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a b s t r a c t 

Optical coordinate measurement systems, such as fringe projection systems, offer fast, high-density measurements of arbitrary surface topographies. The versatility, 

speed and information density of fringe projection measurements make them attractive as in-situ measurement devices and autonomous inspection systems. However, 

the complex nature of the measurement process makes evaluating uncertainty from a fringe projection measurement complex – even in the hypothetical simple case 

where the accuracy of a measurement is limited only by the accuracy in the quantities that define a measurement from an indication; named system parameters here. 

In this paper, by validating a series of assumptions, a method to explore the uncertainty in the system parameters of a fringe projection system is given. The results 

of this investigation imply the common distortion model (the Brown-Conrady model) is not specific enough to the camera or projector of a fringe projection system 

to evaluate its uncertainty. 
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. Introduction 

Fringe projection systems are a type of optical coordinate measure-

ent system (CMS) – similar in operation to laser line scanners and

hotogrammetry [ 1 , 2 ]. Fringe projection systems measure the surface

f an object by recording the light reflected from an object’s surface, and

ubsequently use the principles of triangulation to determine the surface

s a collection of three-dimensional (3D) points, known as a point-cloud

3] . A fringe projection system consists of a two-dimensional (2D) fringe

enerator (e.g. a digital projector) and a number of cameras. 

Fringe projection systems offer higher measurement speeds and

enser point-clouds than traditional tactile CMS, without the need to

hysically touch a part. For these reasons, fringe projection systems are

ell-suited for in-situ measurements on the production line, avoiding

he need to relocate parts elsewhere for inspection [4] . A fringe projec-

ion system can measure manufactured parts autonomously in real-time

 5 , 6 ] or be used to augment an operators vision with augmented real-

ty [7] . Also, a common problem in additive manufacturing machines

s that existence of defects early in the build cost time and resources

n continuing a faulty build – detecting defects in the build early us-

ng in-situ measurements may alleviate this issue [8] . Fringe projection

ystems are one of the few measurement systems capable of providing

n-situ topography measurements of the additive manufacturing process

9–11] . 

Fringe projection lacks a standardised calibration method, which re-

tricts the use of the technique in industry [12] . Measurement uncer-

ainty is the quantification of the statistical dispersion of measurement

alues that can reasonably be attributed to the “true ” value being mea-

ured. The standardised method of evaluating uncertainty is detailed
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13] . Without uncertainty, the disparity in measurements cannot be ac-

ounted for, and it will remain unknown as to how to treat any dispar-

ty in measurements. Therefore, measurement uncertainty allows the

eaningful comparison of two measurements of the same object. Cur-

ently, fringe projection requires gauge repeatability and reproducibility

GR&R) tests on each individual measurement object [14] . Modern sta-

istical techniques can evaluate uncertainty and do not require a unique

valuation for each measurement object [15] – but such methods still

equire an “extra ” calibration step. In this paper, an extension to the

alibration method [16] based on common regression techniques [17–

9] will be explored for its applicability to fringe projection. The benefit

f this method is no additional data is required – reducing the workload

equired in each fringe projection measurement. 

A fringe projection system goes through what is often referred to as

 “calibration ”, whereby a set of values are found that model the mea-

urement value from the indication. In this paper, these set of values,

enceforth referred to as “system parameters ”, model the 3D coordinates

f the point-cloud from a set of images. Typically, each optical system,

.e. the cameras in a fringe projection system are modelled using the

inhole model with non-linear distortion parameters included [20] . The

ifference between metrological calibration defined above and calibra-

ion defined in relation to fringe projection is, unlike fringe projection

alibration, metrological calibration provides an uncertainty in each of

he system parameters. To distinguish this difference, calibration used

n relation to fringe projection will be hereby referred to as “character-

sation ”. 

A common characterisation algorithm used in fringe projection esti-

ates the system parameters using a non-linear regression [ 16 , 21 ]. It is
ember 2022 
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Fig. 1. The outline of the algorithm to localise the centres 

of dots within the camera and projector images. 
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q  
ossible, therefore, to obtain an estimate of the covariance matrix of the

ystem parameters or propagate an uncertainty from regression inputs

hrough to the parameters [18] , but this is not commonly done. This

aper attempts to reconcile the difference between a fringe projection

haracterisation and metrological calibration by exploring the validity

f using the non-linear regression approach to evaluate an uncertainty

n the system parameters. 

In addition to the system parameters, there are many other factors

hat will influence the outcome of a measurement from a fringe pro-

ection system. The contribution that the measurement object’s surface

haracteristics [22] and camera pixel noise [23] have on errors in the

easurement is documented elsewhere [24–26] . In this work, only the

ontribution to the uncertainty of system parameters to the measure-

ent uncertainty is considered. 

This paper is structured as follows: first, a characterisation method

ased on non-linear regression is given, where a novel dot localisation

lgorithm based on weighted total least-squares is used to evaluate the

ncertainty in the features localised within image planes. Then, the fea-

ure locations and their uncertainty are used for the first time to con-

truct a weighting matrix to be used in a non-linear regression to es-

imate the system parameters, as well as to evaluate their uncertainty.

or estimations made by the non-linear regression to be valid, certain

onditions must be met – in the next section, three validation tests are

iven that test these conditions, namely specificity, linearity and a novel

est for parameter equilibrium is given. Finally, the parameters and their

ncertainty are tested on a flatness artefact and compared with a char-

cterisation made using OpenCV 4.5.5 [27] and measurements made

sing a commercial fringe projection system. 

.1. Characterisation 

In this section, the characterisation method is outlined, starting with

he feature localisation within both the camera and projector images,

nd ending with the non-linear regression of the system parameters us-

ng the feature locations. Typically, planar checkerboards are used for

eature localisation in camera characterisations [ 16 , 28 ], although al-

ernative artefacts include random dots targets [29] , noise-like targets

30] and active targets [31–33] . Another common pattern is the dot grid

34] , which is generally favoured for fringe projection characterisation

21] , but must have the eccentricity in the feature localisation corrected
2 
 35 , 36 ]. The dot grid has been chosen in this paper for its simplicity and

bility to easily localise projector points. 

Each dot in the dot grid will be imaged by the camera as an approxi-

ately elliptical shape. For convenience, this shape will be named as an

llipse throughout the rest of this paper. The feature localisation, there-

ore, returns the centres of each ellipse, with an uncertainty evaluated

or both the camera image and inferred projector image. The artefact

eatures (dot centres) do not project to the localised ellipse centres and

o must be corrected – the eccentricity correction method used here is

iven elsewhere [37] . The eccentricity correction is assumed to be small,

herefore, an initial non-linear regression is used to estimate the eccen-

ricity correction, before the regression is repeated with the corrected

eature locations. Alternative dot localisation techniques can be found

lsewhere [ 35 , 36 ]. 

The characterisation can be summarised by five processes, given in

ig. 1 . After acquisition of images, features are localised within the cam-

ra and projector image planes. The initial localisation estimate is used

o both correct the feature locations during the eccentricity correction

tep to propagate uncertainty in the dot features to the camera and pro-

ector features. 

The imaging step begins with a start-up procedure, to allow thermal

quilibrium to be reached in the camera and projector prior to taking

ny measurements, followed by the acquisition and decoding of the cam-

ra images. A single image is used to localise the ellipse locations in the

amera image plane. Then, a series of images of projected sinusoids are

ecoded to give a one-to-one correspondence of camera pixel to projec-

or pixel, called the phase map – the method used in this paper in given

lsewhere [38] . Since the dot grid is on a plane, the phase map can

e expected to be absent of high-spatial frequency components [39] –

emaining high-spatial frequency components are considered noise and

an be filtered out. The cut-off frequency is chosen to remove high-

patial frequency noise without excessively corrupting the surrounding

hase map with the ellipse boundary. The filter is chosen to be a Gaus-

ian filter with width 𝜎 = 0.28 pixel − 1 . 

. Image ellipse localisation 

The camera ellipses are localised entirely using a single image ac-

uired during the imaging step. Gradient methods are robust methods
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Fig. 2. Rough estimation and extraction of an imaged ellipse from a 

dot grid artefact and its surrounding area. 

Fig. 3. Gradient image with radially expanding line-spread functions from the 

estimated ellipse centre. 
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Fig. 4. Gaussian function (red) fitted to the line-spread function (black). 
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or fitting ellipses within camera images [40] and, therefore, will form

he basis of the method used in this paper. The camera ellipse loca-

ions are found by estimating ellipse boundary points from the sub-

ixel gradient peak of a line-spread function taken radially from an

stimated ellipse centre. It is assumed that ellipse boundaries are lo-

ated at the gradient peaks. First, a rough ellipse centre location is

ound using circular blob detection [41] in OpenCV. A typical mea-

urement is given in Fig. 2 , where a poorly imaged ellipse has been

ighlighted. There are several obvious issues with this dot; there are

ome specular reflections corrupting the edge and inside of the dot –

he feature localisation algorithm must be robust against specular

eflections. 

A small region of the image centred on the estimated dot location

ounded to the nearest integer is extracted. The gradient image of the

mall region is found using a convolution with a Sobel filter. A series

f line-spread functions of the gradient image are taken radially from

he estimated centre of the ellipse. It is assumed that the initial ellipse

stimation is within ±1 pixel. The number of line-spread functions are

hosen so that each will be independent of each other at the ellipse

oundary. The line-spread function is interpolated from the gradient

mage using a bilinear interpolation. The gradient image along with the

ross-sectional lines is given in Fig. 3 . 

Each line-spread function is used to find the sub-pixel location of

he boundary of each ellipse. Each line-spread function is fitted with a
3 
aussian function, given by 

 = 𝑔 ( 𝑥, 𝐴, 𝜇, 𝜎) = 𝐴𝑒 
− ( 𝑥 − 𝜇) 

2 

2 𝜎2 (1)

here the parameters 𝐴, 𝜇, 𝜎 are the peak height, peak centre and peak

idth respectively, to be found during the fitting. All line-spread func-

ions are refined together during a single non-linear regression using the

evenberg-Marquardt algorithm. The peak width 𝜎 is a dot-specific pa-

ameter that is shared by all line-spread functions. The peak height 𝐴

nd the peak centre 𝜇 are line-specific parameters. A Gaussian function

tted to a line-spread function interpolated from a cross-sectional line

hown in Fig. 3 is given in Fig. 4 . The gradients of Eq. (1) all contain

 𝑒 
− ( 𝑥 − 𝜇) 

2 

2 𝜎2 term, that will quickly go to 0 away from the peak centre 𝜇.

ignificant noise such as the peak located at 𝑋 ≈ 0 . 1 in Fig. 4 will, there-

ore, have no effect on fitting to the appropriate peak located at 𝑋 ≈ 0 . 6 ,
ffectively filtering the noise away from the peak centre given the initial

stimate of sufficient quality. 

Across all line-spread functions, it is possible for Gaussian peaks to

e fitted at incorrect positions or that the peak itself is significantly cor-

upted by noise. The outliers in the peak centre estimations are detected

sing a random sample consensus (RANSAC) algorithm, where point er-

or and the least-squares ellipse fits are given elsewhere respectively

 42 , 43 ]. Points are labelled erroneous if the magnitude of the point-

o-ellipse boundary distance is larger than three standard deviations,
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Fig. 5. The located sub-pixel boundary of an imaged ellipse.Points that have 

been found to be erroneous are coloured red; remaining points are coloured 

blue. 
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aken over the entire ellipse. The estimated boundary points of the el-

ipse given in Fig. 2 are shown in Fig. 5 , with erroneous points filtered

sing the RANSAC algorithm. 

Unlike weighted total-least squares, ordinary least-squares estima-

ion will neglect error in the regressors, which is problematic in the

east-squares ellipse fits [43] , since the regressor values are erroneous

nd correlated. The weighted total least-squares method given here is

aken from Ref. [44] and adapted to the least-squares method in Ref.

43] . An alternative unweighted total least-squares method to estimate

llipses is given elsewhere [45] . The novelty here is that this is the

rst time a weighted total least-squares method is applied to ellipses for

he application of characterisation of a fringe projection system (to our

nowledge). The standard uncertainty in boundary points is shown in

ig. 6 (a), and the standard uncertainty of the ellipse is shown Fig. 6 (b).

The projector ellipse centres are found by applying a linear trans-

orm to the estimated ellipse centre in the camera image. The dot grid is

ocated on a plane, so the mapping is given by a rational function [46] .

owever, locally the mapping can be considered linear. Errors can be

ropagated from the elliptical centres, along with the transform, using

he propagation of uncertainty given in the GUM [13] . A small region

urrounding the ellipse centre is extracted from the phase map. The el-

ipse centre and its boundary pixels will not give accurate mapping data

ecause of the low contrast of any reflected fringes and must be dis-

arded. These areas are discarded by removing pixels within an ellipse

ith axes expanded by eight pixels. The local camera to projector coor-

inate transform is found using least-squares regression. It is also noted

hat the errors in projector coordinates will give rise to autocorrelation,

ut since the number of observations are high, the errors are assumed to

symptotically follow a normal distribution. The residual of the linear

apping function in the cropped region after fitting is given in Fig. 7 . 

.1. Non-linear regression 

The use of non-linear regression in camera characterisation was in-

roduced in Ref. [16] , and extended to fringe projection systems in Refs.

21] and [47] . In general, non-linear regression estimates the parame-

ers �⃗� that satisfy the function 

⃗ = 𝑓 
(
�⃗� , ⃗𝜽

)
, (2)
4 
here ⃗𝒚 is some measured output and ⃗𝒙 is a known input. The estimation

s completed by minimising the function 

�̂� − 𝑓 
(
�⃗� , ⃗𝜽

)‖, (3)

here ̂𝒚 represents an imperfect realisation of the true ⃗𝒚 . The Levenberg-

arquardt algorithm is an algorithm to minimise Eq. (3) , by iteratively

mproving an estimate of the parameters ⃗𝜽 using local gradient matrices,

nown as the Jacobian  = ∇ 𝜃𝑓 ( ⃗𝒙 , ⃗𝜽) . From an epicentre �⃗�e , a vector
⃗ = ⃗𝜽 − ⃗𝜽e can be found that minimises Eq. (2) , given by 

 
T 
 + 𝜆diag 

(
 

T 
 
))
�⃗� =  

T 𝜖 (4)

here 𝜖 = ⃗𝒚 − 𝑓 ( ⃗𝒙 , ⃗𝜽e ) , 𝜆 is a damping factor and the diag operator re-

urns its argument with non-zero values only in the diagonal. Eq. (4) is

olved successively until some condition is true, such as the failure to

educe Eq. (3) , and is guaranteed to at least find the local minimum

17] . In fringe projection, �⃗� is a set of features of known relative posi-

ion, �⃗� is the locations of the features within the camera and projectors

mages, and the function 𝑓 describes the projection of feature position

⃗ to image location �⃗� . The Levenberg-Marquardt algorithm requires an

pproximate solution, which can be found analytically, given some as-

umptions [16] . Heteroscedasticity is problematic in non-linear regres-

ion, and typically a requirement for a successful regression is that the

rrors in the vector ⃗𝜖 be uncorrelated. The heteroscedasticity issue is al-

eviated using a weighting matrix in the optimisation, altering Eq. (4) to

ive 

 
T 𝑾  + 𝜆diag 

(
 

T 𝑾  
))
�⃗� =  

T 𝑾 ⃗𝜖, (5)

ith 𝑾 = 𝑽 −1 𝜖 . The covariance matrix 𝑽 𝜖 describes the covariance of

ector 𝜖, which is a function of known features �⃗� , measured feature

mage location �⃗� and parameter estimation �⃗�e . 

If the linearization approximation used here holds, the region for

hich the parameter solution exists can be considered linear. For a lin-

ar system given by �⃗� = 𝑿 ⃗𝜽, where the covariance matrix of the obser-

ations ⃗𝒚 , given as 𝑽 𝑦 is known, the covariance matrix of the parameters

⃗, given by 𝑽 𝜃 , is defined then the parameter covariance matrix 𝑽 𝜃 is

iven by 

 𝜃 = 

(
 

T 𝑽 −1 𝜖  
)−1 
, (6)

here 𝑽 𝜖 is the covariance matrix of the vector ⃗𝜖. The estimate ⃗𝜽 defined

uring the non-linear regression is only valid under specific conditions –

iven in Section 3. The calculation of the weighting matrix is a function

f the observation �⃗� (the ellipse centres), the regressor �⃗� (the artefact

ot positions) and the estimated parameters �⃗�, and can be found by

ropagating uncertainty using 

 𝜖 = 𝑽 𝑦 +  𝑽 𝑥 

(
�⃗� , �⃗�

)
 

T , (7)

here the covariance matrix 𝑽 𝑥 has its dependence explicitly stated

ere for clarity. Covariance matrix 𝑽 𝜖 can be updated each iteration

sing the updated parameter estimate �⃗� + ⃗𝜽 following Eq. (5) or alter-

atively, under the assumption that 𝑽 𝜖 is approximately constant near

he solution locus, can be calculated just once using the initial approxi-

ation of �⃗�, which is used in this paper. 

.2. Regression regimes 

The system parameters �⃗� can be estimated in one pass, regressing

arameters in both the camera and the projector simultaneously, or

hey can be estimated separately. This paper will explore four meth-

ds to characterise fringe projection systems: the parallel method that

stimates all parameters in a single regression; the weighted parallel

ethod that modifies the parallel method with a weighting matrix; the

erial method that estimates the camera parameters followed by the pro-

ector parameters and the extrinsic estimates; and the weighted serial

ethod that modifies the serial method with a weighting matrix. Esti-

ating parameters in parallel reduces the total degrees of freedom of
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Fig. 6. Uncertainty of the imaged ellipses (a) boundary and (b) ellipse centre and perimeter. 

Fig. 7. Error in the camera-to-projector mapping of the (a) u-axis and (b) v-axis. The central white space is cropped out. 
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he regression since the artefact position and orientation must be esti-

ated only once per view. However, this will increase both the level of

orrelation and the heteroscedasticity within the input data. In the case

f fringe projection: 

1. The projector and camera images have different scales, and since the

reprojection error used to regress the parameters is calculated on

the image plane, the projector and camera image points will have

completely different uncertainty. 

2. The projector ellipse image locations are inferred from camera el-

lipse image locations and are, therefore, correlated in some way and

will have larger errors when compared at the same scale. 

3. The same artefact provides repeated measurements, all repeated

measurements of the same dot on the dot grid will be correlated

in some way. 

Additionally, the weighting matrix 𝑾 can become significantly

arge. It is typical to use more than twenty-five positions within the

haracterisation to ensure there is enough data redundancy and image

lane coverage. Given there are 𝑁 pos number of positions, 𝑁 art number

f points on the artefact, and each point has two degrees of freedom and

s measured once in the camera and once in the projector, the regression

as 𝑁 pos ×𝑁 art × 2 × 2 degrees of freedom. Given an artefact contain-
5 
ng 184 points measured in twenty-five positions, the weighting matrix

as the size 18,400 ×18,400, with significant off-diagonal terms. In this

aper, to reduce memory requirements, artefact points are only used

nce in either the camera or projector image plane, reducing the com-

utational complexity roughly by a factor of sixteen. In systems with

ultiple cameras and projectors, it may be impossible to conduct the

arallel regression. 

. Characterisation results 

This section will detail the outcome of the characterisation. A to-

al of twenty-seven unique positions and orientations of the board were

maged to create 2592 camera points and 2376 projector points. Each

osition is shown in Fig. 8 and the parameter estimations are given in

able 1 . The camera/projector matrix parameters follow those given in

ef. [16] , the distortion parameters follow the Brown-Conrady distor-

ion model [48–50] and the rotation parameters 𝑞 1 , 𝑞 2 , 𝑞 3 follow the

odrigues rotation convention. 

Some parameters —the focal lengths, principle points and extrinsic

alues of both the camera and projector —are similar regardless of the

ethod or weighting matrix used. There are significant differences when

ooking at distortion parameters and the skew parameter – there may be
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Table 1 

Parameter estimations. 

Unit Description Parameter Serial 

Weighted 

serial Parallel 

Weighted 

parallel 

Camera matrix pixel Focal lengths 𝑓 𝑥 8520 8536 8510 8534 

𝑓 𝑦 8485 8536 8477 8535 

Skew 𝑠 20.00 − 0.4431 20.11 − 0.4917 

Optical centres 𝑢 0 2674 2676 2674 2675 

𝑣 0 2544 2538 2543 2537 

Camera 

distortion 

– Radial 

parameters 

𝑘 1 − 0.0158 − 0.0339 − 0.0173 − 0.034 

𝑘 2 − 0.0323 0.1264 − 0.0263 0.1219 

𝑘 3 0.0541 − 0.1619 0.0452 − 0.1891 

Tangential 

parameters 

𝑝 1 − 0.0070 − 0.0011 − 0.0069 − 0.0011 

𝑝 2 0.0019 − 0.0004 0.0020 0.0004 

Distortion 

centres 

𝑢 𝑑𝑐 − 0.0771 − 0.0097 − 0.0779 − 0.0094 

𝑣 𝑑𝑐 0.2730 0.0070 0.2679 0.0060 

Projector matrix pixel Focal lengths 𝑓 𝑥 1123 1121 1121 1121 

𝑓 𝑦 − 2247 − 2243 − 2242 − 2242 

Skew 𝑠 − 0.2423 0.0083 − 0.3997 − 0.2741 

Optical centres 𝑢 0 443 442 443 443 

𝑣 0 1187 1187 1186 1187 

Projector 

distortion 

– Radial 

parameters 

𝑘 1 0.0495 0.0543 0.0579 0.0551 

𝑘 2 − 0.1765 − 0.1906 − 0.2236 − 0.1942 

𝑘 3 0.0845 0.0960 0.1461 0.1000 

Tangential 

parameters 

𝑝 1 0.0006 0.0001 0.0007 0.0001 

𝑝 2 0.0002 0.0002 0.0002 0.0002 

Distortion 

centres 

𝑢 𝑑𝑐 − 0.0033 − 0.0042 − 0.0062 − 0.0048 

𝑣 𝑑𝑐 0.0121 0.0167 0.0252 0.0175 

Projector 

extrinsics 

– Rodrigues 

rotation vector 

components 

𝑞 1 0.2659 0.2651 0.2654 0.2651 

𝑞 2 − 0.2823 − 0.2830 − 0.2830 − 0.2830 

𝑞 3 1.5706 1.5719 1.5707 1.5719 

mm Translation 

vector 

components 

𝑡 𝑥 5.7123 5.6859 5.7361 5.6857 

𝑡 𝑦 306.3578 306.3366 306.4418 306.2259 

𝑡 𝑧 − 44.3868 − 44.4270 − 44.2130 − 44.4299 

Fig. 8. Location of the twenty-seven board locations and orientations used for 

the characterisation. 

m  

i  

r  

i

 

e  

t  

r

 

s  

f  

t  

p  

b

 

a  

u  

r  

a

3

 

g

 

o  

m  

a

 

n  

s  

a  

r  

i

 

w  

H  

c  

c

 

G  

t  

e

 

s  

i  
ore than one solution to the regression. The choice of regression mode

s critical for parameter estimation, while the use of weighting matrix

educes this difference. The parameter correlation matrices are shown

n Fig. 9 . 

In Fig. 9 , there is a high degree of similarity in parameter correlation

stimation when using a weighting matrix, with some missing correla-

ion between the camera, projector or extrinsic parameters, since the se-

ial method regresses camera and projector parameters independently. 

The point spread function (PSF) describes the response of an imaging

ystem to a point source or point object and is related to a line-spread

unction [51] . The line-spread function found during the dot localisa-

ion could potentially be used to estimate a spatially-variant PSF. The
6 
eak width estimated from each line-spread function across the ellipse

oundary is given, shown in Fig. 10 . 

Without further data collection, the ellipse localisation method is

lso able to estimate the camera’s field of view. This method will be

sed in future uncertainty evaluations that consider the limited optical

esolution of the camera. This is a secondary result from this method

nd will not be considered further in this paper. 

.1. Validation 

For the parameter and covariance estimation of the non-linear re-

ression to be valid, a series of conditions must be valid: 

Specificity. Given there are no errors in the regressor vector �⃗� or the

bservation vector �⃗� , the function 𝑓 ( ⃗𝒙 , ⃗𝜽) must accurately predict �⃗� . A

odel that does not comply with this condition is known as misspecified,

nd the covariance matrix estimate 𝑽 𝜃 given in Eq. (6) will be invalid. 

Linearity. The linearisation used to estimate the parameters in the

on-linear regression must accurately represent the function over a

mall interval. A model that is significantly non-linear will not be well

pproximated by a first-order Taylor approximation, and while the pa-

ameter estimate ⃗𝜽may still be correct, the covariance estimate 𝑽 𝜃 given

n Eq. (6) will be invalid. 

Equilibrium. The characterisation occurs over a finite time-period

here it is assumed that the parameters under investigation do not vary.

owever, optical parameters are dependant on temperature that can

ause them to vary across the regression. A failure in the equilibrium

ondition will result in invalid parameter and covariance estimations. 

Normality . The errors introduced in the measurements must follow a

aussian distribution. If the errors do not follow a Gaussian distribution,

hen the input uncertainty 𝑽 𝜖 is incorrect and there will be unaccounted

rrors propagated to the solution �⃗�. 

In this section, tests for specificity, linearity and equilibrium are pre-

ented. Given the number of observations used in the characterisation,

t is assumed that the errors asymptotically follow a normal distribution.
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Fig. 9. Correlation matrix of the parameter estimate from each 

characterisation method. 

Fig. 10. The width of the Gaussian line-spread function in (a) 3D and (b) plotted against distance from the camera pinhole origin. The lateral distances in (b) 

correspond to the distances along the XY coordinates from the origin (0,0,0). 
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.2. Specificity 

White’s specificity test [52] is used to test the specificity of the model

or the non-linear regression in the characterisation. The specificity test

erifies whether the model used in the linear regression is correct up

o some additive error, otherwise the implication is there are variables

xcluded from the model. For a non-linear regression that, in the final

tep, computes the Jacobian  and the residuals 𝜖 at the solution ⃗𝜽, the

pecificity test [52] is given by finding the solution �⃗� to 

2⃗ = 𝑎 0 ⊙ 1⃗ + 𝜓 ⃗𝑎 , (8)

 =  ⊙  , (9)

ith ⊙ being the Hadamard product. The test will fail if there is a so-

ution to Eq. (8) that has some sufficient statistical power, i.e., if the

quare residual 𝜖2 can be modelled in some way. Given there are 𝑁 pos 
bservations and 𝑃 parameters being estimated in the non-linear regres-

ion, the test is completed by computing 𝑛 times the constant-adjusted

oefficient of determination, 𝑛 ×𝑅 

2 and comparing to a critical value
7 
rom the 𝜒2 distribution. It has been shown [52] that the specificity test

ill also fail in the presence of heteroscedasticity. In Section 2, the co-

ariance (and by extension the correlation) between image points were

stimated and are given in covariance matrix 𝑽 . The correlation can

e removed using the transform 𝑪 

−1 , where 𝑪 𝑪 

T = 𝑽 . The transforms

⃗ 
′ → 𝑪 

−1 �⃗� and  → 𝑪 

−1 
 gives the updated equations 

𝑪 

−1 𝜖
)2 = 𝛼0 + 𝝍 ′�⃗�, (10)

 ′ = 

(
𝑪 

−1 
 
)
⊙
(
𝑪 

−1 
 
)
. (11)

The specificity test will now additionally fail if the covariance matrix

 is not correct up to a scalar multiplicative error, or if the model is not

orrect up to an additive error, given a scalar multiplication will cancel

n Eq. (10) . However, unlike the serial method, the parallel method is

ensitive to a scalar multiplicative error, considering the covariance ma-

rix is a concatenation of the projector and camera regressor covariance

atrices. 

The characterisation measures the artefact in twenty-seven positions,

iving five pinhole parameters, seven distortion parameters and 27 × 6
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Fig. 11. The Clarke curvatures Γ of the system parameters. (a-b). Camera 

and projector parameters estimated using the serial method. (c) Parame- 

ters estimated using the parallel method. 
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Table 2 

Specificity test results for the weighted serial and 

weighted parallel method. 

Test value Critical value 

Weighted serial 

(camera) 

880 206 

Weighted serial 

(projector) 

1116 206 

Weighted 

parallel (all) 

5560 225 
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xtrinsic parameters, for a total of 174 parameters. The critical value

f the 𝜒2 distribution with 174 degrees of freedom is 206, i.e., 95% of

alues are expected to be below 206. In the parallel characterisation,

here are ten pinhole parameters, fourteen distortion parameters and an

dditional six parameters describing the rotation and translation from

he camera coordinate system to the projector coordinate system, giving

 total of 192 parameters. The critical value of the 𝜒2 distribution with

74 degrees of freedom is 225. The results of the specificity test are

iven in Table 2 . 

This specificity test [52] simultaneously tests the covariance matrix

f inputs used in the characterisation and the model. The specificity

est fails for both methods and has a higher failure rate in the paral-

el method. The optical distortion in the projector is higher than in the

amera – which implies that the distortion model is inadequate for mea-

urement accuracies at the level made in the characterisation. The fail-

re could also indicate that the covariance matrix estimation 𝑽 𝜖 is poor.

he higher test score in the parallel method would imply that there is a

calar multiplicative error in the regressor covariances matrices – given

hat only the parallel test score is sensitive to this error. 

.3. Linearity 

In this section, the non-linearity on the parameter covariance esti-

ate in a non-linear regression will be tested. Given the characterisation

ses a linear approximation of a non-linear problem, significant non-

inearity will invalidate the linear approximations and reduce the effi-

acy of the covariance estimation. The measure of nonlinearity used in

his paper is the Clarke curvature Γj [53] . If the condition | 1 2 Γ𝑗 𝑠𝑐 | < 0 . 1
s true, then the curvature is considered acceptable enough to obtain a

easonable covariance matrix. The results of the Clarke curvatures for

he weighted serial and weighted parallel methods are given in Fig. 11 .

The non-linearity is well within acceptable limits. The parameter

ith the highest non-linearity measure is the skew component in the

inhole matrix of the camera. Ref. [54] shows that an increase in the

umber of observations can reduce the non-linearity – in a characteri-

ation with fewer observations, it may be prudent to remove the skew

omponent of the pinhole camera matrix. The projector, however, does

ot show the same behaviour. 

.4. Equilibrium 

The equilibrium test given in this section takes advantage of the spare

egrees of freedom left in the serial characterisation method. The serial

haracterisation method gives 𝑁 pos estimations of the position of the dot

rid for both the camera and projector and, therefore, each estimation

f the artefact orientation and position can be tested for consistency

preventing an undetected failure of the equilibrium condition. The

est will also fail if the linear regression conditions are broken or if the

ncertainty matrices are 𝑽 𝜖 are poor, and if there is no indication of

hat condition has been invalidated during a failure. 

The serial characterisation method gives a weighted estimation of

he extrinsic parameters (the Rodrigues rotation vector �⃗� and transla-

ion ⃗𝒕 ) describing the transform between the camera and the projector,

long with an uncertainty. For the unweighted serial method, this is
9 
ound using an estimate of the parameter covariance matrix, given by

he estimator 

 𝜃 = 

‖𝜖‖
𝑁 − 𝑃 

(
 

T 
 
)−1 
, (12)

here 𝑁 equals the number of observations within the regression and

 equals the number of parameters obtained from the regression. For

he weighted serial method, the parameter covariance matrix is found

sing the weighted estimator, 

 all = 

(
 

T 𝑽 −1 𝜖  
)−1 
. (13)

ith an estimated uncertainty of the parameters 𝑽 all obtained, each

stimate of the camera-projector transform can be compared for agree-

ent, i.e., whether there is any statistically significant deviation from

he final estimate of the camera-projector transform. A 𝜒2 test can now

e completed using 

�⃗�all − ⃗1 ⊗ �⃗�e 

)T (
𝑽 all + 𝑽 𝑞,𝑡 ⊗ 𝕀 

)−1 (
𝜽all − ⃗1 ⊗ �⃗�e 

)
, (14) 

here ⊗ is the Kronecker product. A comparison of the camera-projector

ransform estimates from each artefact with the final estimate is given

n Fig. 12 . 

With some exceptions, the application of the covariance matrix has

educed the deviation of the quantity values. The critical value of a 𝜒2 

istribution with 26 × 6 = 162 degrees of freedom is 192.7, where the

nweighted serial method obtained a score of 1691 . 5 , and the weighed

erial method obtained a score of 80.4. The equilibrium test will also fail

hen the covariance matrix 𝑽 all is unable to explain the discrepancy in

ifferent camera-projector transforms for all artefact positions. 

.5. Measurement results 

In this section, the system parameters, as well as the covariance ma-

rix found during the characterisation, are tested using three measure-

ents of a flatness artefact. A flatness artefact was chosen to minimise

he effect that the surface geometry has on the measurement result [22] .

he efficacy of the weighting matrix approach is compared through the

ssessment of the system parameters. The accuracy of the system pa-

ameters is evaluated using the spread of the deviation of points from a

tted plane – defined here as the flatness deviation. 

A flat is chosen as the artefact to validate the calibration method

n this paper over other artefacts, such as sphere dumbbells, for the

ollowing reasons. A flat provides the simplest measurement for fringe

rojection – there are no multiple reflections off the surface and the

urface is absent of high spatial-frequencies allowing filtering of phase

oise, see Section 4.1. Phase noise is the dominant source of error in a

ringe projection system [ 48 , 55 ], the choice of artefact is key in provid-

ng a measurement that is limited by accuracy in the system parameters,

nstead of the phase noise. 

The flatness deviation in measurements determined using the system

arameters of all four characterisation methods, measurements deter-

ined using system parameters found using OpenCV’s stereoCalibrate

ethod and measurements made using a commercial system, the GOM

TOS Core 300, will be compared. Then, the uncertainty matrix of all

our system parameters is evaluated using the same measurement of a

atness artefact, with a reduced 𝜒2 metric to test for the level of agree-

ent with the reference deviation of the plane measured using a tactile

MS. 

.6. Flatness deviation analysis method 

When determining the flatness deviation, any deviation from the

est-fit plane caused by uncertainty in the system parameters will be

dditively combined with a phase error that dominates over the uncer-

ainty from the system parameters. The correspondence decoding al-

orithm uses a periodic pattern to establish the link between camera

nd projector points. It is assumed, therefore, that the range of spatial
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Fig. 12. Comparison of the twenty-seven estimations of the transform between the camera and projector.Estimation obtained using the (a) serial method and (b) 

unweighted serial method. 
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Fig. 13. Clustering algorithm used to derive the flatness deviation. 

(right) The flatness deviation values in a single cluster of points. 

(left) The clustered point-cloud, shown in the xy plane, where each 

colour represents a cluster that will make a pseudo-point. 

Fig. 14. Box plots of the range of flatness devi- 

ations across the entire flat, with the whiskers 

covering the full range of the data, and the box 

showing the inter-quartile range. 
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requencies in the point-cloud caused by phase error will be limited to

pproximately the fringe period on the measurement surface. i.e., the

orm error caused by the system parameters will have much larger spa-

ial frequencies in the measured points compared to the phase error. By

veraging over a large enough area, any phase error should be signifi-

antly reduced. 

Additionally, the flatness artefact is measured within a particular

andwidth of spatial frequencies on a tactile CMS. Fringe projection

easurements have higher point density and typically measure a wider

ange of spatial frequencies. The analysis must remove higher spatial

requencies in the measurement data to compare with a known mea-

urement of the flatness artefact containing only lower spatial frequen-

ies. The point-cloud of the flatness artefact contains roughly 2 × 10 6 

oints and is reduced to 1024 pseudo-points using a clustering method

ased on Ref. [56] – the result can be seen in Fig. 13 . 
11 
.7. Comparison of flatness deviations 

The accuracy of each set of system parameters is evaluated by com-

aring the flatness deviations in three measurements made using each

et of system parameters, system parameters obtained using OpenCV

nd three measurements made using the GOM ATOS Core 300. The three

ositions of the flatness artefact were chosen so that every part of the

mage plane of the camera and projector were represented in at least

ne measurement. The spread of values in flatness deviation is shown

n Fig. 14 . 

The weighting matrix significantly improves the accuracy of the se-

ial characterisation method for every position and improves the par-

llel characterisation method in two of three positions. Both weighted

ethods give similar results – the weighting matrix is a useful tool to

ore appropriately define the loss function used in the characterisa-
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Fig. 15. Mean deviation of each data point from the substitute best-fit plane across the flatness artefact from the Monte-Carlo trials. 

Fig. 16. Standard deviation of the deviation of each cluster point from the substitute best-fit plane across the flatness artefact from the Monte-Carlo trials. 
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Fig. 17. 𝜒ˆ2 test results of each data point from the Monte-Carlo trials. Data is given in (a) 3D space and (b) collectively per measurement. 
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t

ion. The accuracy of both weighted methods is comparable to the GOM

easurements, and far exceeds the OpenCV measurements, but are less

eproducible than the GOM measurements. Note that unlike the compar-

son between the serial, weighted serial, parallel, weighted parallel and

penCV methods, the GOM positions are not the same – comparisons

etween individual positions is not possible. 

.8. Uncertainty 

In this section, the applicability of modelling the system parameters

s a multivariate Gaussian will be tested. The test will consist of com-

aring the mean flatness deviation and the uncertainty of the system

arameters propagated to the measured deviation from the plane using

 Monte-Carlo simulation. From 𝑀 Monte-Carlo trials, the mean devia-

ion and standard deviation of the results are found. Each pseudo-point

s treated as an individual measurement that defines a perpendicular

istance from a best-fit plane. The reduced 𝜒2 test value will be cal-

ulated for the entire plane. Given the number of samples used in the

onte-Carlo trials ( 𝑀 = 1000 ) , it will be assumed that the distributions

symptotically approach normality [57] . 

The mean deviation and reduced 𝜒2 test values will all be inves-

igated for the effect that the weighting matrix has on the parameter

stimates and parameter uncertainty, as well as their general accuracy.

he mean deviations from the best-fit plane, found by taking the mean

f each point over its own set of points obtained from the Monte-Carlo

rials, is given in Fig. 15 . If the system parameters are modelled well as a

ultivariate Gaussian, the mean of the flatness deviation values should

pproach the flatness deviation as measured by the tactile CMS: ± 2 𝜇m.

The mean flatness deviation values are generally inconsistent across

ifferent positions in the measurement volume and across different

ethods – despite both methods giving similar results in Fig. 14 . Only

n one position does the weighted serial method mean values approach

he flatness deviation values as measured by the tactile CMS – which

re significantly different to those obtained using just the mean param-

ter values as given in Fig. 14 . These results show that the applicabil-

ty of the multivariate Gaussian approach to the system parameters is

ighly dependant on the position of the flatness artefact in the mea-

urement volume, i.e., the unique set of camera-projector coordinates,

 𝑢 𝑐 , 𝑣 𝑐 , 𝑢 𝑝 , 𝑣 𝑝 ) that the measurement object covers. This result indicates

hat the specificity of the pinhole camera model with Brown-Conrady

istortion is poor when considering the poorest flatness deviation value

easured by the fringe projection system used in this paper: approxi-

ately ± 30μm. The standard deviation of the range of flatness deviation

alues per point is given in Fig. 16 . 

The standard deviation of the deviations from the best-fit plane is

ependant on the plane position, with no weighted methods sharing a

imilar uncertainty across the flatness artefact. In Fig. 17 , the mean and

tandard deviation values shown in Figs. 15 and 16 are used in a reduced
2 test to determine whether the system parameters with corresponding

ncertainty matrix can account for the difference in flatness deviation

alues as measured using the tactile CMS. 

The reduced 𝜒2 test scores are shown in Fig. 17 . The ideal result of a

educed 𝜒2 test score is equal to one. The weighted serial method offers

he best uncertainty evaluation, given the reduced 𝜒2 test scores closest

o one, or under. The weighting matrix has improved the uncertainty

stimation for both the serial and parallel methods. However, the un-

ertainty does not satisfactorily cover all positions for any one method.

enerally, the weighting matrix improves the accuracy of the system pa-

ameters, particularly for the serial method. The efficacy of the weighted

ethods can be shown in the improvement of the unweighted parallel

ethod over the serial method, but there is little difference in the accu-

acy of the system parameters between the two weighted methods. It is

xpected that the parallel method will outperform the serial method due

o the fewer degrees of freedom – but the weighting matrix effectively

egates this effect. 
14 
Notably, the mean of the deviation from the best-fit plane obtained

sing the Monte-Carlo trials does not equate to the deviation from the

est-fit plane obtained using the mean system parameters. The mean

arameter deviation is given in Fig. 14 and the Monte-Carlo mean is

iven in Fig. 15 . The perturbation of system parameters will not give

 corresponding perturbation of mean zero in the deviation from the

lane. 

The uncertainty of the system parameters provided by all methods

s unable to account for all deviations of the flatness plate. There are

any possible causes: the curvature of the non-linear regression being

oo high, parameter instability, poor specificity, or a poor estimation

f the input covariance matrix. The curvature of the model was anal-

sed and found to be appropriately linear within the solution locus and,

herefore it is unlikely that the non-linearity of the model has prevented

he evaluation of a reasonable uncertainty. The stability of the parame-

ers were tested and it was found that the parameters were consistently

table throughout the characterisation measurements. The model speci-

city was tested and it was found to fail the specificity test – the impli-

ation is either that the input covariance matrix is incorrect, the model

as mis-specified or both. In Fig. 17 , the 𝜒2 values highly varied when

easuring the plane across different points in the measurement volume.

he dependency of the 𝜒2 values along with the failure of the specificity

est strongly indicates that the pinhole and distortion models are insuf-

cient to model both the camera and projector beyond levels of ∼ 30 μm
atness (for a 300mm × 120mm flatness artefact). 

. Conclusion 

In this paper, the common characterisation method to evaluate an

ncertainty on the parameters estimated during the characterisation of

ringe projection systems has been expanded. First, a method to eval-

ate uncertainty in the feature localisation method, as well construct

nd propagate a covariance matrix to the parameter estimates was out-

ined in Section 2. Two characterisation methods were outlined, the se-

ial method and the parallel method, that regressed on camera and pro-

ector parameters together or separately. Then, a series of tests on the

pecificity, curvature and equilibrium of the characterisation regression

roblem were undertaken to validate assumptions made in the charac-

erisation. It was found that the distortion model likely lacked the speci-

city to enable a reasonable estimate of parameter uncertainties. Lastly,

he measurement of a flatness artefact was undertaken using all the esti-

ated parameters from the characterisation. It was found that for the se-

ial method, the covariance matrix improved the flatness measurement,

nd there was marginal improvement in the parallel method. Addition-

lly, the parameter uncertainty matrix was unable to account for flatness

easurement across the measurement volume, where it overestimated

rrors in certain positions, and underestimated in others. Consequently,

t was concluded that the specificity of the parameters is insufficient to

ccurately model the flatness of this specific fringe projection system’s

easurements beyond levels of ∼ 30 μm flatness (for a 300mm × 120mm

atness artefact). This work suggests that future work in evaluating un-

ertainty in system parameters should be dedicated to a non-parametric

epresentation of distortion. 
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