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Abstract
The most recent manifestation of cold Rydberg atom quantum simulators that employs tailored
optical tweezer arrays enables the study of many-body dynamics under so-called facilitation
conditions. We show how the facilitation mechanism yields a Hilbert space structure in which the
many-body states organize into synthetic lattices which feature in general one or several� at bands and
may support immobile localized states. We focus our discussion on the case of a ladder geometry for
which we analyze the in� uence of disorder generated by the uncertainty of the atomic positions. The
localization properties of this system are characterized through two length scales(localization lengths)
which are found to display anomalous scaling behavior at certain energies. Moreover, we discuss the
experimental preparation of an immobile localized state, and analyze disorder-induced propagation
effects.

Introduction

Over the past few decades, advances in the manipulation of cold atomic gases rendered them viable as a versatile
quantum simulation platform[1,2]. Several paradigmatic many-body models have been studied
experimentally, including Luttinger liquids[3], Tonks–Girardeau gases[4], Bose–Hubbard[5,6] and Fermi–
Hubbard Hamiltonians[7], permitting to directly observe phenomena such as quantum revivals[8], Lieb–
Robinson bounds[9], or topological phase transitions[10].

Among different physical systems apt toact asquantum simulators, ensembles of Rydberg atoms[11–13] stand
out for their strong interactions,which give rise toan intricate phenomenology, including devil’s staircases[14–16],
aggregate formation and melting[17,18], Rydberg crystals[19], optical bistability[20,21], phase transitions[22–24]
and protected zero modes[25]. These systems are currentlyemployed for avariety of tasks, such as quantum
information processing[26–28] and simulation of quantum spin systems[19,29]. Several among these instances
employ the so-calledfacilitation(oranti-blockade)mechanism(see e.g.[30–36]),meaning thatRydberg states can
only be excited next toan already existing excitation,actuating a form of quantum transport.

In quantum systems, transport can be heavily affected by the presence of quenched disorder viaAnderson
localization[37]. In the presence of randomly-distributed impurities in a metal, for example, different paths
taken by an electron can interfere destructively, leading to spatial localization of its wavefunction. In one and two
dimensions, this effect is so relevant that for arbitrarily small disorder all energy eigenstates are localized and
transport is effectively impossible[38,39]. These effects have been experimentally observed in a range of
systems, spanning electron gases[40], cold atoms[41–43], thin � lms[44] and periodically-driven nitrogen
molecules[45].
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Apart from the case of quenched disorder, localized states can also arise in tight-bindingmodels from
particular lattice geometries. In these cases, destructive interference comes not from the randomnature of the
phases acquired along different trajectories, but from a specific careful arrangement of the lattice, and leads to
the emergence offlat bands.Models withflat bands typically allow the construction of localized eigenstates, and
have been experimentally realizedwith cold atoms [46], photonic lattices [47], and synthetic solid-state
structures [48, 49].When disorder is introduced in such systems, these pre-existing localized states couple to the
dispersive, delocalized ones and start acting like scatterers. The ensuing richer phenomenology includes
localization enhancement [50], Anderson transitions in lower-dimensional systems [51], and disorder-induced
delocalization [52].

In this paperwe demonstrate that Rydberg lattice quantum simulators [19, 29, 53] permit the exploration of
these anomalous disorder phenomena.We show that under facilitation conditions theHilbert space acquires a
regular (synthetic) lattice structure supporting flat bands. In this picture, the uncertainty of atomic positions
translates into a disordered potential acting on its sites. Similar scenarios were previously theoretically analyzed
in [50, 51]. Herewe show that they emerge naturally in Rydberg quantum simulators employing optical tweezer
arrays [29, 53, 54].We illustrate ourfindings for the case of a so-called ‘Lieb ladder’.We analyze the scaling of the
localization lengths and discuss the spreading dynamics of a localflat-band eigenstate under the action of
different disorder strengths.

Facilitation, Hilbert space structure andflat bands

Weconsider a regular5 lattice ofN optical tweezers, each loadedwith a single Rydberg atom, andwith nearest-
neighbor distanceR0. A laser is shonewith a frequency detuned byΔwith respect to an atomic transition
between the electronic ground state ñ∣ and aRydberg level ñ∣ .Wework here in natural units �˜ = 1. Atoms in
the Rydberg state ñ∣ interact, at distanced, via an algebraically-decaying potential = �B

�B( )V d C d , withα=3
(6) for dipole-dipole (van-der-Waals) interactions (without loss of generality we chooseCα>0).Within the
rotatingwave approximation theHamiltonian of this system reads
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whereΩ is the laser Rabi frequency, kandmare lattice indices,dkmdenotes the distance between atoms in sites k
andm, �T =  ñá  +  ñá ˆ ∣ ∣ ∣ ∣( )
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k k k k and =  ñá ˆ ∣ ∣nk k k . The facilitation condition is obtained by setting
D = - ( )V R0 , so that an isolated excited atommakes its neighbors’ transitions resonant with the laser. In the
following, we consider D W��∣ ∣ , so that non-facilitated atoms are sufficiently off-resonant to neglect their
excitation. Furthermore, we require W��( )V R2 0 which implies that a pair of neighboring excitations is unable
to facilitate any nearby site. Neglecting these strongly suppressed transitions effectively splits theHilbert space
into subspaces separated by energy scales?Ω [55, 56]. Each subspace comprises a set of ‘quasi-resonant’ states
separated by scales~ W( )O (see [56] formore details). Intuitively, thismeans that an isolated excitation can at
most produce onemore in the neighborhood, after which either the former facilitates the de-excitation of the
latter, or vice versa:
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Herewework in the simplest non-trivial subspace, which contains all configurations with either a single
excitation or a single pair of neighboring ones, whose states can be obtained by repeatedly applying the
Hamiltonian to, e.g. a state with a single excitation at one end of the chain via themechanismhighlighted above.
In the following, wewill be interested in reconstructing the connectivity structure of these states in theHilbert
space; we shall therefore imagine that each classical (i.e. eigenstate of all �T̂( )

z
k s) spin configuration is represented

by a lattice site, while we identify as ‘nearest neighbors’ those states which are connected by theHamiltonian (i.e.
á ñ¹∣ ˆ ∣A BH 0). To avoid confusion, we shall refer to this emerging lattice structure as the synthetic lattice, calling
instead real latticethe one formed by the actual traps. The construction of the synthetic lattice is schematically
expounded in figure 1 and can be performed pictorially in a few steps: (i)first, we recognize that there is a one-to-
one correspondence between states with a single excitation and the position of that excitation in the real lattice;
hence, we dispose these state of the synthetic lattice in the same structure adopted by the real lattice (i.e. in a
square ordering if the traps form a square lattice); (ii) second, for later convenience we draw links between each
pair of neighbors in this partial structure. (iii)Third, we see from (2) that theHamiltonian does not directly

5
Weuse here the term ‘regular’ in a loose sense to denote lattices inwhich each site can be virtually connected to any other by a path of links

between nearest neighbors at distanceR0. For instance, in a vertically-elongated rectangular lattice only pairs of points on the same row could
be connected this way. Physically, this translates in the ability of a single excitation to propagate to any point in the original array.
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connect any pair of states with a single excitation, implying that in this partial structure (we are stillmissing the
two-neighboring-excitation, orpair, states)no nearest neighbors (according to our definition above) can be
found; (iv) from (2) again, we see that single excitation states are indirectly connected by pair states; furthermore,
each pair state connectsexclusivelyto the two states with a single excitation in either of the positions of the pair.
Finally, these two states have excitations in contiguous positions and are therefore, by (ii), connected by one of
the linkswe drew.Hence, we add an extra synthetic lattice site, representing a pair state, on themidpoint of each
link, exhausting the states in the subspace and therefore completing the synthetic lattice. For a square lattice, the
new structure (see figure 1) is theLieb latticeand is known to feature oneflat and two dispersive bandswhich
meet with linear dispersion at the edges of the first Brillouin zone.With an eye to this Dirac-cone-like band
structure, this lattice has been theoretically studied before in [57], although in a frameworkwhere the Lieb lattice
is directly realized by the traps. The constructionwe summarized above is general and can be extended to any
kind of regular lattice (see footnote 5).Most choices will support flat bands as well: it can be shown6 that, calling
n1 (n2) the number of one-excitation (pair) states in a unit cell, the number offlat bands  -∣ ∣n n nflat 1 2 . For
the square, triangular and honeycomb lattices infigure 1, =( ) ( )n n n, , 1, 2, 11 2 flat , (1, 3, 2) and (2, 3, 1)
respectively. Theseflat bands constitute extensively-degenerate eigenspaces of theHamiltonian; as such, it is
often possible to recombine the usual (plane-wave-like)Bloch solutions to form a set of localized eigenstates.

Disorder
Disorder enters the picture through the uncertainty in the atomic positions. Even small displacements from the
center of the traps can significantly shift the atomic transitions off resonance from the laser frequency, thereby
hindering the facilitationmechanism [56]. The interaction potential experienced by an atomat a distance

�E= +R R R0 from an excitationwill be � E � E= + º +( ) ( ) ( )V R V R R V R V0 0 , with δV representing the
random shift. These randomvariables create an alternating disordered potential landscape over the synthetic
lattice which only affects pair (red) sites (seefigure 1). The properties of the (correlated) probability distribution
are discussed elsewhere (see footnote 6).

To characterize the disorder, we denote byω the optical tweezer trapping frequency (assumed hereafter to be
isotropic in space), bym the atomicmass and byT the temperature. The probability distribution of a trapped

Figure 1.Left column: basic local site configurationwithin a square, a triangular, and a honeycomb lattices. The gray dots depict the
positions of the optical tweezers, while the lines provide a guide to the eye.R0 andR1 represent nearest and next-nearest neighbor
distances, respectively.Middle column: respective ‘synthetic lattices’ in theHilbert space under facilitation conditions. The blue dots
represent one-excitation states while the red ones are pair states. Right column: cut through the Brillouin zone for each lattice
geometries at ky=0. Each lattice features (at least) aflat band. Themomentum scales for the three lattices (from top to bottom) are
�I = ( )1, , .4
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See supplementalmaterial available online at stacks.iop.org/QST/4/02LT01/mmedia.
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atom can then be approximately described as aGaussian of widthσ around the trap center.We require now that

(I) � �̃X��k TB : this implies that one can use the semiclassical estimate �T �X» k T mB
2 (see footnote 6) and

moreover that the thermal de Broglie wavelength of the atom ismuch smaller than the distributionwidth. In
otherwords, the atom can be approximately considered localized somewhere within the trap according to a
classical probability distribution. (II)ωΔt=1, withΔt the duration of an experiment: this ensures that the
atomswill not appreciablymove from their positions in this time frame and thus the disorder is quenched. (III)
ΩΔt1: the internal degrees of freedom aremuch faster than the kinetic ones, so that within an experimental
run the dynamics induced by the disorderedHamiltonian can be probed.One sees, in particular, that (II) and
(III) imply thatΩ/ω?1.While challenging, a regime of this kind is in principle reachable. For instance, in [56]
this ratio is of order 10 (if one takes, as an upper bound,ω from the short side of the elongated traps). In the
supplemental of [56] the role of interatomic repulsion is also discussed and shown to be of the same order of
thermalmotion, inwhich case it can be similarly reduced by reducingΔt.

Disordered Lieb ladder

In the remainder of our discussion, we shall focus on a ladder configuration, i.e.a quasi-one-dimensional lattice
formed by two parallel linear chains at a distanceR0. For this example, the synthetic lattice (a ‘1DLieb lattice’) in
theHilbert space is sketched infigure 2(a). The unit cell consists offive sites withn1=2 andn2=3 and the
band structure features one zero-energy flat band and four dispersive ones (figure 2(d)).

This Lieb ladder constitutes one of the simplest examples where flat bands produce a non-trivial interplay
with the on-site disorder [50]. In a Rydberg quantum simulator, however, the disorder only appears on pair
states, i.e. all the one-excitation (blue infigures 1 and 2) sites of the synthetic lattice are unaffected by it. To
investigate the effect of this unusual disorder scenario we study in the following the scaling behavior of the
localization lengthξ for small disorder strengths. This quantity encodes the localization properties of the energy
eigenstates, whose amplitude is typically peaked somewhere within the lattice and decays exponentially as �Y-e r

at large distancesr.

Figure 2.Hilbert space structure and spectrum in the absence of disorder. (a) Lieb ladder; blue (red) dots correspond to one-excitation
(pair) states.We denote byAn,Bn,Cn,Dn,En thefive sites in then-th unit cell (shaded in gray). (b)A change of basis—the so-called
‘detangling’, introducing the new linear combinations =  ( )X A B 2n n n and =  ( )Y C D 2n n n [50, 58]—maps the Lieb
ladder onto two decoupled chains. The 2 factor denotes that the hopping amplitude on the vertical link of each unit cell is amplified
by that same amount. (c)Eigenvalues of the transfermatrix in log-linear scale. The dotted lines corresponds to the energies
�‹= { }1, 2 , 1.8, 2, 6 at which the scaling of the localization lengths is investigated infigure 3. (d)Band structure of the Lieb
ladder. The bands corresponding to the stub lattice are given in orange and bands of the ordinary 1D chain are shown in green.
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initial state (energy ò≈0) is almost aflat band eigenstate and it therefore onlyminimally spreads (see e.g.
[52, 59]). As sis increased this state hybridizes with other ones, either neighboring localized states withwhich it
acquires an overlap, or delocalized ones, allowing transport over larger distances to occur. At the same time,
however, the localization lengths at ò≈0 decrease. Since the latter bound themaximal spreadingΔxof the
state, once the decrease in the localization scale catches upwith the increase ofΔx, the behavior is dominated by
localization and, as expected,Δxdecreases with increasing disorder strength.

Conclusions and outlook

Wehave shown that Rydberg quantum simulators allow to explore localization phenomena in synthetic lattices
withflat bands and unconventional types of disorder (correlated, alternating). The current study focuses on the
Lieb ladder and on a particular excitation sector. Key features of the phenomenology discussed for this case are
howevermore general andwould apply to higher-dimensional lattices as well. In particular, thesewould give rise
to effective synthetic lattices withflat bands and localized eigenstates capable of aiding the localization. In two
dimensions, a similar behavior to the one observed in the Lieb ladder is expected to occur, whereas in three,
according to the standard properties of Anderson localization, a transition is expected at some disorder strength
froma regime that allows transport to a fully-localized one, related to the appearance ofmobility edges in the
spectrum. These higher-dimensional cases are realizable with current experimental techniques,making it a
theoretical challenge to shed light on thesemore intricate scenarios.
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