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Summary 1 

 Molybdenum (Mo) is an essential micronutrient for most living organisms, 2 

including humans. Cereals such as rice are the major dietary source of Mo. 3 

However, little is known about the genetic basis of the variation in Mo content in 4 

rice (Oryza sativa L.) grain.  5 

 We mapped a quantitative trait locus (QTL) qGMo8 that controls Mo accumulation 6 

in rice grain by using a recombinant inbred line population and a backcross 7 

introgression line population.  8 

 We identified a molybdate transporter, OsMOT1;1, as the causal gene for this QTL. 9 

OsMOT1;1 exhibits transport activity for molybdate, but not sulfate, when 10 

heterogeneously expressed in yeast cells. OsMOT1;1 is mainly expressed in roots 11 

and is involved in the uptake and translocation of molybdate under molybdate 12 

limited condition. Knock-down of OsMOT1;1 results in less Mo being translocated 13 

to shoots, lower Mo concentration in grains and higher sensitivity to Mo deficiency. 14 

We reveal that the natural variation of Mo concentration in rice grains is attributed 15 

to the variable expression of OsMOT1;1 due to sequence variation in its promoter.  16 

 Identification of natural allelic variation in OsMOT1;1 may facilitate the 17 

development of rice varieties with Mo enriched grain for dietary needs and improve 18 

Mo nutrition of rice on Mo-deficient soils.  19 

 20 

Key words: molybdenum, mineral nutrient, natural variation, QTL, rice 21 

  22 



4 
 

Introduction 1 

As one of the most important staple crops, rice not only provides more than one fifth of 2 

daily calories for half of the world’s human population but is also a major source of mineral 3 

nutrients such as Mo, an essential micronutrient for almost all living organisms. In humans, 4 

Mo is required for the biosynthesis of molybdenum cofactor (Moco), which forms the 5 

active site of molybdenum-requiring enzymes (molybdoenzymes) including aldehyde 6 

oxidase, xanthine dehydrogenase, sulfite oxidase and amidoxime reducing component 7 

(Schwarz & Mendel, 2006). These enzymes participate in crucial processes such as purine 8 

metabolism and sulfite detoxification and play a vital role in maintaining human health 9 

(Schwarz & Mendel, 2006). Deficiency of Moco biosynthesis in humans results in the 10 

decrease of molybdoenzyme activity, which leads to inheritable progressive neurological 11 

damage and even early childhood death (Johnson et al., 1980; Schwarz, 2005). Although 12 

Mo deficiency in humans is extremely rare, food crops grown on soils that are freely 13 

drained, acidic and rich in iron oxides are known to have lower Mo concentrations 14 

(Marschner & Rengel, 2012).  15 

Mo is also an essential micronutrient for plants. Plants take up Mo mainly as molybdate. 16 

Molybdate itself is biologically inactive and must be incorporated into tricyclic pterin to 17 

form Moco. Moco serves as electron donors and/or acceptors in molybdoenzymes and 18 

plays key roles in the assimilation and biogeochemical cycles of carbon, nitrogen, and 19 

sulfur (Schwarz & Mendel, 2006; Bittner, 2014). Although Mo deficiency in humans is 20 

rare, Mo deficiency in crops is becoming an agricultural problem, especially for crops 21 

grown on acid soils. In acid soils, the high levels of reactive iron oxides/hydroxides are 22 

known to have a strong adsorption of molybdate which deceases the bioavailability of Mo 23 

(Marschner & Rengel, 2012). It is estimated that up to 70% of the world’s arable is 24 

characterized acidic, Mo deficiency is thus a widespread agricultural concern (von Uexküll 25 

& Mutert, 1995). The deficiency of Mo in soils has been shown to inhibit plant growth and 26 

agricultural productivity (Kaiser et al., 2005). Plants suffering from Mo deficiency develop 27 

the typical “whiptail” phenotypes, which includes mottled lesions on the leaves, rolling of 28 

leaves and wilting of leaf edges (Arnon & Stout, 1939). 29 



5 
 

Living organisms that require Mo to synthesize molybdoenzymes take up Mo from the 1 

environment in an energy dependent process. In Escherichia coli, Mo is taken up by a high-2 

affinity ABC-type transport system. This system is encoded by modABC genes and 3 

composed of a periplasmic molybdate-binding protein (ModA), a membrane channel 4 

protein (ModB), and an energy-transducing ATPase protein (ModC) (Grunden & 5 

Shanmugam, 1997; Hollenstein et al., 2007). A large number of ABC transporter genes are 6 

present in the genome of eukaryotes; however, none of the ABC-type Mo-specific 7 

transporters have been identified in eukaryotes (Kaiser et al., 2005). The first eukaryotic 8 

high-affinity molybdate transporter encoded by MoT1 (CrMOT1) was identified in the 9 

green alga Chlamydomonas reinhardtii (Tejada-Jimenez et al., 2007). Knock-down of 10 

CrMOT1 by an antisense RNA strategy inhibited the molybdate transport activity and the 11 

activity of the Mo-containing enzyme nitrate reductase, indicating a function of CrMOT1 12 

in molybdate transport (Tejada-Jimenez et al., 2007). A high-affinity molybdate 13 

transporter AtMOT1;1 (also named as MOT1) that shows sequence similarity to CrMOT1 14 

was also identified in Arabidopsis thaliana (Tomatsu et al., 2007; Baxter et al., 2008). 15 

AtMOT1;1 belongs to group V of the sulfate transporter superfamily and was previously 16 

named as Sultr5;2 (Tejada-Jimenez et al., 2013). Knock-out of AtMOT1;1 led to decreased 17 

accumulation of Mo in both roots and shoots and the atmot1;1 mutant showed Mo 18 

deficiency symptoms when grown under limited Mo supply conditions, suggesting an 19 

essential role of AtMOT1;1 in uptake of Mo from soil in A. thaliana (Tomatsu et al., 2007; 20 

Baxter et al., 2008). Another member of group V of the sulfate transporter superfamily, 21 

AtMOT1;2 (Sultr5;1; previously named MOT2), was also identified in A. thaliana, which 22 

localizes to the tonoplast and functioned in vacuolar molybdate export (Gasber et al., 2011). 23 

Recently, LjMOT1 was isolated from Lotus japonicus, which is essential for L. japonicus 24 

to take up Mo from the soil (Gao et al., 2016; Duan et al., 2017). Very recently, MtMOT1.3 25 

was identified in the model legume Medicago truncatula, which is required for nitrogenase 26 

activity in root nodules (Tejada-Jimenez et al., 2017). In C. reinhardtii, there is another 27 

molybdate transporter CrMOT2, which shows no sequence similarity to CrMOT1 and thus 28 

is not related to the MOT1 family (Tejada-Jimenez et al., 2011). CrMOT2 is also a high-29 

affinity molybdate transporter and mainly functions under the molybdate deficient 30 
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conditions (Tejada-Jimenez et al., 2011). To date, molybdate transporters that control Mo 1 

concentration have not been characterised in staple food crops. 2 

In this study, we identify a quantitative trait locus (QTL) qGMo8 that controls the variation 3 

in grain Mo concentration in rice. We show that qGMo8 encodes a molybdate transporter 4 

OsMOT1;1. OsMOT1;1 is mainly expressed in roots and exhibits molybdate transport 5 

activity when heterogeneously expressed in yeast cells. Loss-of-function of OsMOT1;1 6 

results in decreased Mo translocation from roots to shoots, lower Mo concentration in 7 

grains and higher sensitivity to Mo deficiency. We further reveal that the natural variation 8 

of Mo concentration in rice grains is attributed to the variable expression of OsMOT1;1 in 9 

roots.  10 

 11 

Materials and Methods 12 

Plant materials and growth conditions 13 

The rice (Oryza sativa L.) recombinant inbred lines derived from a cross between Lemont 14 

(LM, japonica) and TeQing (TQ, indica) (LT-RILs), and TeQing-into-Lemont backcross 15 

introgression lines (TILs) were described previously (Tabien et al., 2000; Pinson et al., 16 

2012; Huang et al., 2016b). The heterogeneous inbred families (HIFs) of OsMOT1;1 locus 17 

were generated as previously described (Tuinstra et al., 1997; Loudet et al., 2005). A PCR 18 

marker was developed based on the 222 bp deletion in the promoter of OsMOT1;1 in TQ, 19 

and was used for genotyping the TILs. The line TIL669.4 was determined to be 20 

heterozygous at the OsMOT1;1 locus. Plants fixed with TQ allele (HIF669.4-TQ) and 21 

plants fixed with Lemont allele (HIF669.4-LM) were identified in the next generation of 22 

TIL669.4, resulting in HIFs for comparing phenotypic effects of the OsMOT1;1 alleles 23 

from TQ and LM. The T-DNA insertion mutant for OsMOT1;1 which is in Zhonghua 11 24 

background was obtained from Huazhong Agricultural University, China 25 

(http://rmd.ncpgr.cn). The segregated plants without T-DNA insertion in OsMOT1;1 gene 26 

were used as a WT control. The WT and T-DNA seeds were planted into soil in a 27 

greenhouse at the University of Aberdeen, U.K., or hydroponically grown in Nanjing 28 

Agricultural University, China. The A. thaliana T-DNA insertion mutant for AtMOT1;1 29 

http://rmd.ncpgr.cn/
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(SALK_118311) was obtained from the Arabidopsis Biological Resource Center (ABRC, 1 

http://www.arabidopsis.org/abrc/).  2 

The growth of LT-RIL and TIL populations in the field in Texas, U.S.A., and the growth 3 

of the TIL population in a greenhouse in Purdue University were described previously 4 

(Zhang et al., 2014; Huang et al., 2016b). For analysis of the grains and different tissues 5 

of the WT and osmot1;1, plants were grown in soil in a greenhouse at the University of 6 

Aberdeen, U.K. as described previously (Huang et al., 2016b). For the hydroponic 7 

experiment, WT and osmot1;1 plants were grown in 96-well plates with the bottom 8 

removed. The plates were put in tip boxes containing half-strength Kimura B solution with 9 

different concentrations of Mo. The growth condition was described previously (Huang et 10 

al., 2016b). A. thaliana transgenic plants were grown on MGRL agar media in a growth 11 

chamber at the University of Aberdeen, U.K. as described (Huang et al., 2016a). 12 

QTL analysis and fine mapping of qGMo8  13 

The QTL mapping has been performed previously by using both multiple interval mapping 14 

(MIM) and Bayesian information criterion (BIC) methods based on the least squares (LS) 15 

means of the 5 years-replications for the grain Mo of LT-RIL and three replications of TIL 16 

(Zhang et al., 2014). We reperformed QTL analyses based on the individual year data under 17 

flooded or unflooded field conditions by using Windows QTL cartographer version 2.5 18 

(http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) with a composite interval mapping (CIM) method 19 

according to previous studies (Huang et al., 2016b). Seven markers were developed in the 20 

qGMo8 mapping interval and used to genotype the entire population of 123 TILs. Three 21 

representative TILs with different genotypes in the qGMo8 mapping interval and two 22 

control TILs were chosen for further replicated phenotypic analyses and fine mapping. By 23 

integration of the genotypes and grain Mo concentrations of these lines, the qGMo8 was 24 

fine mapped to a 522 kb region on the top of chromosome 8. The primer sequences are 25 

listed in Table S2. 26 

Tissue elemental analysis 27 

The elemental concentrations in grains of LT-RILs, TILs, WT and osmot1;1 were 28 

determined using an inductively couple plasma mass spectrometer (ICP-MS, Elan DRCe, 29 

PerkinElmer; or NexION 300D, PerkinElmer) according to previous studies (Zhang et al., 30 

http://www.arabidopsis.org/abrc/
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
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2014; Huang et al., 2016b). For determination of elemental concentrations in different 1 

organs of WT and osmot1;1 grown in soil, tissues were excised and washed with Milli-Q 2 

water and dried at 88°C overnight. For analysis of roots of WT and osmot1;1 grown 3 

hydroponically, roots were excised and washed with 0.5 mM CaCl2 solution three times 4 

and rinsed with Milli-Q water once and then dried at 88°C overnight. Samples were 5 

digested with concentrated HNO3 at 118°C for 4 h. The elemental concentrations in the 6 

digested samples were determined by ICP-MS (Huang et al., 2016b). The Mo 7 

concentrations in shoots and roots of transgenic A. thaliana plants were determined 8 

according to previous studies (Huang et al., 2016a). 9 

Genetic and transgenic complementation test 10 

For genetic complementation, osmot1;1 as well as WT T-DNA progeny were crossed with 11 

HIF669.4-TQ and HIF669.4-LM, respectively. The concentrations of Mo in grains of F1 12 

plants from each cross were then determined. For transgenic complementation, the full-13 

length coding sequence of OsMOT1;1 was PCR amplified using the cDNA of TQ or LM 14 

as templates. The correct PCR fragments confirmed by sequencing were ligated into the 15 

SalI-SpeI site of p1301GFP vector (Huang et al., 2009) to generate the 16 

35S:OsMOT1;1(TQ)-GFP and 35S:OsMOT1;1(LM)-GFP constructs. The resulting 17 

plasmids were transformed into Agrobacterium tumefaciens strain HA105 and introduced 18 

into rice japonica cv. Zhonghua 11 as described previously (Hiei et al., 1994). osmot1;1 19 

was crossed with two transgenic OsMOT1;1 overexpression lines, 35S:OsMOT1;1(TQ)-20 

GFP and 35S:OsMOT1;1(LM)-GFP. Two independent transgenic lines of 21 

35S:OsMOT1;1(TQ)-GFP and 35S:OsMOT1;1(LM)-GFP were used for crossing. In 22 

subsequent F2 populations, plants containing the transgene in homozygous osmot1;1 23 

mutant background were identified by genotyping. Plants without the transgene in WT or 24 

homozygous osmot1;1 mutant background were used as controls. The grain Mo 25 

concentrations in grains from these F2 plants were determined by ICP-MS. The primer 26 

sequences using for genotyping are listed in Table S2. 27 

Expressing OsMOT1;1 in an A. thaliana atmot1;1 mutant 28 

OsMOT1;1 was expressed in an A. thaliana atmot1;1 T-DNA mutant using the 35S 29 

promoter or AtMOT1;1 native promoter. The construction of 35S:OsMOT1;1(TQ)-GFP 30 
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and 35S:OsMOT1;1(LM)-GFP vectors was as described above. To generate the AtMOT1;1 1 

promoter driven OsMOT1;1 expression vectors, the 1,777-bp promoter sequence of 2 

AtMOT1;1 was PCR amplified from the genomic DNA of Col-0 using the primers listed 3 

in Table S2.  The PCR fragment confirmed by sequencing was used to substitute the 35S 4 

promoters in the 35S:OsMOT1;1(TQ)-GFP and 35S:OsMOT1;1(LM)-GFP vectors to 5 

generate MOT1pro:OsMOT1;1(TQ)-GFP and MOT1pro:OsMOT1;1(LM)-GFP vectors, 6 

respectively. These plasmids were also transformed into Agrobacterium tumefaciens strain 7 

GV3101 and introduced in A. thaliana mot1 mutant (SALK_118311) using the floral dip 8 

method (Clough & Bent, 1998). To assay low pH sensitivity, homozygous T3 transgenic 9 

plants were grown on MGRL medium with Mo omitted. The low pH media was prepared 10 

as described above by adding 35 µl 6 M HCl into 100 ml media after autoclaving. Plants 11 

were grown on plates horizontally in a climate-controlled room with temperature of 19-12 

22°C, photoperiod of 10 h light (100 ± 10 μmol m-2 s-1)/14 h dark and humidity of 60%. 13 

The shoots were weighed after growing for 20 d.  14 

Functional analysis of OsMOT1;1 in yeast 15 

The molybdate transporting activity of OsMOT1;1 in yeast was determined according to 16 

previous studies with modifications [12]. To generate the plasmids for expression of 17 

OsMOT1;1 in yeast (Saccharomyces cerevisiae), the full-length coding sequence of 18 

OsMOT1;1 was PCR amplified from the cDNA of TQ or LM using the primers listed in 19 

Table S2. The correct PCR fragments confirmed by sequencing were subcloned into the 20 

EcoRI-XhoI site of the yeast expression vector pYX222x (Tomatsu et al., 2007). The 21 

expression of OsMOT1;1 in this plasmid was driven by a constitutive triose phosphate 22 

isomerase promoter. The resultant plasmids and empty vector were transformed into yeast 23 

strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) using a Frozen-EZ Yeast 24 

Transformation II Kit (ZYMO Research). For molybdate transporting assay, the BY4741 25 

strains transformed with the empty vector pYX222x, pYX222x-OsMOT1;1(TQ) or 26 

pYX222x-OsMOT1;1(LM) were inoculated at 30°C overnight in 3 mL of Mo-free SD/-His 27 

media (6.7 g L-1 yeast nitrogen base without amino acids and without molybdenum 28 

(FORMEDIUM), 1.92 g L-1 dropout mix without histidine, 2% (w/v) glucose). A 100 μL 29 

sample of overnight yeast cells was then transferred to 10 ml Mo-free SD/-His media and 30 

incubated at 30°C until the optical density at 600 nm (O.D.600) reached to around 1. 31 
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Hexaammonium heptamolybdate was then added to the media to a final concentration of 1 

0.5 μM. After shaking at 30°C for 30 min, yeast cells were harvested by centrifugation and 2 

then washed three times with 1mM EDTA-Na and once with Milli-Q water. Cells were 3 

dried at 80°C overnight, then digested with concentrated HNO3. The Mo concentration in 4 

digested samples were determined by ICP-MS. The amount of yeast was converted by 1ml 5 

of 1 O.D.600 culture containing 3×107 cells (Baxter et al., 2008). 6 

To test the sulfate transporting activity of OsMOT1;1, the empty vector pYX222x, 7 

pYX222x-OsMOT1;1(TQ) and pYX222x-OsMOT1;1(LM) were transformed into a yeast 8 

mutant CP154-7B (MATa, his3, leu2, ura3, ade2, trp1, sul1::LEU2, sul2::URA3) as above 9 

(Tomatsu et al., 2007). An A. thaliana high-affinity sulfate transporter gene SULTR1;2 was 10 

used as positive control. The overnight yeast cultures were collected by centrifugation and 11 

washed once with Milli-Q water. After adjusting the O.D.600 of yeast cultures to 0.5, 10 12 

μL yeast suspensions were spotted on synthetic medium (0.5 mM sulfate, 20 g L-1 glucose, 13 

10 g L-1 agarose, 20 mg L-1 Ade, 30 mg L-1 L Leu, 20 mg L-1 Ura, and 20 mg of L-1 Trp) 14 

with or without 20 mg L-1 methionine. The plates were incubated at 30°C for 6 days.  15 

Other methods could be found in Methods S1. 16 

 17 

 18 

Results 19 

Map-based cloning of qGMo8 20 

We previously used two synthetic rice mapping populations composed of recombinant 21 

inbred lines derived from a cross between Lemont (LM, japonica) and TeQing (TQ, indica) 22 

(LT-RILs), and TeQing-into-Lemont backcross introgression lines (TILs), to identify 23 

QTLs that control the variation in concentration of 16 elements in unmilled rice grain 24 

(Zhang et al., 2014). 134 QTLs were identified in either one or both mapping populations 25 

grown under flooded and/or unflooded field conditions (Zhang et al., 2014). Among 8 26 

QTLs that control the variation in grain Mo concentration, one was detected on the top of 27 

chromosome 8 (designated as qGMo8) in both mapping populations in field trials over 28 

multiple years and in both flooded and unflooded fields. This QTL explains up to 35% of 29 
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the variation in grain Mo (Fig. 1a and 1b). The qGMo8 first observed in grain from field 1 

grown materials was also detected in both grain and leaf tissues from greenhouse grown 2 

TILs, which allows us to fine map the QTL using plants cultivated in the greenhouse (Fig. 3 

1b).  4 

To narrow down the qGMo8 mapping interval, we developed additional markers to 5 

genotype the TIL population. Integration of grain Mo concentration and genotype data of 6 

three TILs narrowed the QTL interval down to a 522 kb region on the top of chromosome 7 

8 (Fig. 1c). In this region, a gene (LOC_Os08g01120) annotated as sulfate transporter 8 

encodes a protein that shows 57.8% sequence similarity to A. thaliana high-affinity 9 

molybdate transporter AtMOT1;1 (Tomatsu et al., 2007; Baxter et al., 2008), which makes 10 

it a strong candidate gene for qGMo8 (Fig. S1a). We thus designated LOC_Os08g01120 11 

as OsMOT1;1. Sequence analysis revealed a 9-basepair (bp) deletion (Del9) and a single 12 

nucleotide polymorphism (SNP) in the coding sequence of OsMOT1;1 in TQ (Fig. 1d, Fig. 13 

S1b). The 9-bp deletion alters the amino acid sequence from four glutamines in LM to a 14 

glutamic acid in TQ (Fig. 1d, Fig. S1b). The SNP in the coding sequence also alters the 15 

amino acid sequence, with an alanine in LM and a serine in TQ at the position of 125 16 

(S125A) (Fig. 1d, Fig. S1b). A 222-bp deletion (Del222) and a 16-bp deletion (Del16) were 17 

found in the promoter sequence of OsMOT1;1 in TQ. Meanwhile, there are 19 SNPs in the 18 

promoter sequence of OsMOT1;1 in TQ. Comparison of OsMOT1;1 sequences of TQ and 19 

LM with Nipponbare reference sequence identified a 12-bp deletion (Del12) in the coding 20 

region of OsMOT1;1 in both TQ and LM, and only a SNP in the promoter sequence of 21 

OsMOT1;1 between LM and Nipponbare (Fig. 1d). Sequence alignment showed that none 22 

of the variable amino acids between TQ and LM are conserved in the MOT1 protein family 23 

(Fig. S1a), suggesting that these amino acids might not alter the function of OsMOT1;1.    24 

The existence of residual heterozygosity in TILs is useful for developing appropriate nearly 25 

isogenic lines (NIL) by generating heterogeneous inbred families (HIFs) (Tuinstra et al., 26 

1997; Loudet et al., 2005; Huang et al., 2016b). We identified TIL669.4 which is 27 

heterozygous at the OsMOT1;1 locus, and isolated HIF669.4-TQ and HIF669.4-LM in the 28 

next generation (Fig. S2). These two HIFs have similar genomic background and only 29 

differ in a small genomic region containing homozygous OsMOT1;1 alleles from TQ or 30 

LM, respectively. Both grain and leaf Mo concentrations of HIF669.4-TQ are significant 31 
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lower than that of HIF669.4-LM, suggesting that the TQ allele is a weak allele (Fig. 1e). 1 

Quantitative RT-PCR analysis showed that the expression levels of OsMOT1;1 in both 2 

shoots and roots of HIF669.4-TQ were significantly lower than that of HIF669.4-LM, 3 

suggesting that the low Mo in HIF669.4-TQ might be due to the lower expression level of 4 

OsMOT1;1 (Fig. 1f). 5 

OsMOT1;1 is the causal gene for qGMo8 6 

To investigate the function of OsMOT1;1, we isolated a T-DNA insertion mutant of 7 

OsMOT1;1. The T-DNA insertion at the promoter of OsMOT1;1 significantly decreases 8 

its expression (Fig. S3a- S3c). The osmot1;1 mutant has no obvious phenotype difference 9 

from the wild-type (WT) when grown in soil in a greenhouse (Fig. 2a). Elemental profile 10 

analysis showed that the Mo concentration in the grain of osmot1;1 is approximately 58% 11 

lower than that of the WT (P < 0.001, Student’s t-test, n = 10) (Fig. 2b and 2c). The low 12 

Mo phenotype was also observed in the blades and sheaths of osmot1;1 (Fig. 2b). Of the 13 

22 elements determined, Mo is the only element that is significantly changed in the grain, 14 

leaves and sheaths of osmot1;1, suggesting a specific effect of OsMOT1;1 mutation on Mo 15 

concentrations (Fig. 2c). To test whether OsMOT1;1 is the causal gene for qGMo8, we 16 

performed an allelic complementation by crossing osmot1;1 as well as WT with HIF669.4-17 

TQ and HIF669.4-LM, respectively. The expression level of OsMOT1;1 in the roots of 18 

both HIF669.4-TQ and HIF669.4-LM was higher than in that of osmot1;1 (Fig. S3e). The 19 

Mo concentrations in both leaves and grain of osmot1;1 × HIF669.4-TQ and osmot1;1 × 20 

HIF669.4-LM F1 plants grown in soil in a greenhouse were significantly higher than that 21 

of osmot1;1 (Fig. 2d and 2e), similar to the levels in HIF669.4-TQ and HIF669.4-LM, 22 

respectively, suggesting the complementation of OsMOT1;1 from both TQ and LM to the 23 

knockout allele. However, significant differences of both leaf and grain Mo concentrations 24 

between osmot1;1 × HIF669.4-TQ F1 and osmot1;1 × HIF669.4-LM F1 were observed 25 

(Fig. 2d and 2e), indicating differential functional activity of OsMOT1;1 between TQ and 26 

LM. To further confirm OsMOT1;1 as the causal gene, we crossed osmot1;1 with 27 

OsMOT1;1 overexpression lines in which OsMOT1;1 from either TQ or LM was expressed 28 

from a cauliflower mosaic virus (CaMV) 35S promoter in the cv. Zhonghua 11 background. 29 

When grown in soil in a greenhouse, the Mo concentrations in grains of F2 plants 30 

containing the transgene in homozygous osmot1;1 mutant background was significantly 31 
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higher than those homozygous osmot1;1 plants without the transgene (Fig. 2e). These 1 

results demonstrate that overexpression of OsMOT1;1 is able to complement the low Mo 2 

phenotype of the osmot1;1 mutant. 3 

Low Mo Phenotype of osmot1;1 knockout mutant 4 

At grain maturity stage, the osmot1;1 mutant grown in soil in the greenhouse has a lower 5 

concentration of Mo than WT not only in the grain, but also in the blade and sheath of the 6 

flag leaf, and most of the nodes and internodes of the main tiller (Fig. 3a). Analysis of the 7 

seedlings grown hydroponically in the nutrient solution containing 1 nM Mo showed that 8 

osmot1;1 accumulated significant lower Mo in both roots and shoots (Fig. 3b and 3c). 9 

However, the difference in the root Mo concentration between osmot1;1 and WT 10 

disappeared when plants were grown in the nutrient solution containing 10 nM or higher 11 

concentration of Mo (Fig. 3b). Similarly, significant differences in the shoot Mo 12 

concentration were observed only at the low levels of Mo supply (1 and 10 nM), but not at 13 

the high levels of Mo supply (100 nm or 1 μM) (Fig. 3c). These results suggest that 14 

OsMOT1;1 might function mainly at low Mo concentration. Consistent with lower Mo 15 

level in shoots, the Mo concentration in the xylem sap of osmot1;1 was significantly 16 

decreased compared to the WT (Fig. 3d), suggesting that Mo translocation from roots to 17 

shoots was affected in osmot1;1. Further analysis showed that the Mo concentrations in all 18 

tissues except the leaf sheaths of the 5th and 6th leaves of osmot1;1 were significantly lower 19 

than that of WT (Fig. 3e).  20 

The osmot1;1 mutant is sensitive to limited Mo supply 21 

Given that osmot1;1 accumulates less Mo in shoots, we investigated the sensitivity of 22 

osmot1;1 to Mo deficiency. The bioavailability of Mo is strongly dependent on the soil pH 23 

with Mo becoming much less bioavailable in acid soils (Marschner & Rengel, 2012). When 24 

grown in acidified solid media without supplementation of Mo, most of the seeds of 25 

osmot1;1 did not germinate, and the growth of the plants from seeds that did germinate 26 

was strongly inhibited (Fig. 4a and 4b). In contrast, the WT plants were able to germinate 27 

and grow, even though the root growth was also inhibited by low pH (Fig. 4a and 4b). 28 

These results establish that, without Mo added into the media, osmot1;1 is more sensitive 29 

to low pH compared to the WT. Supplementation of 1 µM Mo to the acidified solid media 30 
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was able to restore the growth of osmot1;1 to the level of WT (Fig. 4a and 4b), indicating 1 

that the sensitivity of osmot1;1 to low pH is due to the deficiency of Mo in the media. We 2 

further showed that the HIF669.4-TQ, which accumulated less Mo (Fig. 1e), was more 3 

sensitive to Mo deficiency at low pH condition compared to the HIF669.4-LM (Fig. S4a 4 

and S4b). 5 

Expression pattern and subcellular localization of OsMOT1;1 6 

OsMOT1;1 was expressed in most of the plant tissues throughout the growth period of LM 7 

except the panicles at the reproductive stage (Fig. 5a). However, the expression of 8 

OsMOT1;1 was much stronger in the roots than in the other tissues. In roots of 2-week-old 9 

seedlings, OsMOT1;1 was strongly expressed in the lateral roots as investigated by 10 

OsMOT1;1 promoter-GUS transgenic rice plants (Fig. 5b). Low levels of GUS signals 11 

were detected in other tissues. To test whether the expression of OsMOT1;1 was affected 12 

by Mo supply, LM plants were grown in nutrient solution containing 1 µM Mo for one 13 

week and transferred to nutrient solution with Mo omitted for a further week. The 14 

expression of OsMOT1;1 in roots was strongly suppressed by Mo depletion as determined 15 

by qRT-PCR.  However, such suppression was not found in shoots (Fig. 5c).  16 

To investigate the subcellular localization of OsMOT1;1, OsMOT1;1 from TQ or LM was 17 

fused with GFP to the C-terminal and expressed under the control of 35S promoter in a 18 

japonica variety Zhonghua 11 (Fig. S3d). The GFP fluorescence was co-localized with the 19 

signal of a mitochondrial dye Mitotacker, suggesting OsMOT1;1 localizes to the 20 

mitochondria (Fig. 5d). We observed that OsMOT1;1 from both TQ and LM were localized 21 

to the mitochondria, indicating that the amino acid variation of OsMOT1;1 between TQ 22 

and LM has no effect on the subcellular localization (Fig. 5d). Furthermore, the Mo 23 

concentrations in roots and shoots of transgenic lines were higher than the non-transgenic 24 

control line, suggesting the mitochondria-localized OsMOT1;1 is functional (Fig. S5). 25 

Functional analysis of OsMOT1;1 in A. thaliana 26 

OsMOT1;1 shares 57.8% sequence similarity to AtMOT1;1 (Fig. S1a), a high-affinity 27 

molybdate transporter in A. thaliana. The atmot1;1 mutant accumulates lower levels of Mo 28 

in leaves than WT (Tomatsu et al., 2007; Baxter et al., 2008). To investigate whether 29 

expression of OsMOT1;1 in atmot1;1 could suppress its low Mo phenotype, we 30 
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heterologously expressed OsMOT1;1-GFP in atmot1;1 using 35S promoter (Fig. S6). In 1 

the root cells of the transgenic plants, the GFP signals were observed to co-localize with 2 

the mitochondria specific dye MitoTracker (Fig. S7), further confirming the mitochondria 3 

localization of OsMOT1;1. The Mo concentrations in both roots and shoots of transgenic 4 

plants expressing OsMOT1;1 from either TQ or LM were significantly higher than that of 5 

atmot1;1, even higher than the WT Col-0 (Fig. 6a). These results suggest that expression 6 

of OsMOT1;1 from either TQ or LM could enhance Mo accumulation in atmot1;1. To rule 7 

out the ectopic effect of overexpression of OsMOT1;1 driven by 35S promoter, we also 8 

expressed OsMOT1;1 in atmot1;1 using AtMOT1;1 native promoter (Fig. S6). The Mo 9 

concentrations in both roots and shoots of transgenic plants were significantly higher than 10 

that of atmot1;1, similar to the level in WT Col-0 (Fig. 6b), suggesting that expression of 11 

OsMOT1;1 using AtMOT1;1 native promoter was able to complement the AtMOT1;1 12 

knockout mutant. Notably, there was no significant difference in either root or shoot Mo 13 

concentration between transgenic plants expressing OsMOT1;1 from TQ or LM (Fig. 6b), 14 

indicating no functional difference between the OsMOT1;1 allele of TQ and LM. Previous 15 

studies have shown that the atmot1;1 mutant is sensitive to low Mo stress (Tomatsu et al., 16 

2007) and shows defective growth in acidic soil in which the bioavailability of Mo is low 17 

(Poormohammad Kiani et al., 2012). Similar to the sensitivity to acidic soil, atmot1;1 also 18 

showed growth inhibition on agar media at low pH without added Mo (Fig. 6c to 6e). The 19 

transgenic plants expressing OsMOT1;1 from TQ or LM using 35S promoter or MOT1 20 

native promoter completely restore the growth of atmot1;1 on agar media at low pH (Fig. 21 

6c to 6e). The results further confirm that OsMOT1;1 is able to complement the mutation 22 

of AtMOT1;1 in A. thaliana.  23 

Molybdate transport activity of OsMOT1;1 24 

The molybdate transport activity of OsMOT1;1 was tested by heterologous expression of 25 

OsMOT1;1 in yeast (Saccharomyces cerevisiae) strain BY4741. Yeast strain BY4741 26 

transformed with empty vector or OsMOT1;1 from TQ or LM were cultured in Mo-free 27 

media to the mid-log phase and then transferred to the media containing 0.5 µM Mo and 28 

incubated for 30 min. The Mo concentration in yeast cells transformed with OsMOT1;1 29 

was significantly higher than the control strain transformed with an empty vector (Fig. 7a). 30 

These results support the conclusion that OsMOT1;1 is able to transport molybdate. Further 31 
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comparison revealed no difference of Mo concentrations in the strains transformed with 1 

OsMOT1;1 from TQ or LM (Fig. 7a), indicating that OsMOT1;1 from TQ and LM 2 

exhibited similar molybdate transporting activity.   3 

OsMOT1;1 shares sequence similarity to sulfate transporter genes in rice and thus was 4 

previously annotated as a member of the group five sulfate transporter family (Kumar et 5 

al., 2011). To determine whether OsMOT1;1 exhibits a sulfate transport activity, we 6 

performed complementation analysis of a yeast mutant CP154-7B, which is defective in 7 

two high-affinity sulfate transporters and is unable to grow on the media containing lower 8 

than 1 mM sulfate as the sole sulfur source (Shibagaki et al., 2002; Yoshimoto et al., 2002; 9 

Tomatsu et al., 2007).  The yeast mutant transformed with SULTR1;2, an A. thaliana high-10 

affinity sulfate transporter, was able to grow on the – Met media. However, expression of 11 

OsMOT1;1 from either TQ or LM was unable to complement the growth defect of the 12 

mutant strain on –Met media (Fig. 7b). These results suggest that OsMOT1;1 likely does 13 

not exhibit sulfate transport activity.  14 

Analysis of natural variation of OsMOT1;1 15 

To investigate the contribution of natural variation at OsMOT1;1 to the variation of grain 16 

Mo in rice, we analyzed the coding sequences of 1,479 rice accessions which have been 17 

resequenced (Zhao et al., 2015). Five non-synonymous polymorphisms in the coding 18 

sequence of OsMOT1;1 were identified, including the two polymorphic sites between TQ 19 

and LM (S125A and Del9), and the 12 bp deletion (Del12) in both TQ and LM (Table S1 20 

and Fig. 1d). To determine the contribution of these three polymorphic sites on the 21 

variation of grain Mo, we genotyped 1,097 accessions of USDA rice core collection for 22 

which we have previously reported the grain ionomic profile (Pinson et al., 2015). We 23 

found no significant difference of grain Mo between the two alleles on any of these three 24 

polymorphic sites (Fig. 8a, Fig. S8a). We further compared the grain Mo concentrations of 25 

eight haplotypes derived from the combination of these three polymorphic sites. We 26 

observed no significant differences of grain Mo among the eight haplotypes (Fig. 8b and 27 

Fig. S8b). These results suggested that the variation in the coding region of OsMOT1;1 28 

might not contribute to the variation of grain Mo in the rice population.  29 
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There are 19 SNPs and two sequence deletions (Del222 and Del16) in the promoter sequence 1 

of OsMOT1;1 in TQ (Fig. 1d). We determined the contribution of the two major sequence 2 

variances, Del222 and Del16, on the variation of grain Mo. We genotyped the 1,097 3 

accessions of USDA core collection and compared the grain Mo concentrations of 4 

accessions with or without the deletions. We found that there was no significant difference 5 

between the accessions with or without the Del222 or Del16 (Fig. 8c and Fig. S8c). 6 

Furthermore, the grain Mo concentrations among the accessions with combination of 7 

Del222 and Del16 were fairly similar (Fig. 8d and Fig. S8d). These results suggested that 8 

Del222 and Del16 in the promoter of OsMOT1;1 might not contribute to the variation of 9 

grain Mo. Thus, the different promoter activity of OsMOT1;1 between TQ and LM was 10 

likely due to the 19 SNPs, which might cause different expression level of OsMOT1;1 11 

between TQ and LM.  12 

Correlation of grain Mo with the expression of OsMOT1;1 13 

To determine whether the variation of grain Mo was due to the variation in the OsMOT1;1 14 

expression level, we selected 35 rice accessions from the USDA core collection with grain 15 

Mo concentrations ranging from 0.063 to 1.52 µg g-1 under flooded growth condition and 16 

0.084 to 1.23 µg g-1 under unflooded condition. The expression levels of OsMOT1;1 were 17 

determined in the roots of three-week-old plants grown hydroponically with 1 µM Mo. We 18 

found highly significant correlations between the expression level of OsMOT1;1 in roots 19 

from hydroponically grown plants with the Mo concentrations in grains from plants grown 20 

in the field under both flooded (Pearson’s R2 = 0.7368, p < 0.001) (Fig. 8e) and unflooded 21 

(Pearson’s R2 = 0.6207, p < 0.001) conditions (Fig. S8e). These results suggest the natural 22 

variation of Mo concentration in rice grains is attributed to the variable expression of 23 

OsMOT1;1 in roots. 24 

 25 

Discussion 26 

As one of the essential mineral nutrients required by plants, Mo plays important roles in 27 

nitrate assimilation, abscisic acid biosynthesis, purine degradation and sulfite 28 

detoxification (Schwarz & Mendel, 2006; Bittner, 2014). However, the mechanisms of Mo 29 

uptake and transport and the regulation these processes are largely unknown in plants, 30 
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especially in crops. In this study, we identified a QTL qGMo8 that controls the variation 1 

of Mo concentration in rice shoots and grains. We determined the causal gene for this QTL 2 

to be OsMOT1;1 by genetic and transgenic complementation (Fig. 2d and 2e). OsMOT1;1 3 

was previously annotated as a member of the group V sulfate transporter superfamily 4 

(Tejada-Jimenez et al., 2013). We provided evidence that OsMOT1;1 is a molybdate 5 

transporter, including the fact that OsMOT1;1 enhances molybdate but not sulfate uptake 6 

when heterogeneously expressed in yeast (Fig. 7a and 2b). We found that the difference in 7 

grain Mo concentrations between rice cultivars TQ and LM was not due to altered 8 

molybdate transporting activity but most likely to the allelic variation at the gene 9 

expression level of OsMOT1;1. This conclusion is supported by several lines of evidence. 10 

First, the molybdate transporting activity of OsMOT1;1 from TQ and LM was similar when 11 

heterogeneously expressed in yeast (Fig. 7a). Second, the OsMOT1;1 from either TQ or 12 

LM was able to complement the low Mo phenotype of atmot1;1 to a similar level when 13 

expressed by the AtMOT1;1 native promoter (Fig. 6b, 6c and 6e). Third, the heterogeneous 14 

inbred families line HIF669.4-LM with higher expression level of OsMOT1;1 accumulates 15 

more Mo in the leaves and grains than that of HIF669.4-TQ. Knockout of OsMOT1;1 16 

resulted in decreased Mo concentration in the shoots and grains (Fig. 2b and 2c). We thus 17 

conclude that OsMOT1;1 is a molybdate transporter in rice and the natural variation of Mo 18 

concentration in rice grains is attributed to the allelic variation at the gene expression level 19 

of OsMOT1;1.  20 

Several molybdate transporters have been identified, including CrMOT1 and CrMOT2 21 

from C. reinhardtii (Tejada-Jimenez et al., 2007; Tejada-Jimenez et al., 2011), AtMOT1;1 22 

and AtMOT1;2 from A. thaliana (Tomatsu et al., 2007; Baxter et al., 2008; Gasber et al., 23 

2011), LjMOT1 from Lotus japonicus (Gao et al., 2016; Duan et al., 2017) and MtMOT1.3 24 

from Medicago truncatula (Tejada-Jimenez et al., 2017). AtMOT1;1 has been shown to 25 

control the natural variation in leaf Mo concentration in A. thaliana (Baxter et al., 2008). 26 

A 53-bp deletion in the promoter of AtMOT1;1 which is located 13 bp upstream from the 27 

transcription start-site of AtMOT1;1 was identified as the functional polymorphism 28 

contributing to decreased leaf Mo concentration (Tomatsu et al., 2007; Baxter et al., 2008). 29 

Further analysis revealed a total of six non-coding structural polymorphisms in the 30 

AtMOT1;1 promoter, including the 53-bp deletion originally identified in Ler-0 and a 31 
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duplicated 330-bp insertion that has undergone a 4-bp deletion (Forsberg et al., 2015). The 1 

53-bp deletion is associated with decreased leaf Mo, while the duplicated 330-bp insertion 2 

is associated with elevated leaf Mo. These two polymorphisms control Mo concentration 3 

in leaves by either decreasing or increasing, respectively, the expression level of AtMOT1;1.  4 

In this study, we identified 19 SNPs and two deletions, a 222-bp deletion (Del222) and a 16-5 

bp deletion (Del16), in the promoter of OsMOT1;1 between TQ and LM (Fig. 1d). We 6 

showed that the difference in grain Mo concentration between TQ and LM was due to the 7 

different expression level of OsMOT1;1 (Fig. 1e and 1f). Further analysis of 35 rice 8 

accessions revealed a significant positive correlation between the expression level of 9 

OsMOT1;1 in roots and Mo concentration in grains (Fig. 8e and Fig. S8e). However, the 10 

variation in grain Mo appears unrelated to the two main non-coding structural 11 

polymorphisms, Del222 and Del16, as grain Mo concentrations of rice accessions with or 12 

without these two deletions were similar (Fig. 8c and 8d, Fig. S8c and S8d). Therefore, the 13 

difference in grain Mo concentration between TQ and LM may be due to the SNPs in the 14 

promoter of OsMOT1;1 which lead to different expression level. At least two SNPs which 15 

are significantly associated with the variation of leaf Mo were also identified on the 16 

AtMOT1;1 locus, even though the effect of these SNPs on its expression is not clear 17 

(Forsberg et al., 2015). Thus, the variation of Mo in both rice and A. thaliana is attributed 18 

to the variable expression of the MOT1;1 gene. Such conserved genetic variation structure 19 

across plant species suggests a role of MOT1;1 gene in the adaptation to the environment. 20 

Indeed, A. thaliana accessions with the weak allele of AtMOT1;1 from West Asia appear 21 

to adapt to their native habitats where the water extractable Mo content is high in soils 22 

(Poormohammad Kiani et al., 2012). We found that the osmot1;1 mutant is sensitive to 23 

limited Mo supply condition (Fig. 4a and 4b), similar to the sensitivity of atmot1;1 to Mo 24 

deficiency (Tomatsu et al., 2007) and to acidic soils in which the bioavailability of Mo is 25 

low (Poormohammad Kiani et al., 2012). Therefore, the MOT1;1 gene may play an 26 

important role in adaptation to variable molybdate availability in soils caused by 27 

environmental changes.  28 

The polymorphisms in the coding region of AtMOT1;1 also affect its function. A single 29 

amino acid variation on AtMOT1;1 in Ler-0 accession alters its molybdate transporting 30 

activity (Tomatsu et al., 2007). The hypofunction of AtMOT1;1 in Sha accession was also 31 
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proved to be caused by a single amino acid change (Poormohammad Kiani et al., 2012). 1 

In the present study, we found two amino acid polymorphisms in OsMOT1;1 between TQ 2 

and LM (Fig. 1d). However, none of them appears to alter the function of OsMOT1;1 as 3 

these two version proteins showed similar molybdate transporting activity and was able to 4 

complement the low Mo phenotype of the atmot1;1 mutant to a similar level (Fig. 6b, 6c 5 

and 6e; Fig. 7a). A 12-bp deletion (Del12) in the coding region of OsMOT1;1 of both TQ 6 

and LM, compared with Nipponbare, seems not to change its function because the 7 

presence/absence of Del12 is not associated with the variation of grain Mo (Fig. 8a and 8b, 8 

Fig. S8a and S8b). Thus, the large sequence diversity of the MOT1;1 locus explains well 9 

the identification of AtMOT1;1 in controlling the variation of leaf Mo by genome-wide 10 

association (GWA) analysis based on either the mean or variance of leaf Mo (Shen et al., 11 

2012; Forsberg et al., 2015), and OsMOT1;1 as the potential locus responsible for the 12 

variation of rice grain Mo concentration (Norton et al., 2014). 13 

The expression of OsMOT1;1 is stronger in roots than in shoots (Fig. 5a), similar to the 14 

expression pattern of AtMOT1;1 in A. thaliana (Tomatsu et al., 2007), which is consistent 15 

with the fact that AtMOT1;1 mainly functions in roots (Baxter et al., 2008). Under Mo 16 

limited condition, OsMOT1;1 is downregulated in roots but not in shoots (Fig. 5a). 17 

However, such downregulation was not observed for AtMOT1;1 in roots but rather in 18 

shoots (Tomatsu et al., 2007), suggesting the different behaviour of MOT1;1 genes in rice 19 

and A. thaliana under Mo scarce condition. OsMOT1;1 may mainly function under low 20 

Mo condition, as we only observed the difference of Mo concentrations between WT and 21 

osmot1;1 in the hydroponic growth system containing 1 or 10 nM Mo but not at relative 22 

higher Mo condition (100 nM or 1 µM) (Fig. 3b and 3c). The Mo concentration in the 23 

xylem sap of osmot1;1 is lower than that of WT (Fig. 3d), suggestion OsMOT1;1 is also 24 

involved in the translocation of Mo from roots to shoots. Meanwhile, the Mo 25 

concentrations in the grain, blade and sheath of osmot1;1 only decrease by 58% - 82% 26 

compared to the WT (Fig. 2d), suggesting the existence of additional transporters that 27 

control the accumulation of Mo in rice. Further studies are required to elucidate the detailed 28 

function of OsMOT1;1 and to identify other transporters in controlling the Mo homeostasis 29 

in rice.  30 
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In summary, we have identified OsMOT1;1 as the causal gene underlying the QTL for Mo 1 

accumulation in rice shoots and grains. OsMOT1;1 exhibits molybdate transport activity. 2 

The identification of OsMOT1;1 provides an important insight into the regulation of Mo 3 

homeostasis in rice and a useful gene to breed rice varieties resistant to Mo deficiency in 4 

soils. Given the importance of cereals as a source of Mo in the human diet, the identification 5 

of natural variation at the OsMOT1;1 locus provides an efficient way to breed rice varieties 6 

with Mo enrichment in the grain, which could improve the nutrient quality of grains.  7 
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 12 

Figure legends 13 

Fig. 1. QTL analysis and cloning of qGMo8.  14 

(a and b) The LOD profiling of qGMo8 on chromosome 8 in the LT-RIL population (a) 15 

and TIL population (b) grown in multiple years under different conditions. F, flooded; U, 16 

unflooded. G, grains of TILs grown in greenhouse; L, leaves of greenhouse grown TILs. 17 

(c) Grain Mo concentration and genotype at QTL interval of selected TILs. Data are 18 

presented as mean ± SD (n = 3). Columns with different letters indicate significant 19 

difference at P ≤ 0.01 (Tukey’s Honestly Significant Difference (HSD) test). DW, dry 20 

weight. (d) Gene structure and sequence variation of OsMOT1;1 among Nipponbare (Nipp), 21 

TQ and LM. Blue bars and white bars represent exons and untranslated regions, 22 

respectively. Vertical lines represent SNPs. (e) The Mo concentration in the grain and leaf 23 

of HIF669.4-TQ and HIF669.4-LM. (f) Expression level of OsMOT1;1 in shoots and roots 24 

of HIF669.4-TQ and HIF669.4-LM. Data in (e) and  (f) are presented as mean ± SD with 25 

n = 6 in (e) and 3 in (f). ** indicates significant difference at P ≤ 0.01 (Student’s t test).  26 

Fig. 2. Characterization of the osmot1;1 mutant and complementation test.  27 

(a) Greenhouse grown WT and osmot1;1 plants grown at harvesting stage. (b) Mo 28 

concentrations in the grain, blade and sheath of WT and osmot1;1. Data are presented as 29 

means ± SD (n = 8). ** indicates significant difference between WT and osmot1;1 at P ≤ 30 



26 
 

0.01 (Student’s t test). (c) Percentage difference of 22 elements in the grain, blade and 1 

sheath of osmot1;1 compared with the WT. Data are visualized in the radar chart. (d) 2 

Genetic complementation of osmot1;1 by crossing with HIF669.4-TQ or HIF669.4-LM. 3 

The Mo concentrations in the grain of F1 plants were determined. (e) Transgenic 4 

complementation of osmot1;1 by crossing with OsMOT1;1 overexpression lines. The grain 5 

Mo concentrations of F2 plants in a homozygous mutant background containing 6 

35S:OsMOT1;1(TQ)-GFP or 35S:OsMOT1;1(LM)-GFP constructs were determined. Two 7 

independent complemented lines were used for crossing. Data in (d, e) are presented as 8 

boxplots (n = 6). Boxes with different letters indicate significant difference at P ≤ 0.01 9 

(Tukey’s HSD test). DW, dry weight. 10 

Fig. 3. Low Mo phenotype of the osmot1;1 mutant.  11 

(a) The Mo concentrations in different tissues of greenhouse grown WT and osmot1;1 12 

plants at harvesting stage. (b and c) The Mo concentrations in roots  (b) and shoots (c) of 13 

WT and osmot1;1. Plants were hydroponically grown in nutrient solution containing 14 

various concentrations of Mo for two weeks. (d) The Mo concentration in the xylem sap 15 

of WT and osmot1;1. Plants were hydroponically grown in Mo-free nutrient solution for 16 

one week and treated with various concentrations of Mo for another week. (e) The Mo 17 

concentrations in different tissues of WT and osmot1;1 seedlings. Plants were 18 

hydroponically grown in nutrient solution containing 10 nM of Mo for two weeks. Data (a)  19 

are presented as boxplots (n = 11 for WT and n = 10  for osmot1;1). Data in (b-e) are 20 

presented as means ± SD with n = 4 in (b, c),  8 in (d, e). * and ** indicate significant 21 

difference between WT and osmot1;1 at P ≤ 0.05 and 0.01 (Student’s t test), respectively. 22 

DW, dry weight.  23 

Fig. 4. The osmot1;1 mutant is sensitive to Mo deficiency at low pH condition. 24 

(a) The phenotype of WT and osmot1;1 grown under normal or low pH media with or 25 

without 1 µM Mo added. Low pH media was made by adding 50 µL 6 M HCl to 100 mL 26 

agar media after autoclaving. Plants were grown for 20 days. Bar, 3 cm. (b) The plant 27 

height of WT and osmot1;1 grown as in (a). Data are presented as means ± SD with n = 6. 28 

*** indicated significant difference between WT and osmot1;1 at P ≤ 0.001 (Student’s t 29 

test).  30 



27 
 

Fig. 5. Expression pattern of OsMOT1;1.  1 

(a) Expression level of OsMOT1;1 in different organs of Lemont at different growth stages. 2 

(b) Histochemical GUS staining of roots of transgenic rice plants transformed with 3 

OsMOT1;1 promoter driven GUS constructs. The mature zone (left), elongation zone 4 

(middle) and root tip (right) of roots of 2-week-old plants are showed. Scale bars from left 5 

to right are 2, 0.5 and 2 mm. (c) Expression of OsMOT1;1 was suppressed in roots under 6 

Mo deficiency. Lemont  (LM) plants were grown hydroponically with 1 μM Mo for one 7 

week and then treated with 1 μM Mo  (+Mo) or without Mo (-Mo) for another week. 8 

Relative expression level of was determined by qRT-PCR with three biological replicates. 9 

** indicates significant difference at P ≤ 0.01 (Student’s t test). (d) Subcellular localization 10 

of OsMOT1;1 in stable transgenic rice plants. OsMOT1;1 from TeQing (TQ) or LM were 11 

fused with GFP at N-terminal and overexpressed under the control of CaMV 35S promoter. 12 

Mitochondria were stained with the specific dye MitoTracker. Scale bar, 10 μm. 13 

Fig. 6. Functional analysis of OsMOT1;1 in Arabidopsis atmot1;1 mutant.  14 

(a and b) Mo concentrations in roots and shoots of the mot1 mutant transformed with 15 

OsMOT1;1-GFP from TeQing (TQ) or Lemont (LM) driven by CaMV 35S promoter (a) 16 

or AtMOT1;1 native promoter (b). Plants were grown on MGRL media containing 24 nM 17 

Mo for two weeks. Three independent transgenic lines are shown. (c) Phenotype of 18 

OsMOT1;1-GFP transgenic lines in mot1 background. Plants were grown on MGRL media 19 

without added Mo at control or low pH condition for 20 days. Bar, 1 cm. (d and e) Fresh 20 

weight of mot1 transformed with OsMOT1;1-GFP from TeQing (TQ) or Lemont (LM) 21 

driven by CaMV 35S promoter (d) or AtMOT1;1 native promoter (e). Plants were grown 22 

as in (c). Three independent transgenic lines are shown. Data in (a) and (b) are shown as 23 

means ± SD with three biological replicates. Six plants were combined in each replicate. 24 

Data in (d) and (e) are shown as boxplots with n = 7 to 12. Columns or boxplots with 25 

different letters in (a) to (e) indicate significant difference at P ≤ 0.01 (Tukey’s HSD test). 26 

DW, dry weight. 27 

Fig. 7. Functional analysis of OsMOT1;1 in yeast.  28 

(a) Molybdate transport activity of OsMOT1;1. Yeast strains transformed with empty 29 

vector, or OsMOT1;1 from TeQing (TQ) or Lemont (LM) were incubated in media 30 



28 
 

containing 0.5 µM Mo for 30 min. Mo concentrations in yeast cells were determined. Data 1 

are shown as boxplot with n = 3. Boxplots with different letters indicate significant 2 

difference at P ≤ 0.01 (Tukey’s HSD test). (b) Complementation analysis of a yeast mutant 3 

defective in sulfate uptake. The yeast mutant strains transformed with empty vector, 4 

SULTR1;2, or OsMOT1;1 from TQ or LM were incubated on media containing 0.5 mM 5 

sulfate with or without added Met for four days. 6 

Fig. 8. Contribution of allelic variation of OsMOT1;1 on the variation of grain Mo in 7 

USDA rice core collection grown in flooded condition. 8 

(a) The grain Mo in rice accessions with different alleles at three polymorphic sites in the 9 

coding region of OsMOT1;1. (b) The grain Mo in rice accessions with different haplotypes 10 

derived from the combination of three polymorphic sites in the coding region of OsMOT1;1. 11 

(c) The grain Mo in rice accessions with or without the deletions in the promoter region of 12 

OsMOT1;1. (d) The grain Mo in rice accessions with different promoter haplotypes derived 13 

from the combination of two deletions in the coding region of OsMOT1;1. Data in (a - d) 14 

are shown as boxplots. Numbers under the boxes are the accession number; numbers above 15 

the boxes are the P values; the same letters above the boxes indicate no significant 16 

difference at P ≤ 0.01 (Tukey’s HSD test). + and – represent the presence and absence of 17 

the deletion, respectively. The dash color boxes in (b) and (d) mark the haplotypes in TQ , 18 

LM and Nipp. (e) The correlation of the relative expression of OsMOT1;1 in roots with the 19 

grain Mo concentration in 35 rice accessions grown in flooded condition. The expression 20 

of OsMOT1;1 in the roots of 3-week-old plants were determined by qRT-PCR. The relative 21 

expression level of OsMOT1;1 was normalized the rice actin gene, and presented as the 22 

mean of 2^(-deltaCt) with three biological replicates. 23 
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Fig. S1 Sequence alignment of MOT1 proteins. 27 
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Fig 1. QTL analysis and cloning of qGMo8.

(a and b) The LOD profiling of qGMo8 on chromosome 8 in the LT-RIL population (a) and TIL

population (b) grown in multiple years under different conditions. F, flooded; U, unflooded. G, grains

of TILs grown in greenhouse; L, leaves of greenhouse grown TILs. (c) Grain Mo concentration and

genotype at QTL interval of selected TILs. Data are presented as mean ± SD (n = 3). Columns with

different letters indicate significant difference at P ≤ 0.01 (Tukey’s Honestly Significant Difference

(HSD) test). DW, dry weight. (d) Gene structure and sequence variation of OsMOT1;1 among

Nipponbare (Nipp), TQ and LM. Blue bars and white bars represent exons and untranslated

regions, respectively. Vertical lines represent SNPs. (e) The Mo concentration in the grain and leaf

of HIF669.4-TQ and HIF669.4-LM. (f) Expression level of OsMOT1;1 in shoots and roots of

HIF669.4-TQ and HIF669.4-LM. Data in (E) and (f) are presented as mean ± SD with n = 6 in (e)

and 3 in (f). ** indicates significant difference at P ≤ 0.01 (Student’s t test).
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Fig 2. Characterization of the osmot1;1 mutant and complementation test.

(a) Greenhouse grown WT and osmot1;1 plants grown at harvesting stage. (b) Mo concentrations

in the grain, blade and sheath of WT and osmot1;1. Data are presented as means ± SD (n = 8). **

indicates significant difference between WT and osmot1;1 at P ≤ 0.01 (Student’s t test). (c)

Percentage difference of 22 elements in the grain, blade and sheath of osmot1;1 compared with

the WT. Data are visualized in the radar chart. (d) Genetic complementation of osmot1;1 by

crossing with HIF669.4-TQ or HIF669.4-LM. The Mo concentrations in the grain of F1 plants were

determined. (e) Transgenic complementation of osmot1;1 by crossing with OsMOT1;1

overexpression lines. The grain Mo concentrations of F2 plants in a homozygous mutant

background containing 35S:OsMOT1;1(TQ)-GFP or 35S:OsMOT1;1(LM)-GFP constructs were

determined. Two independent complemented lines were used for crossing. Data in (d, e) are

presented as boxplots (n = 6). Boxes with different letters indicate significant difference at P ≤

0.01 (Tukey’s HSD test). DW, dry weight.
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Fig 3. Low Mo phenotype of the osmot1;1 mutant.

(a) The Mo concentrations in different tissues of greenhouse grown WT and osmot1;1 plants at

harvesting stage. (b and c) The Mo concentrations in roots (b) and shoots (c) of WT and

osmot1;1. Plants were hydroponically grown in nutrient solution containing various concentrations

of Mo for two weeks. (d) The Mo concentration in the xylem sap of WT and osmot1;1. Plants were

hydroponically grown in Mo-free nutrient solution for one week and treated with various

concentrations of Mo for another week. (e) The Mo concentrations in different tissues of WT and

osmot1;1 seedlings. Plants were hydroponically grown in nutrient solution containing 10 nM of Mo

for two weeks. Data (a) are presented as boxplots (n = 11 for WT and n = 10 for osmot1;1). Data

in (b-e) are presented as means ± SD with n = 4 in (b and c), 8 in (d, e). * and ** indicate

significant difference between WT and osmot1;1 at P ≤ 0.05 and 0.01 (Student’s t test),

respectively. DW, dry weight.
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Fig 4. The osmot1;1 mutant is sensitive to Mo deficiency at low pH condition.

(a) The phenotype of WT and osmot1;1 grown under normal or low pH media with or

without 1 µM Mo added. Low pH media was made by adding 50 µL 6 M HCl to 100 mL

agar media after autoclaving. Plants were grown for 20 days. Bar, 3 cm. (b) The plant

height of WT and osmot1;1 grown as in (A). Data are presented as means ± SD with n = 6.

*** indicated significant difference between WT and osmot1;1 at P ≤ 0.001 (Student’s t

test).
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Fig 5. Expression pattern and subcellular localization of OsMOT1;1.

(a) Expression level of OsMOT1;1 in different organs of Lemont at different growth stages. (b)

Histochemical GUS staining of roots of transgenic rice plants transformed with OsMOT1;1

promoter driven GUS constructs. The mature zone (left), elongation zone (middle) and root

tip (right) of roots of 2-week-old plants are showed. Scale bars from left to right are 2, 0.5 and

2 mm. (c) Expression of OsMOT1;1 was suppressed in roots under Mo deficiency. Lemont

(LM) plants were grown hydroponically with 1 μM Mo for one week and then treated with 1

μM Mo (+Mo) or without Mo (-Mo) for another week. Relative expression level of was

determined by qRT-PCR with three biological replicates. ** indicates significant difference at

P ≤ 0.01 (Student’s t test). (d) Subcellular localization of OsMOT1;1 in stable transgenic rice

plants. OsMOT1;1 from TeQing (TQ) or LM were fused with GFP at N-terminal and

overexpressed under the control of CaMV 35S promoter. Mitochondria were stained with the

specific dye MitoTracker. Scale bar, 10 μm.
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Fig 6. Functional analysis of OsMOT1;1 in Arabidopsis atmot1;1 mutant.

(a and b) Mo concentrations in roots and shoots of the mot1 mutant transformed with

OsMOT1;1-GFP from TeQing (TQ) or Lemont (LM) driven by CaMV 35S promoter (a) or

AtMOT1;1 native promoter (b). Plants were grown on MGRL media containing 24 nM Mo for

two weeks. Three independent transgenic lines are shown. (c) Phenotype of OsMOT1;1-GFP

transgenic lines in mot1 background. Plants were grown on MGRL media without added Mo

at control or low pH condition for 20 days. Bar, 1 cm. (d and e) Fresh weight of mot1

transformed with OsMOT1;1-GFP from TeQing (TQ) or Lemont (LM) driven by CaMV 35S

promoter (d) or AtMOT1;1 native promoter (e). Plants were grown as in (c). Three

independent transgenic lines are shown. Data in (a) and (b) are shown as means ± SD with

three biological replicates. Six plants were combined in each replicate. Data in (d) and (e) are

shown as boxplots with n = 7 to 12. Columns or boxplots with different letters in (a) to (e)

indicate significant difference at P ≤ 0.01 (Tukey’s HSD test). DW, dry weight.
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Fig 7. Functional analysis of OsMOT1;1 in yeast.

(a) Molybdate transport activity of OsMOT1;1. Yeast strains transformed with empty vector,

or OsMOT1;1 from TeQing (TQ) or Lemont (LM) were incubated in media containing 0.5

µM Mo for 30 min. Mo concentrations in yeast cells were determined. Data are shown as

boxplot with n = 3. Boxplots with different letters indicate significant difference at P ≤ 0.01

(Tukey’s HSD test). (b) Complementation analysis of a yeast mutant defective in sulfate

uptake. The yeast mutant strains transformed with empty vector, SULTR1;2, or OsMOT1;1

from TQ or LM were incubated on media containing 0.5 mM sulfate with or without added

Met for four days.



Fig 8. Contribution of allelic variation of OsMOT1;1 on the variation of grain Mo in

USDA rice core collection grown in flooded condition.

(a) The grain Mo in rice accessions with different alleles at three polymorphic sites in the

coding region of OsMOT1;1. (b) The grain Mo in rice accessions with different haplotypes

derived from the combination of three polymorphic sites in the coding region of OsMOT1;1.

(c) The grain Mo in rice accessions with or without the deletions in the promoter region of

OsMOT1;1. (d) The grain Mo in rice accessions with different promoter haplotypes derived

from the combination of two deletions in the coding region of OsMOT1;1. Data in (a - d) are

shown as boxplots. Numbers under the boxes are the accession number; numbers above

the boxes are the P values; the same letters above the boxes indicate no significant

difference at P ≤ 0.01 (Tukey’s HSD test). + and – represent the presence and absence of

the deletion, respectively. The dash color boxes in (b) and (d) mark the haplotypes in TQ ,

LM and Nipp. (e) The correlation of the relative expression of OsMOT1;1 in roots with the

grain Mo concentration in 35 rice accessions grown in flooded condition. The expression of

OsMOT1;1 in the roots of 3-week-old plants were determined by qRT-PCR. The relative

expression level of OsMOT1;1 was normalized the rice actin gene, and presented as the

mean of 2^(-deltaCt) with three biological replicates.
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