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13 Abstract

14 A life cycle assessment (LCA) study is performed to compare the life cycle primary energy demand 

15 (PED) and global warming potential (GWP) of steel baseline automotive body-in-white (BIW) with three 

16 types of lightweight Scenarios. Scenario I, Scenario II, and Scenario III use advanced high strength steel 

17 (AHSS), aluminum alloy (Al alloy), and carbon fiber reinforced plastic (CFRP), respectively. China 

18 Automotive Life Cycle Database (CALCD), onsite data of Chinese automotive industry in 2015-2017 

19 and process models are used for inventory analysis in this study. 

20 The results indicate, among the different lightweight Scenarios for the BIW, the Scenario II provides 

21 the lowest PED and GWP during a lifetime travelling distance of 200,000 km. Scenario I shows the best 

22 break-even distance. Scenario III presents lower PED and GWP relative to the base case; however, it 

23 does not reach a breakeven for GWP within the lifespan of 200,000 km. 

24 Sensitivity analysis results depict that a combination of longer lifetime distance, larger fuel 

25 consumption and smaller substitution ratio is beneficial for lightweight BIW Scenarios, especially for 

26 Scenario III, to achieve the largest PED and GWP reduction compared to the baseline in the full life 

27 cycle.

28 Keywords Body-in-white (BIW); Life cycle assessment; Lightweight design; Primary energy 

29 demand (PED); Global warming potential (GWP)

30
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31 1 Introduction

32 Nowadays, several approaches have been applied in the automotive industry to comply with 

33 increasingly stringent fuel consumption and exhaust gas emissions regulations, including powertrain 

34 efficiency improvement (Gao et al., 2015), rolling resistance reduction (Liu et al., 2011), electrification 

35 (Mayyas et al., 2017) and vehicle lightweighting (Helms and Lambrecht, 2007). Among these methods, 

36 vehicle lightweighting is viewed as an efficient solution for fuel economy improvement and emissions 

37 reduction (Cui et al., 2011). “New energy vehicles development strategy” shows that vehicle 

38 lightweighting development goals of 2020, 2025 and 2030 are 10%, 20% and 30% reduction of the total 

39 curb weight, respectively (TRESNEV Steering Commitee, 2016). Automotive bodies widely use 

40 lightweight materials ranging from conventional advanced high strength steel (AHSS), magnesium alloy, 

41 aluminum alloy (Al alloy), and, more recently, carbon fiber reinforced plastic (CFRP). Al alloy and 

42 CFRP, which offer large potential for weight reduction while maintaining the same stiffness and strength 

43 as steel, are the most promising lightweight materials of body-in-white (BIW) in the near future 

44 (TRESNEV Steering Commitee, 2016). The weight proportion targets of Al alloy and CFRP are expected 

45 to be 30% and 5% of the total curb weight by 2030, respectively (TRESNEV Steering Commitee, 2016). 

46 CFRP may provide up to 10% reduction of the overall weight of a vehicle, as it can be 35% and 60% 

47 lighter than Al alloy and steel, respectively (Das, 2011). 

48 From the life cycle perceptive, lightweight materials generate larger environmental impacts on a 

49 weight basis than conventional steel primary due to energy-intensive manufacture and end-of-life (EoL) 

50 treatment stages (Witik et al., 2011a). In specific, CFRP is reported to consume 5-20 times of more 

51 energy and generates 8-30 times of more carbon dioxide (CO2) than conventional steel on a weight basis 

52 (Das, 2011; Han, 2011; Kelly et al., 2015; Murphy, 2008; Suzuki and Takahashi, 2005; Witik et al., 

53 2011b) because of the high energy intensity related to CFRP production. It is also found that the 

54 generation of solid and hazardous wastes in the production of lightweight fuel-efficient vehicles would 

55 be greater than for conventional materials (Tonn et al., 2003). Life cycle assessment (LCA) is a widely 

56 accepted tool in examining vehicle lightweighting viability in the full life cycle perspective (Dubreuil et 

57 al., 2010; Geyer, 2008; Kampe, 2001; Keoleian and Sullivan, 2012; Liu et al., 2012; Mayyas et al., 2012; 

58 Saur et al., 2000). Several LCA studies have been performed to analyze the environmental impacts for 
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59 the different vehicle material lightweight designs. However, the environmental performance of 

60 lightweight materials are not consistent and have wide ranges reported in the literature. There are also 

61 limited understandings of tradeoffs between mass reduction and environmental impacts for different 

62 lightweight materials. WorldAutoSteel (WorldAutoSteel, 2011) conducted a comparative LCA study of 

63 a Super LIGHT-Car and a simulated AHSS-intensive Golf V with a baseline Volkswagen Golf V. The 

64 BIW of Super LIGHT- Car was composed of 53% Aluminum, 36% steel, 7% Magnesium and 4% plastic. 

65 The results showed that the AHSS-intensive Golf V concept is the superior design achieving both mass, 

66 emission and cost reductions in the full life cycle. Duflou et al. (Duflou et al., 2009) studied the life cycle 

67 environmental impacts of lightweight CFRP materials in place of conventional steel structures in BIW 

68 production. It showed that CFRP provides environmental benefits over conventional steel but at a longer 

69 travelling distance with a breakeven point of 132,000 km.

70 Despite the benefits as mentioned above, CFRP is difficult to be treated at the end of life due to the 

71 nature of crosslinked structure of CFRP and the non-remolding nature of polymer. Currently, recycling 

72 has been considered as a prioritized solution to cope with CFRP wastes because the waste materials have 

73 the potential value from recovering rather than disposing in landfill or incineration with the possibility 

74 to close the loop (Meng et al., 2018a; Meng et al., 2017a; Meng et al., 2017b). It is reported the energy 

75 intensity of recycling CFRP can be reduced to the level as that of recycling steel materials (Suzuki and 

76 Takahashi, 2005).

77 Overall, most LCA studies on lightweight vehicle auto part used either secondary life cycle 

78 databases, hypothetical data, or literatures data and therefore cannot represent the onsite real design. For 

79 a life cycle perspective, the recycling stage is also essential for the comprehensive environmental impact 

80 assessment. However, LCI data scarcity still exists in the CFRP production and recycling processes. 

81 Moreover, very few LCA studies have been conducted for vehicle lightweighting using the latest onsite 

82 investigation data in Chinese sector. To address the above-mentioned issues, we conduct a cradle-to-

83 grave LCA of lightweight BIW design, using primary onsite investigation data in the production stage 

84 of materials in 2015-2017, the latest LCI data in the recycling stage in 2017, and China Automotive Life 

85 Cycle Database (CALCD) 2015 in this study. Three lightweight BIW Scenarios are compared with 

86 conventional steel baseline in terms of primary energy demand (PED) and global warming potential 
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87 (GWP).

88 2 Method

89 2.1 System Assumption

90 Statistics from China Automotive Technology & Research Center shows that vehicle BIW 

91 contributes for about 30-40% of the total vehicle weight. BIW has a large potential of weight reduction 

92 by lightweighting without the influence of the main functionality or comfort level (Das, 2011; Mayyas 

93 et al., 2012). In this study, BIW includes body structure, front fenders (both), front doors (both), rear 

94 doors (both), hood and decklid. The major BIW components’ weight percentage and associated design 

95 functions are shown in Table 1. In order to achieve the similar design functions, the weights of the same 

96 BIW component vary between Scenarios based on material characteristics. For instance, the weight 

97 percentage of the body structure was 74.1% in baseline, and increases to 82.9 % in Scenario III. The 

98 weight percentage of Rear doors (both) was 4.4% in Scenario III, nearly 50% reduction comparing with 

99 baseline. 

100 Table 1 Major body-in-white components weight percentage and design functions

Component name Baseline Scenario I Scenario II Scenario III Main design functions

Body structure 74.1% 72.8% 78.2% 82.9%

Yield strength, bending 
stiffness, stress and 
strain, dent resistance, 
Noise Vibration and 
Harshness (NVH)

Front fenders (both) 1.4% 1.5% 1.6% 2.2% Dent resistance, NVH

Front doors (both) 9.3% 10.9% 6.6% 6.9% Bending stiffness, dent 
resistance, NVH

Rear doors (both) 8.7% 5.8% 4.3% 4.4% Bending stiffness, dent 
resistance, NVH

Hood 2.9% 6.0% 5.6% 2.7% Bending stiffness, dent 
resistance, NVH

Decklid 3.6% 3.0% 3.6% 0.9% Bending stiffness, dent 
resistance, NVH

101 This study compares the life cycle PED and GWP of three types of lightweight BIW scenarios with 

102 baseline BIW. As shown in Figure 1, the baseline BIW is made of conventional steel with the weight of 

103 430 kg. Based on onsite surveys of Chinese vehicle factories and literature review (EPA, 2012; Malen, 

104 2011; Singh, 2012), three lightweight BIW Scenarios are established. 98.1% of the total BIW weight in 
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105 Scenario I is AHSS, 86.1% of the total BIW weight in Scenario II is Al alloy, and 60.0% of the total 

106 BIW weight in Scenario III is CFRP. 12.4% of BIW weight in Scenario II and 12.0% of BIW weight in 

107 Scenario III are other materials. The other materials other than AHSS, Al alloy or CFRP, are assumed to 

108 be steel in this analysis. This study selects Scenario I as AHSS based lightweight design, Scenario II as 

109 Al alloy based lightweight design, and Scenario III as CFRP based lightweight design. The weight 

110 substitution ratios (Kelly et al., 2015) of three types of lightweight BIW Scenarios relative to the baseline 

111 case is 0.8, 0.6, and 0.55, respectively. For all BIW Scenarios and the baseline BIW, a functional unit of 

112 one BIW for a compact passenger car with a lifetime of 200,000 km is considered, based on consumer 

113 behavior investigations of the China Automotive Technology & Research Centre undertaken in 2013 

114 (CATARC, 2017).

115 This study is conducted based on ISO 14040/14044 LCA standards (ISO, 2006). SimaPro 8 software 

116 is used to develop the life cycle model and conduct the environmental impact assessment. For each 

117 scenario, the system boundaries start from the raw material production to manufacturing, vehicle use, 

118 and EoL treatment (see Figure 2). The transportation of materials, final part production and treatment of 

119 manufacturing wastes are excluded. The manufacture of equipment, including machinery, onsite 

120 structures and infrastructure, are also excluded. The latest China Automotive Life Cycle Database 

121 (CALCD) 2015 database is used in this analysis. CALCD (Sun et al., 2015; Sun et al., 2017). 

122 2.2 Material Production

123 Reference materials (steel, AHSS, Al alloy), chemicals (epoxy resin and acrylonitrile) for carbon 

124 fiber (CF) production and energy inventory data (electricity) are acquired from CALCD 2015 (Sun et al., 

125 2015; Sun et al., 2017). 

126 Material, energy consumption and the environmental emissions relative to CF production are 

127 obtained from onsite surveys of a Chinese CF manufacturer in 2017, which owns the largest annual 

128 production capacity of 5,000 tons, accounting for over 50% market share in China. The main production 

129 processes of CF include polymerization, ammonification, wet spinning, preliminary oxidizing, 

130 carbonization, drying and coiling. Major input materials required for CF production include acrylonitrile 

131 (99% by weight) and epoxy resin (1% by weight), with the process yield of 98%. Total electricity and 
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132 steam consumption per kg of CF during the CF production step are 30.02 kWh and 0.11 m3 respectively. 

133 In addition, the total direct emissions per kg of CF production include 1.21E-04 kg of carbon monoxide 

134 and 2.31E-04 kg of hydrogen cyanide. From the survey of a Chinese CFRP factory in 2017, per kg of 

135 typical CFRP is made of 56% weight of CF and 44% weight of epoxy resin through the vacuum assisted 

136 resin infusion molding (VARI) production process.

137 2.3 Manufacturing

138 As shown in Table 2, material and energy consumption of different BIW designs are obtained from 

139 onsite surveys of automotive factories in China from 2015 to 2017. In baseline, Scenario I and Scenario 

140 II, manufacturing stages of BIWs are similar, including rolling and forging, blanking and stamping and 

141 welding. In Scenario III, BIW manufacturing also includes modeling, curing, demolding, adhesive 

142 bonding and flanging for CFRP apart from the above stages.

143 Table 2 Life cycle inventory in the manufacturing stage of four body-in-white designs

Category Subcategory Unit Baseline Scenario I Scenario II Scenario III

Materials Steel kg 430.0 0.0 32.0 28.4  

AHSS kg 0.0 337.5 3.9 18.9 

Al alloy kg 0.0 6.5 222.1 47.3 

CFRP kg 0.0 0.0 0.0 141.9 

Manufacturing 
process energy Electricity kWh 96.0 105.6 658.9 614.8 

144 2.4 Use Stage

145 According to vehicle fuel economy test report, the fuel consumption of baseline vehicle is 6.5 L/100 

146 km. The exhaust gas emissions of the baseline vehicle are 0.01 g CH4/km and 153 g CO2/km. In this 

147 study, the mass-induced fuel consumption of the three BIW scenarios (with powertrain adaptation) are 

148 estimated by using the method of Koffler et al. (2010). The EPA combined fuel economy driving cycle 

149 (EPA, 2016) is selected to calculate the use phase fuel consumption. The fuel reduction value (FRV) 

150 (0.38 L/100kg·100km) of the BIW with the powertrain adaptations is obtained as (Koffler and Rohde-

151 Brandenburger, 2010). The total fuel reduction (C) with powertrain adaptation due to lightweight design 

152 can thus be calculated as below.
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153 C = ∆m × FRV × 𝐷𝑉

154 where ∆m is the mass changes of vehicle (kg), DV is the vehicle’s lifetime distance (200,000 km).

155 Table 3 presents key parameters of different BIW Scenarios for the estimation of use phase fuel 

156 saving and associated GHG emission reduction. The inventory data including extraction and production 

157 of gasoline are obtained from CALCD 2015.

158 Table 3 Key parameters of body-in-white design in the use stage

Parameter name Baseline Scenario I Scenario II Scenario III

Vehicle curb weight (kg) 1220.0 1134.0 962.0 768.5

Body-in-white weight (kg) 430.0 344.0 258.0 236.5

Total mass reduction N/A 86.0 172.0 193.5

Lifetime distance (km) 200,000 200,000 200,000 200,000

Life cycle fuel saving (L) N/A 653.6 1,307.2 1,470.6

159 2.5 End-of-Life Treatment

160 From industry survey and experts consultation, 95% of EoL vehicles are assumed to be collected, 

161 sorted, shredded and dismantled. The recycling rates of 95 % and 90% are assumed for metals (e.g., steel, 

162 AHSS, and Al alloy), and CFRP, respectively. Recycled steel, AHSS and Al alloy are used to avoid 

163 primary material production using the recycling model specified in CALCD 2015. Current CFRP waste 

164 treatment options vary from conventional landfill, incineration to mechanical recycling and to advanced 

165 thermal recycling (e.g., pyrolysis and fluidized bed process) and chemical recycling processes (Oliveux 

166 et al., 2015; Pickering, 2006). The advanced thermal recycling technologies currently exist at varying 

167 levels of technological maturity: pyrolysis is operated at commercial scale; fluidized bed recycling has 

168 been proven at pilot plant scale; and the chemical recycling process is still on a laboratory scale (Meng 

169 et al., 2018b). There is greater uncertainty in estimating the life cycle impacts of CFRP recycling 

170 technologies due to data scarcity, although data available for fluidized bed systems are comparatively 

171 robust from pilot operation at Nottingham and are used in this study.

172 Fluidized bed CFRP recycling process is a thermal process developed for the recycling of glass fiber 

173 and carbon fiber at the University of Nottingham for over 15 years (Pickering, 2006; Pickering et al., 
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174 2015). CFRP waste is shredded and fed into the fluidized bed recycling system. In the fluidized bed 

175 reactor, the sand bed can decompose the epoxy resin and release the fibers at a high temperature of 450-

176 550°C. Subsequent cyclone separates and collects the fibers from the gas stream out of the fluidized sand 

177 bed. The remaining gas stream after separation goes into a high-temperature chamber for full oxidation 

178 of polymer content and other organic materials. Energy can be recovered by a co-power generation unit 

179 for onsite recycling system use.

180 In this study, the inventory data for fluidized bed CFRP recycling as previously presented are used 

181 (Meng et al., 2017b). It considers likely operating conditions based on a pilot plant developed at 

182 University of Nottingham: a plant capacity of 500 t recycled CF/yr; a feed rate of 9 kg recycled CF/hr-

183 m2; and an air in-leakage rate of 5%. GHG emissions of the decomposition of the polymer content are 

184 estimated based on stoichiometric balance assuming all carbon content is oxidized and emitted as CO2. 

185 These parameters correspond to an energy requirement of 7.7 MJ/kg recycled CF (i.e., 1.9 MJ/kg (natural 

186 gas) and 5.8 MJ/kg (electricity)) and emissions of 1.68 kg CO2. Recycled CF can achieve environmental 

187 benefits by displacing virgin CF on an assumed 1.1:1 ratio (1.1 kg recycled CF can displace 1 kg virgin 

188 CF).

189 3 Results and Discussion

190 3.1 Life Cycle Energy Use and Greenhouse Gas Emissions

191 Figure 4 shows overall changes of life cycle PED and GWP of the three lightweight BIW Scenarios. 

192 The Scenario III presents the largest PED and GWP during material production but provides the largest 

193 PED and GWP reductions in the use phase, followed by the Scenario II designs. This is primarily because 

194 CFRP and Al alloy are energy-intensive materials that consume more energy and emit more GHG than 

195 steel during production. In the EoL stage, recycling of these materials could thus counteract some energy 

196 use and GHG emissions associated with primary production. Furthermore, due to fuel savings achieved 

197 by lightweighting in the use stage, all these three Scenarios can decrease the life cycle energy 

198 consumption and GHG emissions compared to baseline in the lifetime distance of 200,000 km. Scenario 

199 II achieves the largest reduction in PED and GWP in the full life cycle compared to baseline, followed 

200 by the Scenario I and Scenario III.
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201 To further quantify the environmental impact of lightweight designs, life cycle impacts are grouped 

202 according to the production (material production and manufacturing stages are combined as production 

203 stage), use, and EoL stages (see Figure 5 and 6). The figures present the overall changes of PED and 

204 GWP of every lightweight design over travelling distances. The negative slope in Figure 5 indicates the 

205 fuel savings and thereby the reduction in total PED due to the lightweight design along the vehicle’s 

206 lifetime distance. The PED break-even distance for Scenario I relative to the base case is 10,623 km, 

207 indicating AHSS design can only achieve PED benefits beyond 10,623 km. In comparison, Scenario II 

208 (Al alloy) shows an early break-even distance of 80,713 km while Scenario III (CFRP) has a longer 

209 break-even distance of 149,942 km, respectively. This is primarily due to higher energy consumption for 

210 BIWs production associated with Scenario II (Al alloy) and Scenario III (CFRP). 

211 Figure 6 depicts the overall change of life cycle GWP related to lightweight designs. Scenario I 

212 demonstrates a net GWP benefit from a traveling distance of 9,579 km as it only has slightly higher GWP 

213 (80.5 kg CO2 e) than the base case in the production stage. Scenario II has a far break-even distance of 

214 169,152 km. The GWP break-even distance of Scenario III is 207,568 km exceeding the lifetime of 

215 200,000 km. This indicates Scenario III does not show GWP reduction relative to the base case within 

216 the lifetime distance of 200,000 km. Overall, Scenario II demonstrates to be a better option to achieve 

217 the largest net life cycle PED and GWP benefits than Scenario I and Scenario III under the present 

218 technology case and lifetime distance of 200,000km.

219 3.2 Sensitivity Analysis

220 A sensitivity analysis is performance to evaluate the impacts of lifetime distance, mass-induced fuel 

221 reduction value (FRV), and substitution ratio on the overall environmental impacts of different 

222 lightweight designs (see Figure 7).

223 The sensitivity analysis of lifetime service distance is conducted by change of ±10% of 200,000 

224 km. The lifetime distance shows to have a significant impact on the overall PED and GWP (see Figure 

225 7). However, it does not alter that Scenario II is the design with lowest life cycle energy demand and 

226 GHG emissions amongst lightweight designs in this study. In addition, the PED and GWP benefits of 

227 lightweight materials become more pronounced with a longer lifetime distance.
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228 A range value of 0.2 and 0.5 of the mass-induced fuel reduction value (FRV) is considered. FRV 

229 has significant impact on the overall PED and GWP of each material and, especially for CFRP. It is 

230 found a higher FRV is key to lightweight materials applications, which could offset more of the energy 

231 consumption and GHG emissions of the production stage. Despite the range of FRV considered, Scenario 

232 II always has the lowest net PED and GWP. However, if the FRV is lower than the lower bound of 0.2, 

233 Scenario III would produce higher PED and GWP than the base case. If the FRV is higher than upper 

234 bound of 0.5, Scenario III would provide higher PED and GWP reduction than Scenario I.

235 Former studies (EPA, 2012; Malen, 2011; Singh, 2012) show the substitution ratio ranges of 

236 transition from steel to AHSS is 0.21-1.0, from steel to Al alloy is 0.29-0.99, from steel to CFRP is 0.22-

237 0.65. This study uses these ranges of AHSS, Al alloy, and CFRP to analyze the sensitivity of substitution 

238 ratios for each scenario, respectively. If the substitution ratio is decreased, which means the weight of 

239 lightweight design will lighter than the study before, the life cycle total net PED and GWP for lightweight 

240 design will increase. Substitution ratio has greater impacts on the overall PED and GWP for Scenario III 

241 than the other Scenarios. A higher substitution ratio in the use stage of Scenario III provides more fuel 

242 consumption credits which can afford more impacts of energy consumption and GHG emissions in the 

243 production stage.

244 The CFRP-intensive BIW, Scenario III, is very sensitive to FRV and substitution ratios. This is 

245 mainly because the credits of CFRP achieved in the use phase from weight reduction have to mitigate 

246 the high-energy-intensive CFRP production, while fuel saving is sensitive to FRV and substitution ratio. 

247 Energy intensity of CFRP manufacturing and thus the magnitude of potential environmental saving 

248 potentials depends strongly on fabrication parameters such as component design, fiber content, use of 

249 recycled material, choice of matrix polymer, and consolidation method (DOE, 2014). Environmentally-

250 beneficial recycling strategies are essential to maximize the credits of lightweight but has less potential 

251 to reduce the energy use of recycling process (minimum value of 6 MJ/kg versus 7.7 MJ/kg used in this 

252 study) (Meng et al., 2017b). Progress in recycling process optimization and CFRP manufacturing method 

253 development are key to achieving the significant environmental benefits that CFRP can contribute to the 

254 automotive lightweighting: retaining mechanical properties of recycled CF can increase the substitution 

255 ratio in reuse applications, for instance.
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256 4 Conclusions

257 This study examines the life cycle energy use and greenhouse gas emissions of different lightweight 

258 BIW Scenarios compared with the base case using the primary onsite investigation data of Chinese 

259 automotive industry in 2015-2017. In the current situation, Scenario II lightweight design (Al alloy based 

260 lightweight design) has the lowest PED and GWP during the lifetime of 200,000 km. Scenario I (AHSS 

261 based lightweight design) is second favorable lightweight design choice with a break-even distance of 

262 around 10,000 km. Scenario III (CFRP based lightweight design) has achieved the lower PED and GWP 

263 than baseline, but does not present a break-even point for GWP within the lifetime distance of 200,000 

264 km. In addition, the sensitivity analysis is conducted to evaluate the impacts of some LCA parameters 

265 on the total PED and GWP. The results indicate that lifetime service distance, FRV and substitution ratio 

266 have large impacts on the total PED and GWP of the three lightweight designs. A combination of longer 

267 lifetime distance, larger FRV, and lower substitution ratio are desired for lightweight BIW Scenarios, 

268 especially for Scenario III, to achieve the largest PED and GWP reduction compared to the reference 

269 case in the full life cycle.

270 In the near future, the embodied energy of CFRP will be reduced by 50%~83% to ensure and 

271 accelerate the use-phase benefits of CFRP (DOE, 2014, 2015). In addition, existing recycling 

272 technologies such as fluidized bed process can recover CF with energy requirement as low as 6 MJ/kg 

273 (1.5 MJ natural gas and 4.6 MJ electricity) depending on the feed rate of CFRP and the in-leakage of air 

274 (Meng et al., 2017b) compared to 7.7 MJ/kg used in this paper, which gives less potential to reduce the 

275 energy use of recycling process itself. Therefore, with the future technical developments of CFRP 

276 production and recycling technologies, CFRP has the potential to be more sustainable lightweight design 

277 with the largest overall net decrease of the PED and GWP values compared to the steel baseline over the 

278 vehicle lifetime of 200,000 km.
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380 Figure 1 Body-in-white weight of the four designs. Baseline is conventional steel design, Scenario I is 

381 AHSS based lightweight design, Scenario II is Al alloy based lightweight design, and Scenario III is 

382 CFRP based lightweight design

383 Figure 2 System boundaries of the body-in-white life cycle

384 Figure 3 Primary energy demand and global warming potential per kg of material production stage 

385 (cradle-to-gate)

386 Figure 4 Comparison of the life cycle a) primary energy demands and b) global warming potentials of 

387 three lightweight BIW Scenarios

388 Figure 5 Primary energy demand relative to driving distances (up to 200,000km) for three lightweight 

389 body-in-white Scenarios, including production and end-of-life stages 

390 Figure 6 Global warming potential relative to driving distances (up to 200,000km) for three lightweight 

391 body-in-white Scenarios, including production and end-of-life stages 

392 Figure 7 Sensitivity analysis for some LCA parameters- lifetime driving distance (±10%), FRV (0.2, -

393 0.5) and substitution ratio (0.21-1.0 in Scenario I, 0.29-0.99 in Scenario II, 0.22-0.65 in Scenario III ).
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396 Figure 1 Body-in-white weight of the four designs. Baseline is conventional steel design, Scenario I is 
397 AHSS based lightweight design, Scenario II is Al alloy based lightweight design, and Scenario III is 
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404 Figure 4 Comparison of the life cycle a) primary energy demands and b) global warming potentials of 
405 three lightweight BIW Scenarios
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407 Figure 5 Primary energy demand relative to driving distances (up to 200,000km) for three lightweight 

408 body-in-white Scenarios, including production and end-of-life stages
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409

410 Figure 6 Global warming potential relative to driving distances (up to 200,000km) for three lightweight 

411 body-in-white Scenarios, including production and end-of-life stages
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