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Abstract

The most recent manifestation of cold Rydberg atom quantum simulators that employs tailored
optical tweezer arrays enables the study of many-body dynamics under so-called facilitation
conditions. We show how the facilitation mechanism yields a Hilbert space structure in which the
many-body states organize into synthetic lattices which feature in general one or s¢harads and

may supportimmobile localized states. We focus our discussion on the case of aladder geometry for
which we analyze the imence of disorder generated by the uncertainty of the atomic positions. The
localization properties of this system are characterized through two lengtl{lecalezation lengths

which are found to display anomalous scaling behavior at certain energies. Moreover, we discuss the
experimental preparation of an immobile localized state, and analyze disorder-induced propagation
effects.

Introduction

Overthe past few decades, advances in the manipulation of cold atomic gases rendered them viable as a versati
guantum simulation platfornjl, 2]. Several paradigmatic many-body models have been studied
experimentally, including Luttinger liquifl3], Tonks-Girardeau gasg4], BoseHubbard[5, 6] and Fermi
Hubbard Hamiltonian§7], permitting to directly observe phenomena such as quantum rejéjdlgeb-
Robinson boundE9], or topological phase transitiofis].
Among different physical systems apt to actastym simulators, ensembles of Rydberg afdritd 3 stand
outfor their strong interactions, which give rise to an intricate phenomenology, includirig skasitasg¢$4-16q,
aggregate formation and meltifig, 18], Rydberg crystdl$9, optical bistability20, 21], phase transitioj&2-24]
and protected zero modg&]. These systems are currently emploged ¥ariety of tasks, such as quantum
information processin26-2§ and simulation of quantum spin systeffi§, 29. Several among these instances
employ the so-callddcilitation(or anti-blockadanechanisnfsee e.36-36]), meaning that Rydberg states can
only be excited next to an already existing excitation, actuating a form of quantum transport.
In quantum systems, transport can be heavily affected by the presence of quenched digandersasn
localizatioi37]. In the presence of randomly-distributed impurities in a metal, for example, different paths
taken by an electron can interfere destructively, leading to spatial localization of its wavefunction. In one and two
dimensions, this effectis so relevant that for arbitrarily small disorder all energy eigenstates are localized and
transportis effectively impossilhs, 39). These effects have been experimentally observed in arange of
systems, spanning electron g§$6és cold atom¢41-43, thin Ims[44] and periodically-driven nitrogen
molecule$45].
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Apart from the case of quenched disorder, localized states can also arise in tight-binding models from
particular lattice geometries. In these cases, destructive interference comes not from the random nature of the
phases acquired along different trajectories, but from a specific careful arrangement of the lattice, and leads to
the emergence of flat bands. Models with flat bands typically allow the construction of localized eigenstates, and
have been experimentally realized with cold atoms [46], photonic lattices [47], and synthetic solid-state
structures [48, 49]. When disorder is introduced in such systems, these pre-existing localized states couple to the
dispersive, delocalized ones and start acting like scatterers. The ensuing richer phenomenology includes
localization enhancement [50], Anderson transitions in lower-dimensional systems [51], and disorder-induced
delocalization [52].

In this paper we demonstrate that Rydberg lattice quantum simulators [19, 29, 53] permit the exploration of
these anomalous disorder phenomena. We show that under facilitation conditions the Hilbert space acquires a
regular (synthetic) lattice structure supporting flat bands. In this picture, the uncertainty of atomic positions
translates into a disordered potential acting on its sites. Similar scenarios were previously theoretically analyzed
in [50, 51]. Here we show that they emerge naturally in Rydberg quantum simulators employing optical tweezer
arrays [29, 53, 54]. Weillustrate our findings for the case of a so-called ‘Lieb ladder’. We analyze the scaling of the
localization lengths and discuss the spreading dynamics of a local flat-band eigenstate under the action of
different disorder strengths.

Facilitation, Hilbert space structure anflat bands

We consider a regular” lattice of N optical tweezers, each loaded with a single Rydberg atom, and with nearest-
neighbor distance Ry. A laser is shone with a frequency detuned by A with respect to an atomic transition
between the electronic ground state | | ) and a Rydberglevel | ). We work here in natural units ~= 1. Atoms in
the Rydberg state | ) interact, at distance d, via an algebraically-decaying potential V (d) = Cg/d B witha = 3
(6) for dipole-dipole (van-der-Waals) interactions (without loss of generality we choose C,, > 0). Within the
rotating wave approximation the Hamiltonian of this system reads

N N N
A n l R R
A=Y T + AY fu+ =D V(dim) i i, (1)
k=1 k=1 2 k:lk
m=

where ) is the laser Rabi frequency, Kand mare lattice indices, dxm denotes the distance between atoms in sites k
andm, T = | ) ( lx | + 1 lx )( T land i = | T ) ( T | The facilitation condition is obtained by setting
A = —V (Ry),so thatan isolated excited atom makes its neighbors’ transitions resonant with the laser. In the
following, we consider |A| €, so that non-facilitated atoms are sufficiently off-resonant to neglect their
excitation. Furthermore, we require V (2Ry) 2 which implies that a pair of neighboring excitations is unable
to facilitate any nearby site. Neglecting these strongly suppressed transitions effectively splits the Hilbert space
into subspaces separated by energy scales (2 [55, 56]. Each subspace comprises a set of ‘quasi-resonant’ states
separated by scales ~O (2) (see [56] for more details). Intuitively, this means that an isolated excitation can at
most produce one more in the neighborhood, after which either the former facilitates the de-excitation of the
latter, or vice versa:

H H
LTl o) e LTl e L LT, )

Here we work in the simplest non-trivial subspace, which contains all configurations with either a single
excitation or a single pair of neighboring ones, whose states can be obtained by repeatedly applying the
Hamiltonian to, e.g. a state with a single excitation at one end of the chain via the mechanism highlighted above.
In the following, we will be interested in reconstructing the connectivity structure of these states in the Hilbert
space; we shall therefore imagine that each classical (i.e. eigenstate of all T s) spin configuration is represented
by a lattice site, while we identify as ‘nearest neighbors’ those states which are connected by the Hamiltonian (i.e.
(A|H|B)=0). To avoid confusion, we shall refer to this emerging lattice structure as the synthetic latticealling
instead real latticehe one formed by the actual traps. The construction of the synthetic lattice is schematically
expounded in figure 1 and can be performed pictorially in a few steps: (i) first, we recognize that there is a one-to-
one correspondence between states with a single excitation and the position of that excitation in the real lattice;
hence, we dispose these state of the synthetic lattice in the same structure adopted by the real lattice (i.e. ina
square ordering if the traps form a square lattice); (ii) second, for later convenience we draw links between each
pair of neighbors in this partial structure. (iii) Third, we see from (2) that the Hamiltonian does not directly

5 ¢ 5. I . . . .

We use here the term ‘regular’ in aloose sense to denote lattices in which each site can be virtually connected to any other by a path oflinks
between nearest neighbors at distance R,,. For instance, in a vertically-elongated rectangular lattice only pairs of points on the same row could
be connected this way. Physically, this translates in the ability of a single excitation to propagate to any point in the original array.
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Figure 1 Left column: basic local site configuration within a square, a triangular, and a honeycomb lattices. The gray dots depict the
positions of the optical tweezers, while the lines provide a guide to the eye. Ry and R; represent nearest and next-nearest neighbor
distances, respectively. Middle column: respective ‘synthetic lattices’ in the Hilbert space under facilitation conditions. The blue dots
represent one-excitation states while the red ones are pair states. Right column: cut through the Brillouin zone for each lattice
geometries at K, = 0. Each lattice features (at least) a flat band. The momentum scales for the three lattices (from top to bottom) are

|:(1)4 4

3’ 3)

connect any pair of states with a single excitation, implying that in this partial structure (we are still missing the
two-neighboring-excitation, or pair, states) no nearest neighbors (according to our definition above) can be
found; (iv) from (2) again, we see that single excitation states are indirectly connected by pair states; furthermore,
each pair state connects exclusively the two states with a single excitation in either of the positions of the pair.
Finally, these two states have excitations in contiguous positions and are therefore, by (ii), connected by one of
the links we drew. Hence, we add an extra synthetic lattice site, representing a pair state, on the midpoint of each
link, exhausting the states in the subspace and therefore completing the synthetic lattice. For a square lattice, the
new structure (see figure 1) is the Lieb latticand is known to feature one flat and two dispersive bands which
meet with linear dispersion at the edges of the first Brillouin zone. With an eye to this Dirac-cone-like band
structure, this lattice has been theoretically studied before in [57], although in a framework where the Lieb lattice
is directly realized by the traps. The construction we summarized above is general and can be extended to any
kind of regular lattice (see footnote 5). Most choices will support flat bands as well: it can be shown” that, calling
N, (n,) the number of one-excitation (pair) states in a unit cell, the number of flat bands ng,; > |n; — ny|. For
the square, triangular and honeycomb lattices in figure 1, (1;, #,, ngy) = (1, 2, 1),(1,3,2)and (2,3, 1)
respectively. These flat bands constitute extensively-degenerate eigenspaces of the Hamiltonian; as such, it is
often possible to recombine the usual (plane-wave-like) Bloch solutions to form a set of localized eigenstates.

Disorder
Disorder enters the picture through the uncertainty in the atomic positions. Even small displacements from the
center of the traps can significantly shift the atomic transitions off resonance from the laser frequency, thereby
hindering the facilitation mechanism [56]. The interaction potential experienced by an atom at a distance
R = Ry + Rfromanexcitationwillbe V(R) = V(Ry + R) = V(Ry) +EV,with § V representing the E
random shift. These random variables create an alternating disordered potential landscape over the synthetic
lattice which only affects pair (red) sites (see figure 1). The properties of the (correlated) probability distribution
are discussed elsewhere (see footnote 6).

To characterize the disorder, we denote by w the optical tweezer trapping frequency (assumed hereafter to be
isotropic in space), by mthe atomic mass and by T the temperature. The probability distribution of a trapped

©See supplemental material available online at stacks.iop.org/QST/4/02LT01/mmedia.
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Figure 2 Hilbert space structure and spectrum in the absence of disorder. (a) Lieb ladder; blue (red) dots correspond to one-excitation
(pair) states. We denote by Ay, By, Gy, Dy, B, the five sites in the n-th unit cell (shaded in gray). (b) A change of basis—the so-called
‘detangling’, introducing the new linear combinations X = (A, = B,)/~2 and Y = (C, £ D,)/~/2 [50, 58]—maps the Lieb
ladder onto two decoupled chains. The /2 factor denotes that the hopping amplitude on the vertical link of each unit cell is amplified
by that same amount. (c) Eigenvalues of the transfer matrix in log-linear scale. The dotted lines corresponds to the energies

<= {1, /2, 1.8, 2, /6 } at which the scaling of the localization lengths is investigated in figure 3. (d) Band structure of the Lieb
ladder. The bands corresponding to the stub lattice are given in orange and bands of the ordinary 1D chain are shown in green.

atom can then be approximately described as a Gaussian of width o around the trap center. We require now that
(D) kg T ~>: this implies that one can use the semiclassical estimate T~ /kzT/m X (see footnote 6) and
moreover that the thermal de Broglie wavelength of the atom is much smaller than the distribution width. In
other words, the atom can be approximately considered localized somewhere within the trap according to a
classical probability distribution. (IT) wAt < 1, with At the duration of an experiment: this ensures that the
atoms will not appreciably move from their positions in this time frame and thus the disorder is quenched. (III)
QAL 2> 1:theinternal degrees of freedom are much faster than the kinetic ones, so that within an experimental
run the dynamics induced by the disordered Hamiltonian can be probed. One sees, in particular, that (II) and
(III) imply that 2/w > 1. While challenging, a regime of this kind is in principle reachable. For instance, in [56]
this ratio is of order 10 (if one takes, as an upper bound, w from the short side of the elongated traps). In the
supplemental of [56] the role of interatomic repulsion is also discussed and shown to be of the same order of
thermal motion, in which case it can be similarly reduced by reducing At.

Disordered Lieb ladder

In the remainder of our discussion, we shall focus on a ladder configuration, i.e. a quasi-one-dimensional lattice
formed by two parallel linear chains at a distance Ry. For this example, the synthetic lattice (a ‘1D Lieb lattice’) in
the Hilbert space is sketched in figure 2(a). The unit cell consists of five sites with n; = 2and n, = 3 and the
band structure features one zero-energy flat band and four dispersive ones (figure 2(d)).

This Lieb ladder constitutes one of the simplest examples where flat bands produce a non-trivial interplay
with the on-site disorder [50]. In a Rydberg quantum simulator, however, the disorder only appears on pair
states, i.e. all the one-excitation (blue in figures 1 and 2) sites of the synthetic lattice are unaffected by it. To
investigate the effect of this unusual disorder scenario we study in the following the scaling behavior of the
localization leng{for small disorder strengths. This quantity encodes the localization properties of the energy
eigenstates, whose amplitude is typically peaked somewhere within the lattice and decays exponentially as e ="/’
atlarge distances r.
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initial state (energy € &~ 0) is almost a flat band eigenstate and it therefore only minimally spreads (see e.g.
[52,59]). As Sis increased this state hybridizes with other ones, either neighboring localized states with which it
acquires an overlap, or delocalized ones, allowing transport over larger distances to occur. At the same time,
however, the localization lengths at € &~ 0 decrease. Since the latter bound the maximal spreading AX of the
state, once the decrease in the localization scale catches up with the increase of AX, the behavior is dominated by
localization and, as expected, AX decreases with increasing disorder strength.

Conclusions and outlook

We have shown that Rydberg quantum simulators allow to explore localization phenomena in synthetic lattices
with flat bands and unconventional types of disorder (correlated, alternating). The current study focuses on the
Lieb ladder and on a particular excitation sector. Key features of the phenomenology discussed for this case are
however more general and would apply to higher-dimensional lattices as well. In particular, these would give rise
to effective synthetic lattices with flat bands and localized eigenstates capable of aiding the localization. In two
dimensions, a similar behavior to the one observed in the Lieb ladder is expected to occur, whereas in three,
according to the standard properties of Anderson localization, a transition is expected at some disorder strength
from a regime that allows transport to a fully-localized one, related to the appearance of mobility edges in the
spectrum. These higher-dimensional cases are realizable with current experimental techniques, making it a
theoretical challenge to shed light on these more intricate scenarios.
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