see Figure S3(A) in the SI). This 

spectrum is not fully comparable to the corresponding DNP-enhanced spectrum (Figure S3(B)), but the 

sensitivity per unit mass of the latter is approximately a factor of 9 greater than that of the former. 

In the direct dimension the two-dimensional DNP-enhanced {1H}–77Se PMLG HETCOR spectrum shows a 

single 77Se resonance at 1050 ppm relative to (CH3)2Se as expected for the SeO4
2- ion, indicating that no chemical 

modification takes place on absorption. However, despite the long contact time, this spectrum does not show 

the expected cross peak between the SeO4
2- resonance at 1050 ppm and the methyl protons at 2 ppm, 

commensurate with location of the remediated anion close to the cation functionality. Instead, the single cross 

peak observed links the SeO4
2- resonance to a proton signal around 6 ppm. Note that both the methyl and 

methaminium protons are sufficiently immobilized at 100 K to cross polarize their directly bonded carbons, 

as shown in Figure 3(A), so that low cross polarization efficiencies associated with dynamics can be ruled out 

as a cause of the missing cross peak intensity. Another possibility is that at least some of the cross-peak 

intensity in the {1H}-77Se spectrum results from a correlation between water molecules in the DNP matrix and 

the remediated SeO4
2- ions. However, cross polarization from protons in the remediation material to 77Se in 

the SeO4
2- anions occurs even in the absence of any DNP matrix, as shown by the conventional {1H}-77Se 

CPMAS spectrum of a vacuum-dried sample (see Figure S3(A) in the SI). This observation suggests that 

contact between protons in the Smopex®-103 and the SeO4
2- anions is responsible for at least a part of the 

cross-peak intensity in the DNP-enhanced {1H}-77Se PMLG HETCOR spectrum. Given the lack of resolution 

in the indirect dimension of the {1H}–13C HETCOR it is not possible to assign the proton chemical shift of the 
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single cross peak in the {1H}–77Se HETCOR to a specific hydrogen environment. However, its chemical shift 

lies between that for the phenyl ring protons (7.1 ppm) and the methaminium protons (5 ppm) from the grafted 

1-(phenyl)-N,N,N-trimethylmethanaminium cation sidechains. This in turn implies that the remediated SeO4
2- 

ions are absorbed by the Smopex®-103 materials in a more complex fashion than via a simple ionic interaction 

with the cation responsible for the ion exchange. The proximity in space to the phenyl ring evidenced by the 

cross peak in the {1H}–77Se PMLG HETCOR spectrum implies a specific supramolecular interaction which 

might help to explain the high selectivity of this remediation material for SeO4
2- in the presence of, for example, 

SO4
2. Possibilities include anion- interactions with adjacent rings along the polymer chain, but this would 

normally involve a more electron deficient -system, or weak C-H hydrogen bonding interactions, which 

might explain the unusual proton chemical shift.  

 

 

Figure 3(A). Expanded DNP-enhanced {1H} - 13C PMLG HETCOR spectrum of selenate-loaded Smopex®-103 

recorded with a contact time of 50 s, as described in the text. Sign discrimination was achieved in the indirect 

dimension by time proportional phase incrementation. The t1 increment was 32.8 s, giving a spectral width 

in the indirect dimension of 30.49 kHz. After taking the PMLG scaling factor of 0.47 (measured in a separate 

experiment) into account this gives a full spectral width of 23.8 ppm. Other parameters are as described in 

Figure 2. The inset shows the chemical structure of the functionalizing side chain to aid the assignment of the 

two-dimensional spectrum. (B) Expanded DNP-enhanced {1H} – 77Se PMLG HETCOR spectrum recorded with 

a contact time of 2 ms, as described in the text. The t1 increment and other indirect dimension parameters were 

identical to those for Figure 3(A). 
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Conclusions 

This study of Se remediation materials manufactured from synthetic scavengers based on polymer fibres 

makes use of DNP-enhanced solid-state NMR {1H}-77Se correlation experiments to give information about the 

binding between the remediated SeO4
2- ions with the grafted side chains which provide the required ion 

exchange functionality. These spectra suggest that SeO4
2- absorption involves a supramolecular interaction in 

addition to the ionic interaction with the functionalizing cation, which might help to explain the high 

selectivity of this remediation material for SeO4
2- in the presence of, for example, SO4

2-. This study 

demonstrates that the significant signal enhancement obtained with DNP-enhanced solid-state NMR allows 

the efficient acquisition of {1H}-77Se correlation experiments even for systems for which the Se is at relatively 

low concentration, and to our knowledge this is the first example of DNP-enhanced 77Se NMR beyond a 

straightforward one-dimensional MAS spectrum. The standard aqueous biradical solutions used for DNP-

enhanced solid-state NMR are an ideal way to obtain the required homogeneous distribution of polarizing 

agent throughout the polymer fibres of these water remediation materials. 
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