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Abstract

With advancement in technology, the nanotechnology, various thermal energy storage (TES) materials

have been invented and modified with promising thermal transport properties. The solid–liquid phase

change materials (PCMs) have been extensively used as TES materials for various energy applications

due to their highly favourable and potential thermal properties. The class of PCMs, organic phase change

materials (OPCMs) have more potential and advantages over the class, inorganic phase change materials

(IPCMs) having high phase change enthalpy (positive advantage). However, the OPCMs possess low

thermal conductivity as well as density and suffer leakage during the melting phase. The encapsulation

technologies (i.e. micro and nano) of PCMs, with organic and inorganic materials, have a tendency

to enhance the thermal conductivity, effective heat transfer, and leakage issues as TES materials. The

encapsulation of PCMs involves several technologies to develop at both micro and nano levels, called

micro–encapsulated PCMs (micro–PCM) and nano–encapsulated PCMs (nano–PCM) respectively. This

study covers a wide range of preparation methods, thermal and morphological characteristics, their

stability, applications and future perspective of micro/nano–PCMs as TES materials. The potential ap-

plications such as solar–to–thermal, electrical–to–thermal, thermal management, building, textile, foam,

medical industry of micro– and nano–PCMs are reviewed critically. Finally, this review paper highlights

the emerging future research paths of the mico/nano–PCMs for the researchers who are working in the

area of thermal energy storage.

Keywords: Nanotechnology, Thermal energy storage, Phase change materials, Micro–encapsulated,

Nano–encapsulated, Micro–PCM, Nano–PCM, Encapsulation technologies

∗Correspondence authors
Email addresses: adeel.arshad@nottingham.ac.uk, adeel_kirmani@hotmail.com (Adeel Arshad),

yuying.yan@nottingham.ac.uk (Yuying Yan)

Preprint submitted to International Journal of Energy Research January 17, 2019



1. Introduction

After energy crisis of the 1970s, the world is facing worse shortage of energy resources and facing

economic decline cumulatively. Researchers are looking forward towards different energy storage tech-

nologies based on renewable and sustainable resources to meet the future energy requirements [1]. The

phase change thermal energy storage (TES) technology using phase change materials (PCMs) ensures

the storage, transportation and wider domestic and industrial applications of thermal energy. The TES

technology has the high heat capacity and enthalpy of fusion with capability of absorbing and releasing

extensive amount of thermal energy while phase transition. The thermal performance of phase change

TES technology employing PCMs which are also known as latent heat storage materials (LHSMs), solely

depends on the properties of PCMs. On the bases of chemical composition, PCMs are classified in

to major categories, organic phase change materials (OPCMs) and inorganic phase change materials

(IPCMs). The positive advantage of PCMs especially, OPCMs which includes paraffins (n-alkanes) and

non-paraffins (n-alkenes) materials, are more stable and high energy storage density and no segregation,

non-toxic, self nucleation (super-cooling), non corrosiveness and non-reactive [2]. Contrarily, IPCMs have

the high volumetric energy storage density, relatively high thermal conductivity and flame retardancy.

In spite of this, IPCMs possess the sub-cooling and phase separation which reduce their instant release

and utilization of thermal energy for large–scale TES applications. The OPCMs have the lower thermal

conductivity [3] also they suffer the leakage problem and sub–cooling phenomenon during phase transition

[4]. The lower thermal conductivity of OPCMs materials reduces the rate of heat transfer which causes

increase in temperature gradient and insensitivity to temperature changes across the system boundaries.

The OPCMs with potential advantage as TES materials are being under applications of air conditioning

i.e. natural air cooling [5], cold thermal storage and absorption refrigeration [6, 7], waste heat recovery

[8, 9], solar energy storage [10, 11], thermal regulating fabric [12, 13], passive heating of building [14, 15,

16, 17], heat pipes [18], desalination [19], thermal management of electronic devices and electric vehicle

batteries [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], space craft [30, 31], and other integrated thermal control

systems such as trombe wall, PCM filled wallboards, shutter, concrete, under floor heating systems, ceil-

ing boards and hot water supply [32, 33]. However, the leakage issue and lower thermal conductivity of

OPCMs causes harm with interacting medium and losses the energy efficiency of the thermal system.

In the past, to solve the aforementioned challenges related with both types of PCMs efforts have

been made. Various conventional approaches such as the adding up of more water, nucleating agents,

thickeners and stirring of the salt solution have been employed to control the predicaments of IPCMs

in their constant dissolution and crystallization procedure [34]. In contrary, the addition of conductive

fillers and flame-retardants has reduced the disadvantages of OPCMs. On the other hand, these efforts

would certainly lessen the energy storage density of PCMs due to the presence of inactive mass [35]. At

present, nanoconfinement technologies have attracted a lot of interest and present a new opportunity for

considerable refinement in the thermophysical properties of PCMs while sustaining their energy storage

capacity [36, 37]. There are several advantages associated with nanoconfinement like small domain size,

large surface area, diverse surface functionalities, controlled volume expansion, reduced reactivity with

the external environment and high heat transfer rate.
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Confinement is the procedure of enclosing liquid or solid PCMs within supporting materials to fabri-

cate a type of composite PCM. The main function of confinement is to stop the contact of the liquid phase

of PCMs with the surrounding environment [38]. The surface chemistry occupied at the interfaces of two

phases such as solid–liquid or liquid–gas, has a considerable effect on the thermodynamic properties of

composite PCMs. So, confinement technology can be applied to control the phase change parameters by

a new mechanistic way by heterogeneous nucleation, large contact area and associated surface energy in

a confined environment. Therefore, confinement is useful to reduce the drawbacks of PCMs as well as to

enhance the thermophysical properties. For example, the confinement of salt hydrates inside packaging

materials not only restrains the loss of water of crystallization during the phase transition to resolve the

phase dissociation and supercooling phenomena but also enhances the heat transfer duration. Depend-

ing on the size, confinement technology can be classify into macro–confinement, micro–confinement and

nano–confinement. Different kind of physical properties like adhesion forces, Van der Waals interactions,

capillary actions and surface chemistries are more effective at the nanoscale while confinement. For that

reason, nano–confinement technology has proven to more valuable than macro and micro–confinement

[39, 40]. Additionally, nano–confinement provide better heat transfer, and accommodates dimensional

changes related with the phase transition of PCMs. According to material designs and dimensions,

confinement strategies can be classified into as:

1. Core–shell confinement (0D)

2. Longitudinal confinement (1D)

• Tubular confinement

• Fibrous confinement

3. Interfacial or Layer confinement(2D)

4. Porous confinement (3D)

In core–shell confinement, a small particle of liquid or solid PCMs is coated with shell material exhibits

the zero–dimensionality. longitudinal confinement is also similar to core–shell confinement but it has the

one–dimensional (1D). According to shell materials, longitudinal confinement is further achieved either

by infiltrating the melted PCM into the inner cavity of nanotubes (tubular confinement) such as CNTs

or by restraining the PCMs within the internal diameter of nanofibers (fibrous confinement) employing

coaxial electrospinning technique. Interfacial or layer confinement technology cover the confinement of

PCMs at the interface of nanomaterials by the interaction between PCM molecules and the surface of

nanomaterials such as graphene oxide. In nanoporous confinement, the PCMs are impregnated into the

nanopores of the supporting materials through a vacuum develop infiltration method, shown in Figure

1. In term of size, the term core–shell nano-confinement is used if the size of the capsules vary between

1 − 1000nm and for longitudinal confinement, the diameter of nanotubes or nanofibers should vary from

1 − 1000nm.

Here in current study, the core–shell confinement of PCMs is further reviewed in detail. PCMs

are encapsulated in a capsule of a core–shell composite construction called encapsulated phase change

materials (EPCMs) [42, 43, 44]. The EPCMs are tiny capsules or containers, consisting of two parts: (i)
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Figure 1: Confinement strategies and potential applications of PCMs. Reused from Ref. [41] with permission from The

Royal Society of Chemistry.

core of PCMs and (ii) shell of polymer or inorganic materials which may have core–shell, multi–shell and

polynuclear structure depending on the synthesis technique, as shown in 2. These capsules are both in

regular (e.g. spherical, tubular, and oval) and irregular shapes. Additionally, the structural arrangement

of the capsule depends on the core material and deposition process of the shell [45]. The material of coating

shell has a very significant importance in terms to provide structural integrity and stability. Particularly,

to gain the heat transfer rate, the encapsulated PCMs need mechanically strong and thermally conductive

shell materials. The proportion of core and shell materials therefore is a key parameter to enhance the

TES capability and structural stability applied both in non-flow and flowing system. Weight percentage of

both core and shell materials are relatively depends on each other which defines the TES performance. A

high weight percentage of shell material reduces the heat storage capacity of core PCM but alternatively

increases the structural stability and vice versa [46, 47, 48]. Therefore, the mass of coating material

needs to be optimized to obtain the desired thermophysical properties. Various coating materials such as

organic polymers, silica, metal oxides and hydroxides have been utilized. Furthermore, the selection of

the shell material is based on encapsulation technique and type of PCM. Generally, polymers are used as a

traditional coating materials for encapsulation of PCMs. The positive features of using polymers as shell

materials are that they are cheap, lightweight, mechanically stable, easily processable and compatible
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with PCMs [49]. In addition, as the polymers have the flexible nature which compensate the expanded

volume of PCM while phase transition resulting ease the melting and keep the shape in stable of prepared

NCs. Such promising physical properties of polymers prefer them to use as shell material for PCM

encapsulation. Heretofore, polystyrene (PS), polyurea (PU), poly(urethene), polyacrylates, poly-amide

(PA), polymethyl methacrylate (PMMA), polyethly methacrylate (PEMA) and formaldehyde resins have

been utilized as shell materials to encapsulate OPCMS. So far many encapsulation technologies have been

introduced as (i) micro and nano encapsulation, (ii) shape–stabilized composite, and (iii) intercalation.

The encapsulation of the PCMs are classified into three major categories based on the particle size under

core-shell confinement strategy:

• Macro–encapsulated PCM (Macro–PCM) (1mm)

• Micro–encapsulated PCM (Micro–PCM) (1 − 1000µm)

• Nano–encapsulated PCM (Nano–PCM) (1 − 1000nm)

Figure 2: (A)-Synthetic illustration of phase change EPCMs (B) and various structures. Reused from Ref. [41] with

permission from The Royal Society of Chemistry.

The OPCMs with temperature range of −10 to 80◦C are mostly under development with various

encapsulation techniques into micro and nano capsules [50]. The encapsulation techniques depend on
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the physical and chemical properties of shell and core materials as well the method of encapsulation

[50, 51, 52]. From the 50 years developments in nanotechnology, the macro and micro encapsulation

technologies of PCMs have gained a lot of improvement increasing the thermal performance and stability

of encapsulated PCMs. As the stability of the EPCMs capsules relies on the size of particles, micro-

PCMs can increase the viscosity of the fluid [53, 54, 55] also they can fractured in the fluid flow resulting

the fluid flow obstacle. To overcome this issue, nano-PCMs of small particle size, large surface area,

low leakage, uniform fluid flow and suspension stability have taken the attention as new TES materials

for energy storage applications [56]. Additionally, the nano-PCMs have volume and surface effect, easily

dispersed in fluid and steadily flow in slurry make them favourable in thermal energy storage and thermal

management applications [57, 58].

Up to now, a few studies have summarised the progress on preparation of micro–PCMs [59, 60] and

nano–PCMs [40]. However, this review critically summarises the research in the area of novel energy stor-

age materials for the applications of TES systems. Initially, ideal characteristics of EPCMs are elaborated

which are potentially necessary to enhance the thermal storage and heat transfer performance. Further,

the detailed discussion on preparation technologies to encapsulate PCM into macro–, micro–, and nano–

sized of capsule are discussed using physical–mechanical, physical–chemical, chemical–mechanical and

chemical encapsulation methods. Thermophysical properties of these novel EPCMs are summarized rep-

resenting their enhancement in thermal conductivity, latent heat of fusion and encapsulation efficiency.

Additionally, the detail discussion on characterisation techniques are explained to evaluate the chemical,

thermal, physical, morphological, thermal reliability and thermal cyclic properties of EPCMs. The sta-

bility which is a real challenge of the PCMs capsules is discussed with respect to chemical and thermal

properties point of view to explore the functionality and thermodynamic nature as an energy storage

materials. The potential applications such as solar–to–thermal, electrical–to–thermal, thermal manage-

ment, building, textile, foam, and medical industry of micro and nano PCMs are reviewed critically.

Finally, this review paper highlights the emerging future research directions of EPCMs for the scientist

and researchers to explore the unhidden characteristics in area of TES.

2. Ideal characteristics of EPCM

An ideal characteristics of EPCM significant influence the thermal systems while performing as a TES

material especially at varying operating conditions. Thus, for an ideal EPCM it is necessary to meet the

specific criteria and environment conditions for a longer duration. Figure 3 presents the ideal characteris-

tics of EPCM which are necessary for utilization of thermal applications. Since, these ideal characteristics

of EPCMs depend on their fundamental chemical, physical, thermal and economics properties which are

as follows [61]:

• Sufficient phase–transition temperature: The suitable phase change temperature of EPCM is very

essential and must match the operating conditions of specific application at melting and solidifica-

tion temperature points.

• High latent heat of fusion: The latent heat of fusion, also called enthalpy of fusion, of the EPCM
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is the most desirable thermal property to absorb large amount of heat with less amount of volume

especially to reduce the size of the TES system which makes it light weight. EPCMs based on the

organic PCMs as core materials and polymeric materials as a shell, have the tendency to absorb

higher latent heat.

• High thermal conductivity: The higher thermal conductivity provides the additional capability

to store thermal energy while sensible heating phase resulting lower the charging and discharging

phases. The inorganic materials coated EPCM have the more potential to increase the thermal

conductivity resulting in transmit the heat at higher rate. However, the increase in thermal con-

ductivity of EPCMs causes the less absorption of latent heat fusion.

• Durability: The EPCM must has to withstand from damage, friction, wear and tear. The strength

of coated shell of EPCM has to sustain its mechanical properties while flowing through system.

• High density and small volume change at phase transition: The high density of the EPCM helps

to reduce size of encapsulated container at smaller level. The small volume change while phase

transformation help to minimize the complexity of the EPCM storage container.

• Congruent melting: The congruent melting of the EPCMs helps to prevent the irreversible segre-

gation resulting reduces the loss of storage capacity while recycling.

• Favourable phase equilibrium: The favourable or suitable phase equilibrium temperature ensure

the heat storage and extraction at constant temperature in TES system.

• Long–term chemical stability: The continuous charging and discharging of EPCMs, water loss, de-

composition or chemical interaction with storage container can undergo the degradation in EPCMs.

So, it is highly preferred that EPCMs should maintained its long–term chemical stability and cor-

rosion resistance interacting with other materials.

• Non–hazardous: For safety measures, the EPCMs should be non-toxic, non-flammable and non-

explosive.

• High nucleation rate: An ideal EPCM should have high nucleation rate and good crystallization

rate.

• Low super–cooling or sub–cooling: The low sub-cooling, also called super-cooling, ensures the melt-

ing and cooling at the same temperature which is due to metastable condition of the EPCM while

solidification which means that during cooling the EPCM is not in thermodynamics equilibrium

state. The super–cooling particularity occurs in salt-hydrates which prevents the extraction of

thermal energy.

• Low vapour pressure and adequate crystallization rate: The low pressure and rapid crystallization

of EPCM help to reduce the design complexity of EPCM storage system.

7



• Low cost and availability: The cost and availability of EPCM have the major significance on the

overall cost of the thermal system. As the development of EPCMs require high precision and clean

environment so it may increase the cost of ECMs.

Figure 3: Ideal characteristics of EPCM.

3. The preparation technologies for EPCMs

The encapsulation techniques of PCMs are usually categories into four different methods; (i) physical–

mechanical, (ii) physical–chemical, (iii) chemical–mechanical and (iv) chemical, which are based on syn-

thesis of the EPCMs. Table 1 highlights a brief summary of above mentioned methods, their sub–relevant

techniques and resulting formed size of capsules for the relevant type of PCMs.

3.1. Physical–mechanical methods

Generally, the physical–mechanical methods do not involve any chemical reaction resulting in formed

the micro–capsules of not so much smaller size. The Table 2 summaries the properties of each technique

of physical–mechanical method. The advantages and disadvantages of physical–mechanical methods are

summarized in Table 3. The physical–mechanical methods include the following techniques forming

micro–capsules.
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Table 1: Summary of encapsulation methods, techniques, formed capsules, and type of PCMs.

Methods Techniques Formed capsules PCMs

Pan coating micro organic

Air-suspension coating micro organic

Centrifugal extrusion micro organic

Physical-mechanical Vibration nozzle micro organic

Spray drying micro organic

Solvent evaporation/extraction micro organic

Vacuum impregnation micro organic

Ionic gelation micro organic

Physical-chemical Coacervation micro organic

Sol-gel method micro/nano organic/inorganic

Chemical-mechanical
Micro-fluidic Method micro organic

Melt-coaxail electrospray method micro organic

Interfacial polymerization micro/nano organic/inorganic

Suspension polymerization micro organic

Chemical Emulsion polymerization micro/nano organic/inorganic

Miniemulsion polymerization nano organic/inorganic

In-situ polymerization nano organic/inorganic

Table 2: Advantages and disadvantages of physical–mechanical methods.

Techniques Advantages Disadvantages

Pan caoting Low cost production High skilled manpower required

Difficulty in control

Air-suspension coating Low cost High skilled level required

large production volume Agglomeration of particles

Centrifugal extrusion Suitable for encapsulation High temperature range

Vibrational nozzle Large volume of production High temperature range

Easily scaled-up

Spray drying Easily scaled- up High temperature range

Easy availability of equipment Agglomeration of particles

Controllable to produce Uncoated particle

Solvent evaporation Economical Limited for lab production

Easily scaled-up

Vacuum impregnation Feasible to remove moisture Limited for large-scale production

Low cost
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• Pan coating

• Air–suspension coating

• Centrifugal extrusion

• Vibration nozzle

• Spray drying

• Solvent evaporation/extraction

• Vacuum impregnation

3.1.1. Pan coating

The pan coating process is the oldest and widely used in pharmaceutical industries to form small

coated particles and pellets. The solid particles are mixed with a dry coating material then heated to

a set temperature, thus melts the coating material, encloses the core of the capsule (e.g PCMs); and

solidified by cooling medium. The alternative method is to gradually apply or spray the coating material

onto the core material or particles into the tumbler machine/vessel resulting reduces the processing time

as well energy and material consumption [62]. In this technique, the melting temperature of core material

must be higher than the shell material melting temperature otherwise PCM encapsulation will not be

eventuated effectively.

3.1.2. Air–suspension coating

Adopting air-suspension technique for micro–encapsulation gives more control and flexibility in com-

parison to pan coating by charging operation times of core material into the coating zone while processing

[63]. Solid particle are suspended in an upward air stream after coating and drying in the solutions with

both water and volatile organic solvents. During a cyclic process in coating zone, the shell material

usually polymer or inorganic material, is repeatedly sprayed on the core particles up to the required level

of thickness for encapsulation. This encapsulation technique was employed for pharmaceutical [64], food

[65], and cosmetic industries [66] and it is not suitable for PCM encapsulation. Figure 4 shows the typi-

cal operating principle of air-suspension particle operation with two growth mechanism of inter-particle

agglomeration and surface layer.

3.1.3. Centrifugal extrusion

Southwest Research Institute (SwRI) [63] developed a mechanical process to produce the micro-

capsules on the principle of centrifugal force in which the core material, which is in liquid phase, flows

through inside a tube. The coating or shell material which should be immiscible with core material, flow

through the annular around the tube. The key parameters which influence the process are, rotational

speed of cylinder, flow rate of core and shell materials, concentration, viscosity and surface tension of the

core material. With the rotation or vibration of the tube the core and coating materials extrude from

the orifice making spherical capsules due to surface tension forces. After then, the coated capsules are
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Figure 4: Two particle growth mechanisms (inter-particle agglomeration and surface layering) in an air-suspension particle

operation [65], reused with permission from Elsevier license number 4385850236206.

solidified by heat or chemical reactions in a bath [45, 67]. There is no study found of PCM encapsulation

using this method.

3.1.4. Vibration nozzle

There are several studies available but without vibration, in which micro-granulation or matrix-

encapsulation is normally carried out through a vibrating nozzle under laminar flow regime. The uniform

capsules are formed due to vibration [68], however this method has been carried out for PCM encapsu-

lation. Some studies were reported the uniform stable PCM composites prepared by this method but

without vibration [69, 70, 71, 72, 73, 74, 75].

3.1.5. Spray drying

The spray drying encapsulation technique is an economical and easily scaled-up and controllable to

produce homogeneous micro size capsules with efficient design of the atomizer [76, 77, 78]. The spray

draying process is the most commonly used technique in food and pharmaceutical industries [79, 80, 81,

82] due to suitibility of encapsulation of heat–sensitive materials. This technique involves three major

following steps [83]. Figure 5 presents the flow process of typical spray drying encapsulation technique

[67].

• Preparation of the dispersion/emulsion of wall material.

• Homogenization of the dispersion/emulsion.

• Atomization of the in-feed dispersions.

• Dehydration/evaporation of the atomized particles.

The produced micro-capsules are usually poly-nuclear or matrix type and with increasing the produc-

tion rate or flow rate, agglomerated and uncoated particles are obtained [45].
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Figure 5: Flow diagram of spray drying encapsulation technique[67], reused with permission from John Wiley and Sons

license number 4385841192579.

3.1.6. Solvent evaporation/extraction

Solvent evaporation or extraction is extensively used in pharmaceutical industries and it is liquid-

liquid emulsification system. This technique is carried out in liquid manufacturing vehicle (LMV) and

emulsification of polymer in a volatile solvent in water followed by a solvent removal. The basic steps of

micro-encapsulation by solvent evaporation is shown in Figure 6 [84]. There are different methods of micro-

encapsulation of drugs by solvent evaporation which depends on the hydrophilicity or the hydrophobicity

of the core material. The detail procedure of solvent evaporation technique can be found in [84] .

Figure 6: Basic step of micro-encapsulation by solvent evaporation[84], reused with permission from Elsevier license number

4385850567033.

3.1.7. Vacuum impregnation

Vacuum impregnation technique is frequently used to remove air from the encapsulation materials and

widely used in food industry. The process of macro-encapsulation carried out by Memon et al.[85] using

paraffin as a core materials anf light weight aggregate (LWA) as a shell material for TES. The Figure 7

illustrates the preparing process of PCM (paraffin) and LWA using vacuum impregnation technique.
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Figure 7: Flow process of a macro-encapsulated TES LWA (a)schematic image of PCM-LWA preparation process; (b)

LWA; (c) paraffin-LWA; (d) paraffin-LWA coated with a mixture of epoxy graphite powder; and (e) paraffin-LWA graphite

powder sample coated with silica fume[85], reused with permission from Elsevier license number 4385850945845.
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Table 3: Summary of prepared Micro–PCMs using physical–mechanical meth-

ods.

Ref. Method Core Shell Particle size (µm) EE (%) Tm Latent heat

(J/g)

[78] Spray drying RT-27 LDPE, EVA 3.9 49.32 28.40 98.1

[86] Spray drying Paraffin wax Gelatin and Gum arabic ∼ 0.2 – ∼ 60 145

[87] Spray drying N-octadecane T iO2 0.1–5 – 28.7 92–97

[88] Spray drying Green coffee oil Lecithin and chitosan 1.35–3.70 86 – –

[89] Spray drying Flaxseed oil Gum arabic ∼ 20 62.3–95.7 – –

[90] Spray drying Lactobacillus plan-

tarum

WPI with SA, WPI with FOS 53.99–105.07 87.92–94.86 – –

[91] Spray drying Poppy-seed oil Gelatin and Gum arabic ∼ 5 76.8 185 –

[85] Vacuum impreg-

nation

Paraffin wax LWA ∼ 2 × 105(macro) 70 27 102.5
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Table 4: Advantages and disadvantages of physical-chemical methods.

Techniques Advantages Disadvantages

Ionic gelation Low cost production High wall permeability

Low temperature range Difficulty in control

Coacervation Controllable to produce Limited to scaled-up

Homogeoous particle size Agglomeration of particles

Aldehyde as hardener

Sol-gel method Suitable for encapsulation of inorganic shell Still need improvement

High thermal conductivity capsules

3.2. Physical-chemical methods

Generally, in physical-chemical methods include physical reactions such as, the phase separation,

condensation, boiling and complexation etc. These include the following three main methods. The ad-

vantages and disadvantages of physical-chemical methods are summarized in Table 4. Table 5 enumerates

the thermophysical properties of prepared capsules under different types of physical-chemical methods.

• Ionic gelation

• Coacervation

• Sol–gel method

3.2.1. Ionic gelation

This method is generally used in pharmaceutical industries especially in drug supply systems and has

not been carried out for the encapsulation of PCMs. In this method, the gel forming solution is dropped

into droplet form in a gelation bath resulting hydrogel beads are formed. the gelation process may be

occurred due the ionic bonding between the polymer chain such as the alginate solution is dropped in

calcium bath which leads to the calcium alginate micro-capsules [92] or by cooling such as an agarose

solution.

3.2.2. Coacervation

The coacervation word is derived form the Latin word “acerus” meaning “heap” [93]. Generally, the

coacervation method is classified under two methods; (i) simple coacervation and (ii) complex coacerva-

tion. In simple coacervation method, the low-molecular substance is interacted dissolved polymer. The

complex coacervation method, the interaction happens between two polymers who have the opposite

charges. The complex coacervation method involves the mixture of two polymers and complexation pro-

cesses such as cross linking, desolvation and thermal treatment which requires the extra cost and more

unyielding operation as compare to simple coacervation. However, complex coacervation method pro-

duces more smaller size micro-capsules of spherical shape with greater stability. Figure 8 represents the

typical flow diagram of complex coacervation. The complex coacervation consists of three stages; (i) the

preparation of the oil-water emulsion by adding the core material (usually oil) dispersed in water forming
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a phase separation coacervation with aqueous polymer solution; (ii) the deposition of the shell material

onto the core particles by adding second aqueous polymer solution of oppositely electric charge followed

by adjusting the pH number, temperature or by dilution of the medium; (iii) finally, the mixture is cool

down forming micro-encapsulation with stabilization by cross-linking and harvesting of the Micro-PCMs

or thermal treatment [45, 94].

From complex coacervation, Konuklu et al. [95] produced micro-PCM using caprylic acid (octanic acid)

using various wall materials (urea-formaldehyde resin, melamine formaldehyde resin and urea+melamine−formaldehyde

resin) suitable for TES applications. The schematic of flow process and SEM image of produced particle

size of mirco-capsules are shown in Figure 9 and Figure 10.

Figure 8: Flow diagram of a typical complex coacervation method for encapsulation[94], reused with permission from John

Wiley and Sons license number 4385841192579.

Figure 9: Schematic formation of microCA with coacervation method [95], reused with permission from Elsevier license

number 4385860133315.
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Figure 10: SEM image of particle size of micro-capsules[95], reused with permission from Elsevier license number

4385860133315.

3.2.3. Sol–gel method

The “sol–gel” is the abbreviation of “solution–gelling” and used largely to synthesis the inorganic

materials. The sol-gel process is a familiar physico-chemical technique to develop NCs with an inorganic

shell. It has capture attention in recent years as its inexpensive and need mild processing conditions.

The sol-gel process followed as the poly-condensation reactions of a molecular precursor in a liquid phase

to form a colloidal solution (sol) which is subsequently converted to an oxide network (gel), Figure 11

shows the typical process of sol–gel method. In the sol–gel method, the processes are as follows; (i)

the precursor (usually alkoxides and inorganics) is mixed uniformally with the solvent, catalyst and

complex agent etc; (ii) then a stable and transparent colloidal solution is formed after hydrolysis and

condensation chemical reactions; At this step, the condition of dispersion changes from solution to gel;

that is why this method is known as the sol-gel method. (iii) the formed sol is further processed by aging

to make three dimensional network structure; (iv) finally, micro and nano-PCM is formed after drying,

sintering and curing processes [96, 97, 98]. Additionally the solgel method is mixed with the miniemulsion

polymerization method to gain better thermophysical properties. For instance, Zhu et al. [99] prepared

the nano-PCM using n-octadecane as PCM with organosilica shell via interfacial co-hydrolysis and co-

polycondensation of functional SiO2 precursors adopting mimiemulsion technique. The authors obtained

the NCs of organosilica from 200−693nm of precise core-shell structure. Using mesoporous particles, the

interfacial contact of EPCM with solid support enhances the nucleation sites in comparison of core-shell

particles resulting reduced the super-cooling. Thus, due to mesoporous confinement and heterogeneous

nucleation sites, a thick shell is more promising to lessen supercooling than a thin shell.

Considering, the inflexibility of shell materials, some authors follow a track for enhancing the energy

storage performance of hybrid systems. Zhang et al.[101] confined stearic acid with a SiO2 nanoshell with

controlled shell density and improved the energy storage capacity of encapsulated PCM 36.9% likewise

that of unconfined stearic acid, as shown in Figure 12. This improvement in latent heat is contributed
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Figure 11: Process scheme of sol-gel method [100], reused with permission from Elsevier license number 4385860352467.

to the formation of a various stable hydrogen bonds network in high-superimposed stress on the encap-

sulated SA core from the SiO2 shell, which considerably decreases the intermolecular spacing of the SA

core in contrast to its unconfined state. This improvement in latent heat is contributed to the formation

of a various stable hydrogen bonds network in high-superimposed stress on the encapsulated SA core

from the SiO2 shell, which considerably decreases the intermolecular spacing of the SA core in contrast

to its unconfined state. Hence, collapsing and reshaping of these tightly packed stable hydrogen bonds

contribute to the latent heat of SA while experience phase transition. Further, this strong hydrogen

bonding causes the rise of phase transition temperature of confined SA. Despite of the merits of the rigid

shell, there are also some demerits. Rao et al. [102] investigated the melting mechanism of NEPCM of

confined n-octadecane with free and constrained SiO2 shell using molecular dynamic simulation method.

The results sowed that the encapsulated n-octadecane was restrained with constrained SiO2 futher the

soft shell can increase the fluidity and eventually improve the heat transfer speed of the TES systems.

As comparison organic based PCMs, IPCMs have also been confined within the SiO2 shell. Zhang et

al. [103] synthesized Na2SO410H2O encapsulated SiO2 nanobowls via synchronous hydrolysis reactions

of SiO2 precursors. The authors proposed as well as validated that the microstress inside the liquid

particles or nano droplets was the responsible of the formation of solid nanostructures. Furthermore,

the SiO2 wall, acting as a heterogeneous nucleator, reduces the degree of supercooling to minor extent,

however, it is immense and unsuitable for actual life applications. Moreover organic and inorganic PCMs,

metallic PCMs including indium, tin and alloys have also been confined by a SiO2 shell [104, 105]. Higher

crystallinity and thermal conductivity reported in metallic PCMs. The silica shell can further reduce the

corrosion and stop the leakage. Wu et al. [106] suspended bare indium and SiO2 encapsulated indium

18



nanoparticles in a base liquid, poly-α-olefin (PAO), for high-temperature heat transfer applications using

colloid method. In contrary of prediction, they established the fact that the coalescence of indium parti-

cles within a single-phase fluid is not a big issue. Thus, indium nanoparticles can be employed without

encapsulation. Metal based compound materials are also investigated by scientist to use as shell other

than SiO2. In comparison to SiO2, the metal based materials have greater value of thermal conductivity,

mechanical strength also provide a compact and rigid structure. The formation of a metal compound shell

involves the condensation of a metal hydroxide precursor during in situ solgel and emulsion polymeriza-

tion, similar to SiO2 shell formation. Till now, very few metal-based compounds have been utilised for

encapsulation of PCMs [107, 108, 109]. Latibari et al. [110] utilized TiO2 to prepare NCs of SA and using

TiO2 as a shell and found that the NCs present higher thermal conductivity and encapsulation efficiency

up to 64.76% for NC of sizes 583.4nm and 946.4nm. Pan et al. [111] used the boehmite (γ − ALOOH)

shell to encapsulate the SA and it had been discovered that the phase transition temperature of SA was

lowered by 50◦C due to the confinement effect, as shown in Figure 13. The heat storage density of the

prepared NCs was about ∼ 140kJ/kg, which is lower than that of the pristine PCM but still higher than

that of the mostly room temperature PCMs. Therefore, boehmite coating technology can be utilized

to alter the phase transition temperature of high-temperature PCMs having high-energy storage perfor-

mance to room temperature. Sol-gel method is usually suitable for encapsulation of both micro and nano

enhanced PCMs. The summary of different studies adopting sol-gel method is enumerated in Table 5.
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Figure 12: (A) Schematic formation of the silica encapsulated strearic acid (SA@SiO2) NCs; (B) and (C) SEM and TEM

images, respectively; (D) illustration fo the formation and breaking of multiple stable hydrogen bonds under superimposed

stress[101], Reproduced with permission of the American Chemical Society.
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Figure 13: (A) Schematic formation of SA@γ−ALOOH NCs; (B) SEM image and size distribution of SA@γ−ALOOH

with 21.6% of SA; (C) and (D) TEM images of SA@γ − ALOOH with 21.6% and 28.5% of SA, respectively; (E) DSA

thermogram of pure SA, γ − ALOOH and SA@γ − ALOOH NCs with the same (left) and different (right) heating rate,

respectively. Reproduced from Ref. [111] with permission from The Royal Society of Chemistry.
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Table 5: Summary of prepared Micro/Nano-PCMs using physical-chemical

methods.

Ref. Method Core Shell Particle size (µm) EE (%) Tm Latent heat

(J/g)

[112] Simple Coacervation n-Hexadecane Soy glycinin ∼ 101.7 65 – –

[113] Simple Coacervation Holy basil essen-

tial oil (HBEO)

Gelatin 392.30 44.65–100.09 – –

[95] Complex Coacervation Octanic acid UF, MF, UMF 0.2–1.5 59.29 13.90 93.9

[114] Complex Coacervation Paraffin wax Gelatin and Gum arabic 50–100 9.43–94.26 – 20–90

[115] Complex Coacervation Paraffin wax Gelatin and Gum arabic 50–100 79.43–94.26 – 20–90

[116] Complex Coacervation Paraffin wax Gelatin and Gum arabic ∼ 0.5 – ∼ 60 213

[117] Complex Coacervation Xylitol Gelatin and Gum arabic 78.45–109.31 31–71 – –

[118] Complex Coacervation Sunflower oil Fish gelatin and arabic gum 40–240 – – –

[119] Complex Coacervation n-tetradecane Gelatin 90–125 – 5.30 192

[120] Complex Coacervation Coco-fatty acid Gelatin and Gum arabic 1mm – 29–31 –

[121] Complex Coacervation n-Hexadecane,

n-Octadecane,

n-Nonadecane

Gelatin–Gum arabic mixture – – 11–38 19.70–165.80

[122] Complex Coacervation RT-27 Sterilized Galatine/Arabic Gum,

Agar-Agar/Arabic Gum

9, 12 48, 49 298.3–301.3,

299.5–302.5

79, 78

[123] Complex Coacervation TMiglyol 812N Chitosan and Gum arabic 5–10 – – –

[124] Complex Coacervation n-Eicosane MF 1.89 53 36.9 134.3

[125] Sol–gel method n-Eicosane Fe3O4/SiO2 ∼4–6 71.78 39.15 170.20

[126] Sol–gel method Tris SiO2 ∼100–200 67.90 110–155 146

[127] Sol–gel method Paraffin wax T iO2 ∼50 85.5 58.8 161.1

[128] Sol–gel method Palmitic acid (PA) T iO2 200–400(nm) 30.4 61.7 63.3

[129] Sol–gel method Stearic acid (SA) SiO2 20–30 90.7 52.6–53.5 162.0–171.0

[130] Sol–gel method Paraffin wax SiO2 40–60 82.2 57.96 156.86
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[100] Sol–gel method n-Octadecane SiO2 2–4 41.45 27.96 87.46

[131] Sol–gel method n-Pentadecane SiO2 4–8 29.8–35.9 ∼5–10 46.4–55.8

[132] Sol–gel method Paraffin wax SiO2 8–15 69.1–87.5 57.84–58.37 130.82–165.68

[133] Sol–gel method n-Octadecane SiO2 7–16 86.4 27.1 184.9

[55] Sol–gel method Palmitic acid (PA) SiO2 183.7nm, 466.4nm,

722.5nm

82.53, 84.28,

88.32

61.06, 60.92,

61.6

168.16, 172.16,

180.91

[110] Sol-gel method Stearic acid (SA) T iO2 317.6–946.4nm 30.36–64.76 58.23–59.14 58.12–123.96

[134] Sol-gel method n-Eicosane T iO2 1.5–2 49.90–77.97 42.73–43.88 97.60–152.50

[135] Sol–gel method Indium SiO2 200nm – 155.3 19.6

[136] Sol–gel method RT 28 SiO2, EG 5–20, 1–5 – 27.53, 27.72 112.84, 104.41

[137] Sol–gel method n-Octadecane PMMA/SiO2 10 – – 178.9
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3.3. Chemical–mechanical methods

In chemical–mechanical methods, mechanical machine is used to accomplished the chemical reaction

to encapsulate the PCMs. It generally includes the following two methods. The detail summary of these

two techniques are provided in Table 6.

• Micro–fluidic technique

• Melt–coaxail electrospray technique

3.3.1. Micro–fluidic technique

In micro–fluidic technique, widely used in the medical and pharmaceutical fields [138], the capillary

micro–fluidic device is utilized to form the mono–disperse double emulsion droplets following the flow mo-

tion geometry. Figure 14 illustrate the complete process of formation of mono–disperse double emulsion

droplets developed by Sun et al [139]. The authors [139] used the water-oil-water (W-O-W) double emul-

sion template and produced the outer phase of materials (water, glycerol and polyvinyl alcohol (PVP))

and middle phase of materials (oils included Suppocire AIM oil, paraffin, nonadecane and eicosane) in a

co-flowing channels with different flow rates. The micro–PCM is obtained following washing and drying

processes. Fu et al. [140] prepared the silicone/n-hexadecyl bromide micro–capsules by micro–fluidic

technique selecting n-hexadecyl bromide as a inner fluid and poly(dimethylsiloxane) vinyl terminated

and poly(methylhydrosiloxane) as outer fluids. The optical and SEM images of produced micro–PCMs

are shown in Figure 15.

Figure 14: (A)-schematic of capillary micro-fluidic device generating two-bore double emulsions; (C)-schematic illustrating

the encapsulation and release of activities using the double emulsion-templated capsules[139], Reprinted (adapted) with

permission from ([139]). Copyright (2010) American Chemical Society.

3.3.2. Melt–coaxail electrospray technique

This encapsulation technique is the further modification of spray drying technique introducing a

chemical reaction during process. It was first introduced by Loscertales et al. [141] who proposed a
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Figure 15: (a)-Optical microscope; (b)-cross-sectional SEM image of mico-PCMs[140], reused with permission from Elsevier

license number 4385861063323.

method to generate steady coaxial jets of immiscible liquids having micrometer/nanometer diameter in

size. The schematic diagram of melt coaxail electrospray technique used by Moghaddam et al. [142] is

shown in Figure 16. The authors first time produced the micro–capsules using n-nonadecane and sodium

alginate as core and shell materials, respectively.
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Figure 16: (a)-Schematic of the melt coaxial electrospray setup; (b)-coaxial needle setup [142], reused with permission from

Elsevier license number 4385861260669.
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Table 6: Summary of prepared Micro/Nano-PCMs using chemical-mechanical

methods.

Ref. Method Core Shell Particle size (µm) EE (%) Tm Latent heat

(J/g)

[140] Micro–fluidic technique n-hexadecyl bromide PDMS, PMHS 460 49 16.70 76.35

[143] Micro–fluidic technique Ascorbic acid Solid lipid 170.2–342.5 73.4–96.6 – –

[144] Micro–fluidic technique Silicone PDMS 100–200 ∼100 – –

[145] Micro–fluidic technique Ceramic Silsesquioxane – – – –

[142] Melt–coaxail electrospray

technique

n-Nonadecane Sodium alginate <100 56 31.12 81.67
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Table 7: Advantages and disadvantages of chemical methods.

Techniques Advantages Disadvantages

Interfacial polymerization Controllable to produce High wall permeability

Homogeneous in size Difficulty in control

Good mechanical resistance

Good thermal and chemical stability

Suspension polymerization Controllable to produce Fewer monomers are water soluble

Efficient control of heat during reaction High cost equipment

Low cost production

Emulsion polymerization Low cost production Limited for liquid PCMs

Rapid production Polymer is purified from the surfactant

Uniform morphological capsules Used only in oiled system

Multi-phases of solution

Miniemulsion polymerization Nano-scale production High cost equipment

Good thermal and chemical stability High skill is needed for preparation

Uniform morphological capsules Multi-phases of solution

In situ polymerization Most effective for nano-scale production High cost equipment

Uniform coating High skill is needed for preparation

Uniform morphological capsules

Good thermal and chemical stability

3.4. Chemical methods

The chemical methods ensures the production of smaller sizes such as nano-capsules using organic

and inorganic materials as shell material or precursor to build the shell. Following are the most used

techniques under chemical methods to produce PCMs encapsulations. Table 8 represents the different

approches and properties of micro/nano–encapsulated PCMs prepared by various chemical methods. The

advantages and disadvantages of chemical methods are summarized in Table 7.

• Interfacial polymerization

• Suspension polymerization

• Emulsion polymerization

• Miniemulsion polymerization

• In–situ polymerization

3.4.1. Interfacial polymerization/polycondensation

In interfacial polymerization, the first process is the preparation of oil-water (O/W) or water-oil

(W/O) emulsions by adopting appropriate emulsifier. The next step is the formation of polymer capsules

in the surface of the core materials (i.e. OPCMs) by interfacial polymerization at an interface between

two phases with each of them containing a suitable reaction monomers. The final step is the separation

of the capsule from oil phase or water phase. Figure 17 [146], shows the synthesized micro-capsules via

polycondensation. Park et al. [147] prepared the nano-PCMs using paraffin as a core and polyurea as

28



a shell material via interfacial polycondensation. The SEM and TEM images of prepared Nano–PCM

is shown in Figure 18 [147]. Pan et al. [148] adopted the in-situ emulsion interfacial polycondensation

method and prepared a novel micro-encapsulated PCM using palmitic acid (PA) and AlOOH as core and

shell materials, respectively.

Figure 17: Schematic formation of the micro-encapsulated n-octadecane with the polyurea shells containing different soft

segments via interfacial polycondensation [146], reused with permission from Elsevier license number 4385861412119.

3.4.2. Suspension–like polymerization

The suspension–like polymerization accomplishes on the system phases, (i) the discontinuous or dis-

persed phase, which contains the reagents of core material and monomers including initiator which

prompt the chemical reaction; (ii) the continuous phase, which includes the reactants of shell materials

and solvent [149]. The process of suspension-like polymerization consists of the following steps: (i) the

dissolution of polymer monomers into core materials under stirring to obtain homogeneous oil solution;

(ii) this homogeneous solution is then added to the continuous phase at constant temperature to produce

the oil-water (O/W) emulsion; (iii) further an emulsifier is added to the O/W solution to make it more
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Figure 18: The SEM and TEM images of nano-PCMs (a)-with and (b)-without Fe3O4 nano-particles [147], reused with

permission from Elsevier license number 4385870250913.

homogenized; (iv) then the prepared stable emulsion is stirred at constant high temperature for a period

to give the proper polymerization reaction; (v) finally, the prepared encapsulated PCMs capsules are

filtered, washed and dried. The schematic flow process of suspension–like polymerization is shown in

Figure 19 [150].

Figure 19: Scheme of the suspension-like polymerization process[150], reused with permission from Elsevier license number

4385870668358.

3.4.3. Emulsion polymerization

The emulsion polymerization method takes the mixing of the polymer in the presence of emulsifier

in an oiled system. During the process, a number of thermal, chemical and physical processes occur to

make the micro–PCM or nano-PCM. Unlike the suspension–like polymerization, in emulsion process the

initiator is solved in the aqueous phase and the monomer is emulsified in the polymerization medium

with the aid of a surfactant. Commonly, there are three steps on which the emulsion polymerization
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completes its process. Firstly (i) the insoluble monomer with emulsifier is dispersed in solvent reaction

medium adding the surfactant and the mechanical stirring. Further (ii), the initiator is added which

initiates the polymerization reactions resulting generates the polymer membrane on the surface of the

core material. Finally (iii), the washing and removing of the oil to form the micro/nano-PCMs. Figure

20 shows the schematic of common emulsion polymerization method [150]. In emulsion polymerization

method, commonly used materials for shell are polystyrene (PS) or polymethylmethacrylate (PMMA)

and alkhane is used as a core material. Additionally, polymer polymerization is often carried by emulsion

polymerization which used the liquid PCM as a core material to prepare the mico/nano-PCM. The

properties of various studies adopting emulsion polymerization are listed in Table 8.

Figure 20: Scheme of the emulsion polymerization method [150], reused with permission from Elsevier license number

4385870668358.

3.4.4. Miniemulsion polymerization

The miniemulsion polymerization method is most commonly used method to prepare the nano–PCM

because the smaller encapsulated capsules can be formed as compared to the emulsion polymerization

method. Comparing to emulsion polymerization, miniemulsion polymerization occurs within the small

droplet which requires the less input energy. Thus, this technique is employed under ambient reaction

conditions which are necessary for the production of stable NCs. In this method, the ultrasonication pro-

cess is carried out to produce laboratory scale formation and high pressure homogenizer is used for large

scale processes to obtain the homogenization. The scheme of miniemulsion polymerization is presented

in Figure 21 [151]. The first step is miniemulsion process under the sheering effect small nanometer tiny

droplets are formed in a size range of 30 − 500nm which are stable and contain the emulsifier, water,

monomer, surfactant, initiator, the dispersed and continuous phase. The second step comprising on poly-

merization reaction in which these droplets are polymerized without changing their chemical composition,

latex properties [152]. In miniemulsion polymerization, the monomers determines the morphological char-

acteristics of prepared nano–capsules [153, 154]. The miniemulsion polymerization technique is further

categorized into three classes; direct emulsion (oil in water, O/W), indirect emulsion (water in oil, W/O)

and Pickering inverse emulsion. Classical emulsifiers e.g. amphiphilic oligo (methacrylic acid 41-b-methyl
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methacrylate 8), sodium lauryl sulfate, Tween 80, Span 20 and Span 85 are usually utilized in direct and

indirect emulsions. Contrarily, in Pickering inverse emulsion, solid particles are employed as an emulsifier

[46, 47, 155].

Cortazar and Rodrguez [48] employed the miniemulsion polymerization technique to encapsulate

paraffin wax with methyl methacrylate and investigated the kinetic, phase change properties and thermal

stability. The maximum amount of encapsulated paraffin wax achieved was 60wt.% with latent heat

capacity of 140.3J/g and obtained the capsule size of 439.4. Furthermore, the authors reported that NCs

having a higher weight percentage of paraffin wax undergo the phase separation phenomenon. Chen et

al. [156] adopted the miniemulsion polymerization technique to encapsulate the n-dodecanol as a core

and PMMA as a shell material using DNS-86 as a polymerizable emulsifier and hexadecane (HD) as a

co-emulsifier. The NCs fabricated by this method are 100− 200nm in diameter and present a latent heat

and encapsulation efficiency up to 98.8J/g and 82.2%, respectively. The authors also explored the effect

of mount of emulsifier and co-emulsifier on latent heat, diameter, size distribution and encapsulation

efficiency. Zhang et al. [157] encapsulated n-octadecane PCM with PEMA and PMMA with an average

shell thickness of 50nm, and a core/shell weight ratio of 80/20 and obtained an average particle size

of NCs 140nm and 119nm, respectively. The authors found the encapsulation ratio and efficiency of

89.5% and 89.5%, respectively. Further they reduced the degree of supercooling significantly and found

that the PEMA shell has relatively better thermal performance. Wang et al. [158] designed a two-step

Pickering emulsification technique to prepare the NCs of nonadecane as a PCM with a polystyrene as a

shell material by using surface-modified amphiphilic zirconium phosphate platelets (ZrP) as an emulsifier

for scale-up and mass production level. Further, this method is preferable to encapsulate the organic

or alkane PCMs as a core materials and polystyrene (PS), polyurea (PU), styrene-buytl acrlate and

polymethylmethacrylate (PMMA) as shell materials. In conclusion, miniemulsion is the most adopted

polymerization technique in nano–capsules coating technology.

Figure 21: Scheme of the miniemulsion polymerization method [151], reused with permission from Springer Nature license

number 4385871462764.
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3.4.5. In–situ polymerization

The In–situ polymerization method involves chemical reaction in a continuous phase of two immisci-

ble liquids (water soluble phase and oil soluble phase) rather two phase as in interfacial polymerization.

In preparation of micro/nano–capsules through in–situ polymeirztion, the monomers are dissolved in the

continuous phase, however, the polymers are not soluble in continuous phase whereby the polymerization

reaction occurs on the surface of the core materials. Commonly, there are four steps which complete

the in-situ polymerization: (i) formation of the oil–water (O/W) emulsion; (ii) preparation of the pre-

polymer mixture liquid; (iii) mixing the O/W emulsion and prepolymer liquid to encapsulate the core

materials; (iv) washing and drying of micro/nano–capsules. Figure 22 presents the example of in–situ

polymerization method. Fang and his co-authors [159] employed the ultrasonic-assistant miniemulsion

in-situ polymerization technique for coating of n-octadecane as a core with polystryrene as a shell ma-

terial. The authors obtained the spherical shape nano–capsules of size ranging from 100 − 123nm in

diameter. In another study [53], these authors coated the n-tetradecane with PS for cold energy storage

of average diameter of 132nm and achieved the melting and freezing points and latent heats values of

4.04◦C and −3.43◦C, 98.71J/g and 91.27J/g, respectively. With same core material n-tetradecane, Fang

et al. [160] used the urea and formaldehyde as shell materials adopting in-situ polymerization technique

with adding 1 − 3% NaCl to improve the thermal stability of the prepared nano–capsules. To inves-

tigate the effect of various shell materials on thermophysical properties Konuklu et al. [95] used the

urea-formaldehyde (UF), melamine-formaldehyde (MF) and urea+melamine-formaldehyde (UMF) resins

to prepare the nano–capsules of caprylic acid. The authors found the UF resin as a best resin for shell

material among others in term of stability of nano–capsules. So far now, generally, the OPCMs as core

materials and urea-formaldehyde (UF), melamine-formaldehyde (MF), carboxymethyl cellose (CMC),

polymethylmethacrylate (PMMA), poly(melamine-formaldehyde) (PMF), and poly (allyl methacrylate)

(PAMA) are used as a shell materials.

Figure 22: Schematic formation of the micro-PCMs based on n-octadecane core and poly(melamine-formaldehyde)/silicon

carbide (PMF/SiC) shell through in-situ polymerization[161], reused with permission from Elsevier license number

4482000691089.
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Table 8: Summary of prepared micro/nano–PCMs using chemical methods.

Ref. Method Core Shell Particle size (µm) EE (%) Tm Latent heat

(J/g)

[146] Interfacial polycondensation n-Octadecane PU 11–20 87.4 27.04 188.9

[162] Interfacial polymerization Insecticide PU 30–40 90 – –

[163] Interfacial polymerization Xylitol PUR 11.2–21.6 – – 196.3

[147] Interfacial polycondensation Insecticide PU 400–600nm – 56.54 101.1

[164] Interfacial polycondensation Butyl stearate TDI, EDA 20–35 – 29 80

[165] Interfacial polycondensation n-Hexadecane TDI, EDA – – – –

[166] Interfacial polymerization n-Octadecane TDI, DETA 1 – 30.8 112

[167] Interfacial polymerization n-Octadecane TDI, DETA 7.3 92 – –

[168] Interfacial polymerization n-Octadecane TDI, DETA 5–10 94.7 – 117.5

[169] Interfacial polycondensation n-Pentadecane, n-

Eicosane, Paraffin wax

UF 47, 79, 150 – – 109, 148, 127

[170] Interfacial polycondensation n-Octadecane SiO2 4–30 – – –

[148] In-situ emulsion interfacial poly-

condensation

Palmitic acid AlOOH 100nm 69 16 27.8

[171] In-situ emulsion interfacial hy-

drolysis and polycondensation

Paraffin wax SiO2 200–500nm 31.7 56.5 45.5

[172] In-situ emulsion interfacial hy-

drolysis and polycondensation

n-Octadecane SiO2 169–563nm 49.3 27.35 109.5

[173] Interfacial polymerization Butachlor PU 1–20 – – –

[174] Interfacial polycondensation Cyclohexane PU 1.6 – – –

[175] Interfacial polymerization Migrin oil PU 7.6–12.4 – – –

[176] Interfacial polymerization Ovalbumin PU 50nm–8µm – – –

[177] Interfacial polycondensation Octadecane PU 1–2 – 31.9 54.8

[178] Interfacial polymerization n-Octadecane PU 5–10 93.4–94.9 29.8–31.0 115.0–117.5
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[179] Interfacial polymerization n-Hexadecane PU 2–4 50.1 15.52 66.09

[180] Interfacial polymerization n-Eicosane PU – 74.6–77.6 35.7–36.5 29.34–63.55

[181] Interfacial polymerization Paraffin wax Poly-amide 6.4 99 29–44 121.7

[182] Suspension–like polymerization Na2HPO4.7H2O PMMA ∼ 6.8 – 51 150

[183] Suspension–like polymerization n-Octadecane BMA 1–46 – 20.9–21.6 116.4–144.3

[184] Suspension–like polymerization n-Octadecane ODMA–MAA 0.5–4 – 21.1 93

[185] Suspension–like polymerization Paraffin wax PS, MMA 380 – 40.66–41.81 83.70–96.47

[186] Suspension–like polymerization Paraffin wax, Tetrade-

cane, PEG 800, PEG

1000, RT27, RT20, Non-

adecane

PS 38.01, 11.24, 0.07,

0.07, 27.85, 64.87,

10.64

– – 41.65, 48.92, 0,

0, 58.83, 12.01,

119.80

[187] Suspension–like polymerization Paraffin wax PS ∼200 75.6 98–113 21.2–41.7

[188] Suspension-like polymerization RT27 PS 500 – – –

[189] Suspension–like polymerization n-Octadecane PS–DVB 80 – 29 126

[190] Suspension–like polymerization n-Octadecane PS–DVB 71–207 – 29 125

[191] Suspension–like polymerization n-Octadecane PS, PSB, PSD, PSDB,

PDVB

∼50 – 24.34–30.84 22.0–156.9

[192] Microsuspension polymerization n-Octadecane PDVB ∼1.5 – 22.6 192

[193] Suspension–like polymerization n-Octadecane BDDA, DVB, TMPTA,

PETRA

0.72–0.75 – 29.3–35.2 83.7–156.4

[194] Suspension–like polymerization n-Octadecane TPGDA 300–600nm 100 – 104

[195] Suspension–like polymerization Paraffin wax, Butyl

stearate

Acrylate-based polymer 10–80 46–68 29.08–32.12 63.98–93.97

[196] Suspension–like polymerization Paraffin wax PS 4.80 – – 102.42

[197] Suspension–like polymerization RT31 PS 4.0–53.2 49.0–67.9 31.56 75.7–135.3

[198] Suspension–like polymerization Paraffin wax PS 3.83, 3.97 43.6, 35.1 – 58.6, 79.0

[4] Suspension–like polymerization n-Octadecane PBMA, PBA 2–75 47.7–55.6 29.1–31.6 96–112

[199] Emulsion polymerization Paraffin wax PMMA 0.25 – 24–33 101

[200] Emulsion polymerization Paraffin wax, Palmitic

acid

PScEA 0.166, 0.265 – 36.71, 59.12 49.03, 97.93
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[201] Emulsion polymerization n-Octacosane PMMA 0.25 – 50.6 86.4

[202] Emulsion polymerization n-Heptadecane PMMA 0.14–0.40 – 18.2 81.5

[203] Emulsion polymerization Docosane PMMA 0.16 – 41.0 54.6

[204] Emulsion polymerization n-Eicosane PMMA 0.70 – 35.2 84.2

[205] Emulsion polymerization n-Hexadecane PMMA 0.22, 1.05 – 15.69, 17.34 68.89, 145.61

[206] Emulsion polymerization n-Hexadecane PMMA 140–466nm – 17.23 148.05

[207] Emulsion polymerization n-Octadecane PS 80nm 14.6–56.8 – 6.48–49.76

[208] Emulsion polymerization n-Heptadecane PS 1–20 63.3 21.48 136.89

[155] Emulsion polymerization n-Nonadecane PMMA 0.1–35 60.3 31.23 139.20

[209] Emulsion polymerization n-Heptadecane, n-

Octadecane, n-

Nonadecane, n-

Eicosane, n-Tetracosane

PMMA 0.01–100 50.2–65.4 19.24–35.80 171.14–265.60

[210] Emulsion polymerization n-Tetracosane/n-

Octadecane

PS 0.01–115 64.4 25.96 156.39

[211] Emulsion polymerization Capric/Stearic acid PMMA 1.3 – 21.37 116.25

[212] Miniemulsion polymerization Paraffin wax PS <100nm – – –

[156] Miniemulsion polymerization n-Dodecanol PMMA 150nm 82.2 18.2 98.8

[213] Miniemulsion polymerization n-Dodecanol SBA 100nm 98.4 27 109.2

[214] Miniemulsion polymerization n-Hexadecane UF 270nm – 16.15–16.36 114.6–143.7

[215] Miniemulsion polymerization RT80 SBA 52–112nm 78–80 77.7–84.1 4.9–23.9

[216] Miniemulsion polymerization n-Tetradecane PS 132nm 89 4.04 98.71

[159] Miniemulsion in-situ polymer-

ization

n-Octadecane PS 100–123nm – 30–35 124.4

[217] Miniemulsion in-situ polymer-

ization

n-Octadecane PS 108–126nm – – 88.35–124.4

[218] Miniemulsion polymerization n-Dotriacontane PS 168.2nm 61.23 70.9 174.8

[219] Miniemulsion in-situ polymer-

ization

n-Octadecane PS–MMA 102nm – 29.5 107.9

[220] Miniemulsion polymerization Paraffin wax PS 100nm 47.7–55.6 29.1–31.6 96–112
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[157] Direct miniemulsion polymeriza-

tion

n-Octadecane PEMA, PMMA 140nm, 119nm 89.5 32.2, 31.9 198.5, 208.7

[221] In-situ polymerization Paraffin wax CMC–MF 50nm 63.1 24.4 83.46

[222] In-situ polymerization n-Octadecane P(MMA–co–AMA) 577–693nm 64.0–71.6 24.7–27.4 129–151

[160] In-situ polymerization n-Tetradecane UF 100nm 60 5.57–9.01 66.01–134.16

[223] In-situ polymerization n-Tetradecane PVA, PS, PMMA,

PEMA

23.15, 16.89, 18.59 – 2.06, 5.97,

5.68

∼0, 66.26,

80.62

[224] In-situ polymerization Paraffin wax UF 20 – 53.3–54.4 −98.5 to

−200.4

[225] In-situ polymerization n-Octadecane MF 0.9–9.2 – 30.4–30.5 169–172

[226] In-situ polymerization n-Octadecane MF 2.2 59 40.6 144

[227] In-situ polymerization Migrin oil MF <10 – – –

[228] In-situ polymerization n-Hexadecane, n-

Eicosane

MF ∼10 70 – 163–170

[229] In-situ polymerization n-Octadecane MF 20nm 92 26.91 146.25

[230] In-situ polymerization n-Octadecane UMF 0.2–5.6 65–78 32.77–34.88 91.10–241.68

[231] In-situ polymerization n-Octadecane MF 0.2–1.8 – 24.4–36.2 44–166

[232] In-situ polymerization n-Octadecane MF 1–2 – – 102–166

[233] In-situ polymerization Dodecanol PEG modified MF 0.83 ± 0.23–14.4 ±

5.56

– 25.8 118.9

[234] In-situ polymerization Decanoic acid PMUF 0.28 – 33 88

[235] In-situ polymerization Paraffin wax MF 15 ± 3 – 129.4 157

[236] In-situ polymerization Paraffin wax SiO2, GO ∼10 49.6 49.7 87.1

[237] In-situ polymerization n-Octadecane MF ∼1 20 – 160

[238] In-situ polymerization n-Octadecane, n-

Nonadecane, n-Eicosane

MF 0.3–6.4 70 36.5, 219.3,

45.3

167, 161, 172

[239] In-situ polymerization n-Eicosane MF 0.1–10 53 36.9 134.4

[240] In-situ polymerization n-Eicosane MF 1.89 – 36.9 134.3

[241] In-situ polymerization P1–S, RT25, RT40 Amino–aldehyde 5.91, 2.78 – – –
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[12] In-situ polymerization n-Octadecane, n-

Eicosane, n-Hexadecane

MF 1-500 – 17.7 44.6

[242] In-situ polymerization n-Docosane MF 10 – – 150

[243] In-situ polymerization n-Docosane MF 5–20 68–135.4 55.69–56.72 17.74–57.81

[244] In-situ polymerization PETMP PMF 1–10 – – –

[245] In-situ polymerization n-Dodecanol MF 30.6 93.1 21.5 187.5

[246] In-situ polymerization n-Octadecane, n-

Hexadecane

MF 5–20 – – 150–210

[226] In-situ polymerization n-Octadecane, n-

Hexadecane

MF 2.2 59 40.6 144

[247] In-situ polymerization n-Docosane MF 3.6 – – –

[248] In-situ polymerization Paraffin wax Aniline (C6H7N) 300–500nm 49.7 53.4 65.1
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4. Characteristics evaluation techniques of EPCMs

A characterisation of EPCMs depends on the desired thermal, physical and chemical properties. The

manufacturing of micro and nano level encapsulated capsules are only valuable and successful when they

fulfil the industrial and end-users requirements to meet the clean energy demands. The characteristics

of EPCMs are performed using various quantitative and qualitative techniques per the evaluation of the

property. Table 9 presents the list of various characterization techniques conducted by researchers.

4.1. Chemical Analysis

4.1.1. X–Ray diffraction (XRD)

The X–ray diffraction (XRD) or X–ray power diffraction (XPRD) technique is adopted to measure

the crystalloid phase, material structure, crystallite atomic arrangement and size, crystal orientation or

texture and parameters such as crystallinity, stain and distinguishes the amorphous and crystalline ma-

terial. The physics of the diffraction of the X–ray is similar to the diffraction of the electrons or neutrons

except the only difference of the scattering mechanism. This technique ensures the crystalline structure

of micro/nano capsules preferably suitable for inorganic shell materials. For instance, Zhang et al. [286]

presented the XRD results of Ag/SiO2 double-layered micro-PCM with n-eicosane as a core material to

investigate the crystalline structure at different reaction time. The good crystallinity was retrained of

silica layer on microcapsules surface and only an amorphous silica shell was fabricated onto the n-eicosane

core. Zhao et al. [250] presented the XRD patterns of Ag-paraffin@Halloysite microspheres and obtained

the consistent crystalline structure of Ag nanoparticles onto surface of paraffin@Halloysite. Addition-

ally, the crystalline structure of paraffin was not affected in Ag-paraffin@Halloysite while encapsulation

process.

4.1.2. Fourier transformed infrared spectroscopy (FT–IR)

The Fourier transformed infrared spectroscopy (FT–IR) technique evaluates the chemical composition

or the functional groups of organic and inorganic compounds and micro/nano–capsules of EPCMs. The

FT–IR is an effective analytical technique to identify the “chemical family” of the encapsulated core and

shell materials. Further, FT–IR also confirms identifying the specific impurities in a pure compound in

collection of the unique absorption bands. The FT–IR is preferred method of infrared spectroscopy passing

the IR radiation through the sample. Some IR radiation is absorbed by the sample and some transmit

through the sample. At the detector a spectrum arises due the singles which represents a molecular

”fingerprint” of the sample. In IR spectroscopy the different spectral fingerprints arise due to the chemical

structure (atoms and molecules) of different materials. In FT–IR method the infrared spectra is obtained

firstly collecting an interferogram of a sample using an interferometer. Further, Fourier Transform (FT)

is applied on the interferogram resulting spectrum is obtained. The FT–IR spectrometer collects and

digitizes the interferogram performing the FT function and then displays the spectrum. For example,

various researchers presented the FT–IR peaks to represent the chemical composition of micro/nano-

PCMs. Presented FT–IT results by Zhang et al. [270] showed the excellent chemical composition of

encapsulated KNO3@SiO2 microcapsules. Kahraman et al. [299] synthesized microcapsules using PS
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Table 9: Characterization techniques used by the various researchers for characteristics evaluation of EPCMs.

Characterization Technique References

X–Ray diffraction (XRD) [176, 237, 238, 54, 72, 87, 224, 132, 135, 75, 247, 103, 249, 130, 111, 55, 250, 251,

157, 171, 128, 127, 42, 221, 37, 125, 219, 172, 107, 252, 218, 134, 110, 126, 91, 236,

99, 253, 161, 254, 255, 256, 257, 258, 149]

Fourier transformed infrared spec-

troscopy (FT–IR)

[175, 176, 166, 97, 180, 259, 225, 230, 169, 231, 238, 120, 178, 131, 207, 226, 168,

260, 87, 224, 243, 244, 203, 164, 261, 44, 74, 70, 245, 146, 229, 206, 132, 135, 199,

185, 69, 133, 205, 204, 190, 163, 262, 170, 103, 213, 156, 136, 148, 193, 249, 157,

130, 129, 194, 53, 215, 263, 171, 264, 111, 4, 55, 248, 181, 123, 155, 128, 127, 42,

218, 265, 100, 221, 125, 234, 95, 235, 266, 195, 147, 155, 209, 208, 184, 219, 267,

43, 268, 134, 200, 269, 172, 85, 142, 210, 211, 110, 126, 91, 236, 99, 253, 233, 161,

36, 254, 255, 270, 251, 256, 271, 272, 273, 149]

Scanning electron microscopy (SEM) [175, 176, 251, 79, 223, 97, 116, 237, 112, 73, 225, 230, 232, 240, 169, 238, 231,

178, 131, 274, 207, 226, 242, 186, 12, 167, 275, 276, 260, 72, 87, 224, 243, 244, 203,

137, 160, 261, 44, 70, 277, 189, 245, 146, 229, 206, 122, 132, 135, 199, 185, 202, 75,

139, 69, 133, 205, 204, 78, 247, 191, 197, 190, 262, 170, 103, 156, 136, 148, 193, 14,

249, 157, 89, 192, 130, 129, 278, 48, 215, 263, 182, 171, 264, 111, 4, 248, 55, 181,

101, 123, 279, 128, 127, 88, 155, 42, 143, 265, 96, 125, 252, 100, 221, 37, 234, 95,

195, 235, 266, 147, 183, 155, 209, 208, 81, 184, 267, 268, 134, 200, 269, 172, 85,

107, 280, 90, 210, 211, 110, 158, 126, 91, 236, 99, 253, 233, 281, 161, 36, 254, 282,

255, 283, 256, 284, 257, 258, 271, 272, 273, 149]

Transmission electron microscopy (TEM) [285, 212, 207, 276, 72, 87, 261, 70, 135, 75, 103, 213, 136, 157, 194, 53, 215, 171,

55, 101, 279, 125, 147, 219, 134, 172, 107, 251, 111, 218, 110, 158, 99, 253, 161,

254, 283, 148]

Energy-dispersive X-ray spectroscopy

(EDS)

[275, 103, 55, 125, 268, 107, 280, 110, 126, 286, 161, 251, 283, 287, 288, 289, 271,

149]

X-ray photoelectron spectroscopy (XPS) [163, 249, 263, 128, 125, 134, 280, 286, 161, 283, 256, 257]

Optical microscopy (OM) [144, 42, 140, 100, 125, 268, 142, 158, 290, 255, 291]

Thermal conductivity analysers [134, 292, 293, 269, 281, 268, 268, 282, 257, 149]

Differential scanning calorimeter (DSC) [176, 294, 114, 223, 295, 285, 237, 180, 73, 225, 230, 169, 238, 119, 178, 131, 274,

207, 226, 242, 186, 12, 168, 260, 72, 87, 224, 243, 203, 160, 164, 164, 44, 74, 70,

189, 146, 229, 206, 122, 132, 199, 185, 202, 75, 69, 133, 205, 204, 78, 247, 191, 163,

197, 190, 262, 170, 103, 213, 156, 136, 148, 193, 14, 249, 157, 192, 130, 129, 194,

53, 278, 263, 171, 111, 4, 248, 55, 181, 296, 101, 155, 128, 127, 42, 218, 140, 100,

37, 125, 234, 95, 235, 266, 195, 183, 155, 209, 208, 184, 219, 219, 267, 43, 268, 134,

200, 269, 172, 85, 142, 107, 210, 211, 110, 158, 126, 91, 270, 236, 99, 233, 253, 281,

161, 36, 254, 282, 255, 252, 257, 244, 245, 283, 256, 258, 271, 272, 273]

Thermogravimetrical analysis (TGA) [176, 180, 230, 232, 178, 226, 275, 276, 72, 224, 243, 244, 203, 137, 160, 44, 189,

245, 146, 122, 132, 199, 185, 202, 75, 69, 133, 204, 191, 163, 190, 262, 170, 156,

148, 193, 14, 249, 157, 192, 130, 129, 194, 53, 215, 263, 171, 4, 248, 55, 181, 296,

155, 128, 127, 42, 218, 140, 265, 100, 221, 37, 125, 266, 195, 252, 234, 235, 147,

183, 155, 209, 208, 219, 268, 134, 200, 269, 172, 107, 210, 211, 110, 126, 91, 236,

99, 253, 233, 281, 161, 36, 254, 255, 283, 256, 257, 297, 271, 272, 149]

Atomic force microscopy (AFM) [298, 263, 265, 200, 85, 233, 254, 255]

Brunauer, Emmett and Teller (BET) [263]

Raman Spectroscopy [244, 236]

Small Angle X-Ray Scattering (SAXS)

and Wide angle X–ray Scattering

(WAXS)

[146, 229, 133, 170, 100, 268]

40



as a shell material and various n-alkanes eutectics (C17-C18. C20-C17, C20-C19, and C20-C24) and

obtained the excellent functional group and chemical composition of EPCMs.

4.1.3. Energy-dispersive X-ray spectroscopy (EDS)

The energy-dispersive X-ray spectroscopy (EDS or EDX) is an analytical technique which is used

to investigate the surface elemental analysis or chemical characterization or elemental composition of a

sample. The EDS technique detects the X-rays emitted from the sample during the bombardment of a

high-energy beam of charged particles such as electrons or a beam of X-rays focused into the sample.

Normally, EDS technique is carried out in conjunction with scanning electron microscopy (SEM). Zhang

et al. [286] performed the EDS analysis to investigate the surface elemental distribution of Ag/SiO2

double-layered microcapsules with n-eicosane as a core material along with atomic percentage. Ma et al.

[251] determined the chemical elements and purity of paraffin@TiO2 microcapsules and confirmed the

formation of TiO2 shell onto the surface of paraffin wax. Geng et al. [283] presented the EDS results

with SEM of silver coated microcapsules found the equal proportion of silver which was in accordance

with feed ratio.

4.1.4. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) which is also known as electron spectroscopy for chemical

analysis (ESCA), is a surface analysis technique to study the surface chemistry or characterization of a

sample material. XPS can measure the elemental composition, empirical formula, chemical and electronic

states from the surface or within the sample. Additionally, XPS can investigate the uniformity of elemen-

tal composition of the surface as well as with other materials that contaminate a surface. The surface

elemental composition analysis carried out by Zhang et al. [286] through XPS technique and observed

the elemental characteristic peaks of Ag/SiO2 double-layered microcapsules. Geng et al. [283] presented

the XPS peak spectrum of silver coated microcapsules and observed the existence of face-centred cubic

metallic silver. Advincula et al. [256] confirmed the functional groups and binding energy of RGO-SA

microcapsules with XPS technique.

4.2. Thermal Analysis

4.2.1. Thermal conductivity analysers

Thermal conductivity is the major and fundamental property for the evaluation of EPCMs for efficient

TES in various thermal systems. So far various instruments have been utilized for the measurement of

thermal conductivity of micro/nano capsules such as laser flash apparatus (LINSEIS LFA1000) [134],

TC 3020 thermal conductivity meter [292], TC3000 thermal conductivity meter [293], Sweden Hot Disk

thermal conductivity meter [269, 281], EKO HC-110 thermal conductivity meter [268]. The encapsulated

capsules are pressed in a tablet form to measure the thermal conductivity of micro/nano-capsules. The

thermal conductivity of single a capsule can be predicted theoretically based on composite sphere approach

as follows [300, 301, 262, 302]:

1

kpdp
=

1

kcdc
+
dp − dc
ksdpdc

(1)
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Here, kp, kc, and ks are the thermal conductivities of micro/nano-capsule, core material, and shell

material, respectively. Additionally, dp and dc are the diameter of micro/nano-capsule and core mate-

rial, respectively. As the most the PCMs especially OPCMs exhibit the low thermal conductivity which

reduces heat transfer performance. The sole purpose to encapsulate the PCM is to enhance their thermo-

physical properties to utilize them for effective and efficient heat transfer applications. The enhancement

in thermal conductivity of EPCMs solely depends on the shell material. Using organic polymeric shell

materials exhibit the lower thermal conductivity which reduces the rate of heat transfer while ther-

mal energy storage and release. However, coating of inorganic nanomaterials such as Fe3O2[147, 125],

TiO2[127, 128, 134], SiO2[171, 172, 125, 149], GNP [292], Al2O3[269], CaCO3[268], Cu2O[161], and

MWCNT [254]. Although the higher thermal conductivity has been achieved however the decrease in

latent heat of phase change enthalpy observed. Therefore, there should be compromised on the optimum

values of thermal conductivity and latent heat of phase change enthalpy.

4.2.2. Differential scanning calorimeter (DSC)

The Differential scanning calorimeter (DSC) is one of the most widely adopted technique to measure

the thermo–analytical properties such as melting onset and peak temperatures, cooling onset and peak

temperatures, heat capacity, latent heat of melting and cooling, and degree of supercooling (defined as the

difference of peak melting and cooling temperatures) [283]. During DSC analysis the amount of energy

absorbed or released upon heating or cooling is measured providing qualitative and quantitative data

while endothermic (heat absorption) and exothermic (heat rejection) phase transitions. In DSC analysis,

the change of heat flux is recorded with respect to time, however, the heating rate and sample mass is

the most important because the changing heat rate and sample mass will give temperature–heat flow

responses [299, 303].

4.2.3. Thermogravimetrical analysis (TGA)

The thermogravimetry or thermogravimetrical analysis (TA) technique measures the amount and rate

change of the material weight as a function of temperature or at isothermal condition as a function of time

in a controlled atmospheric conditions upon melting and solidification [252]. The change in the mass of

sample material of micro/nano capsules are examined under the various thermal modes such desorption,

absorption, sublimation, vaporization, oxidation, reduction and decomposition [304].

4.3. Physical Analysis

4.3.1. Performance parameters

In literature, a few mathematical relations have been used to address the physical and thermal per-

formance of EPCMs. These relations are mainly affected by the mass of core and shell materials, mass of

emulsifier and cross-link agent, herein the synthesis encapsulation technique. The theoretical and actual

loading or core content of PCM can be calculated as follows [161]:

Cth =
mcore

mcore +mshell
× 100% (2)
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Cact =
mcore −mshell

mcore
100% (3)

Major thermal performance of EPCMs are generally evaluated using encapsulation ratio (ER), en-

capsulation efficiency (EF), thermal energy storage capability (TESC), and thermal cycling performance

(TCP) as follows [250, 251, 305]:

ER =
∆Hm,EPCM

∆Hm,PCM
× 100% (4)

EF =
∆Hm,EPCM + ∆Hs,EPCM

∆Hm,PCM + ∆Hs,PCM
× 100% (5)

TESC =
∆Hm,PCM (∆Hm,EPCM + ∆Hs,EPCM )

∆Hm,EPCM (∆Hm,PCM + ∆Hs,PCM )
× 100% (6)

TCP =
∆H

′

m,EPCM

∆Hm,PCM
× 100% (7)

Here, ∆Hm,EPCM and ∆Hs,EPCM are the change in enthalpies of melting and solidifications, respec-

tively of EPCM, ∆Hm,PCM and ∆Hs,PCM are the change in enthalpies of melting and solidifications,

respectively of PCM. The change in enthalpy or latent heat of fusion is measured by the DSC. During the

practical utilization of EPCMs in various applications, the shell of the encapsulated micro/nano-capsules

possesses a crack or porous structure resulting in the leakage of the core PCM. So the core percentage

or leakage rate in micro/nano-capsules at various times is usually used to define the leakage-performance

[286, 255]. The leakage rate (Lr) between the initial mass (m0) of capsules and after heating periodically

at certain melting temperature, indicated as mt, is defined as follows:

Lr =
m0 −mt

m0
× 100% (8)

Herein, it can been noticed that increasing the thickness although deceases the percentage of leakage

rate of the capsules. However, as a result of this, ER will decrease simultaneously.

4.3.2. Optical microscopy (OM)

To evaluate the particle size, morphology, transparency color and fixation a few researchers have

been presented the images of EPCMs using optical microscopy (OM) technique [140, 100, 291]. Wang

et al. [291] presented the images of SiC/PMF coated n-octadecane microcapsules and revealed that

nano-SiC solid particles could be absorbed at oil-water interface. Additionally, showed the 10µm size of

microcapsules using OM technique.

4.3.3. Scanning electron microscopy (SEM)

The SEM technique, based on the scattered electrons, is used to determine the particle size and

shape using electron microscope of the micro/nano capsules. The SEM uses a higher–energy beam of

electron on the surface of the sample which generates the various signals showing the image of sample

surface. These variety of signals reveal the various characteristics information of the sample including
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topography (the surface features or texture)[273, 271], morphology (the shape and size)[284, 273, 272],

composition (elements and compounds)[291, 272] and crystallography (atoms arrangement)[149, 271].

Various researchers have been presented SEM images to represent chemical composition, morphology,

and crystallography of EPCMs mentioned in Table 9.

4.3.4. Transmission electron microscopy (TEM)

TEM, based on the transmitted electrons, is used to measure at high resolution than SEM such

as nano level closer to the atomic structure. So the morphology and PSD of micro/nano-capsules can

also be determined by TEM at more smaller level (e.g nano-meters) which is beyond the limit of SEM

[251]. In TEM the electron passes through the sample whereas in SEM the electron beam just scans over

the surface of the sample material. Geng et al. [283] presented the TEM images of Ag-MMF coated

micro-capsules of 1-tetradecacanol with diameter of 100nm.

4.3.5. Atomic force microscopy (AFM)

The atomic force microscopy (AFM) is a surface topography measuring technique which measures

the surface images near nanometer resolution as well as the local properties such height, friction and

magnetism with a scanning probe. Further, AFM can also evaluate the mechanical properties of the

micro/nano–capsules. Zheng et al. [297] evaluated the highest elastic modulus of CNTs coated n-

eicosane micro-capsules. Huang et al. [254] evaluated the surface profile of CNT coated n-octadecane

micro-capsules and obtained the average roughness and root-mean-square roughness with CNT were

17.12nm and 21.09nm, respectively, which were approximately three times of microcapsules without

A-CNTs/PSS multilayers.

4.3.6. Brunauer, Emmett and Teller (BET)

The BET techniques is used to measure the specific surface area of the solid including pore size

distribution by adsorption/desorption of nitrogen gas on the surface and then calculating the amount

of the adsorbate gas into the surface corresponding to a monomolecular layer of the surface. The BET

equation can be used to determine the surface area of the wide variety of gases or vapours [306]. The

most commonly used BET equation is described below, see Equation 9.

x

V (1 − x)
=

1

Vm.cBET
+
x.(cBET − 1)

Vm.cBET
(9)

Where, V and Vm are the volumes of absorbed molecules and monolayer volume, respectively, cBET

is the BET constant, and x is the relative pressure (x = P/Po).

4.3.7. Small Angle X-Ray Scattering (SAXS) and Wide angle X–ray Scattering (WAXS)

The Small Angle X-Ray Scattering (SAXS) is used to determine the crystalline structure of polymers

coated micro/nano–capsules at a range of 0.02 − 10◦ [307]. The Wide angle X–ray Scattering (WAXS)

or Wide–Angle X–ray Diffraction (WAXD) is used to measure the crystalline structure of inorganic and

organic polymeric encapsulated materials at wider angles at 2θ > 1◦. The Bragg peaks (diffraction peaks)

are analysed by function of scattering angles which arise by scattering from the subnanometer-size crystal

structures [308]. A few researchers have utilized SAXS and WAXS techniques for EPCMs [170, 100, 268].
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5. Stability of EPCMs

The stability of ECPMs is the real challenge for the current industrial revolution. Stability of EPCMs

mainly concerns with the thermal and chemical stability to ensure the long-term usage of micro/nano

encapsulated PCMs. Generally a number of repeated thermal cyclic tests are performed to validate the

thermal reliability by measuring the thermo-physical properties. The quality of the encapsulated PCMs

is evaluated by assuring that there is no geometrical variation, leakage of micro/nano capsules, sedimen-

tation, aggregation and crystallization of inter layer materials and so far. A thermodynamically and

chemically encapsulated PCMs ensures the long-term performance as TES materials for industrial and

research applications. Further, thermal and chemical stability of the EPCMs enhance the economic feasi-

bility maintaining their latent heat of fusion and melting for employing under repeated melting/freezing

cycles with time.

5.1. Chemical stability

The chemical stability of the encapsulated capsules is generally determined by adopting anti-osmosis

test in which sealing performance of encapsulated capsules of PCMs is determined. Anti-osmosis test

determines the weight loss of the extracted micro/nano capsules, and it can be used to evaluate the

durability of the encapsulated capsules[133, 146, 168]. Zhang et al. [133] conducted the anti-osmosis to

evaluate the leaf performance of SiO2 (shell material) and n-octadecane (core material) under different

conditions. The authors reported that micro–capsules of 50/50 weight ratio had the best anti-osmosis

performance as compared to others weight ratios. Further, the they evidenced that the release rates of

micro–capsules were depended on the thickness of the silica shell. The more the thickness of the shell,

lesser the release rate of the encapsulated capsules. Similar method to determine the leaking performance

or durability of micro–encapsulated n-octadecane by Zhang and Wang [146, 229]. The authors (In Ref.

[229]) used the styrene-maleic anhydride (SMA), sodium dodecyl sulfate (SDS) and polyvinyl alcohol

(PVA) as an emulsifiers and results showed that by using SMA and SDS, shown in Figure 23. The Figure

showed that the release rate of the micro-capsules increased with increasing with the weight percentage

of the core materials. Further, the authors reported that release rate of micro-capsules prepared by using

SDS is was much higher than that of micro-capsules using SMA at the same weight ratio. Su et al. [168]

also adopted the same method and SMA was used as a surfactant with percentage of 1.0, 2.0, 3.0 and

4.0% under the presences of ethyl alcohol as an extraction solvent. They found that the 4.0% of SMA

showed the lower release rate of polyurethane-shell, shown in Figure 24. Further they suggested that this

releasing phenomena might be attributed to the emulsion effect and shell polymerization.

5.2. Thermal stability

The thermal stability of the encapsulated micro/nano capsules of PCMs has the greater potential

and significance in TES systems. Several studies have been conducted to ensure the consistency in

latent heat of fusion and melting temperature of EPCMs. Thermal cycles or thermal cycling tests can

be conducted using TGA and DSC [294, 309]. Silakhori et al. [248] conducted the thermal cycles tests

using TGA and DSC methods up to 1000 cycles for paraffin wax/polyaniline nano–capsules and found
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Figure 23: Release curves of micro–EPCMs capsules with different weight ratios of core/shell materials[229], reused with

permission from Elsevier license number 4385880183182.

Figure 24: Release curves of micro–EPCMs samples prepared by 1.0, 2.0, 3.0 and 4.0% of SMA[168], reused with permission

from Elsevier license number 4385881263849.

the chemical and thermal structure of the capsules remained unchanged. Similarly, Hawlader et al.

[115] claimed that encapsulated capsules of paraffin wax maintained their original geometrical profile and

energy storage capacity even after 1000 thermal cycles. Fortuniak et al. [278] used DSC for 50 cycles

of fusion and crystallization and reported the proof of thermal stability of micro–capsules of n-eicosane

coated with polysiloxane. Sar et al. [201] performed the FT-IR, TGA and DSC analysis of PMMA/n-

octadecane micro–capsules for 5000 thermal cycles, shown in Figure 25. They reported that melting

temperature changed from 51.1◦C to 52.3◦C freezing temperature was changed from 53.7◦C to 55.2◦C

and the latent heats of melting and freezing were measured as 79.9J/g and 81.7J/g, respectively, after

5000 thermal cycling. The authors concluded that there was good thermal and chemical stability of
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PMMA/n-octadecane micro–capsules in terms of changing of its thermal properties. Alkan et al. [203]

carried out the FT-IR, DSC and TGA tests for thermal and chemical stability of PMMA/docosane after

1000, 3000 and 5000 thermal cycles. The authors found the melting point of PMMA/docosane changed

from 40.1 − 41.4◦C and crystallizing point changed from 41.6 − 41.7◦C, moreover, the latent heat of

melting and crystallization were found of 75.2J/g and 67.7J/g, respectively, after 1000, 3000 and 5000

thermal cycles. The authors evidenced that there was no significant changed in phase change thermal

properties as well as in chemical structure of the micro–capsules after thermal cycling tests, shown in

Figure 26. Sharma et al. [295] carried out the 1500 repeated melt/freeze cycles to study the thermal

stability of commercial grade acetamide, stearic acid and paraffin wax. The DSC curves of three PCMs

concluded that acetamide and paraffin wax showed the good thermal stability regarding phase change

temperature and latent heat of fusion, however, the stearic acid showed the melting over a wide range of

temperatures.

Figure 25: DSC thermogram for PMMA/n-octadecane micro–capsules after thermal cycling[201], reused with permission

from Elsevier license number 4385881396518.

6. Application of micro/nano–PCMs

The utilization of developed micro and nano EPCMs have been categorized by exhibiting their new

chemical and thermophysical properties. Moreover, the unique properties such as (i) suitable solid–to–

liquid phase transition, (ii) higher amount of energetic changes, (iii) chemical and thermal stabilization,

(iv) variations in conduction and convection heats during phase transformation define the employability

of EPCMs for a specific application. In this section, we reviewed the some potential applications which

have been greatly accelerated incorporating micro and nano EPCMs.

6.1. Solar–to–thermal energy storage

An unlimited, economic, and sustainable energy source has always been potential requirement in the

sight of researchers and industrialist. Nature has gifted us such a fundamental, unlimited and economic
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Figure 26: FT-IR spectra for PMMA/docosane micro–capsules before and after thermal cycling[203], reused with permission

from Elsevier license number 4385890037722.

energy source in the form of sun. From the creation of this universe, the sun has been providing us

a huge amount of energy in the form of solar energy on the earth. Here, the question is that how to

utilize this energy in an efficient and longer time period to meet the energy requirement for both in day

and night times. As, more heat and electricity are required at night because of the absence of sun. To

address this challenge, the novel smart energy storage materials are needed to be developed which can

efficiently store this renewable solar energy source along with reducing the global warming and climate

changes issues. Therefore, EPCMs have been gaining the promising attention in recent era to absorb solar

thermal energy in form of latent heat and release it later on to meet the energy demands. The utilization

of micro– and nano–PCMs have been under investigation for photo–thermal conversion, solar cells, direct

absorb solar collector, photo catalyst, storage tank or container, heat exchanger, minichannel and so on

to harvest and convert the solar energy directly and indirectly [303, 292]. Zeng et al. [310] synthesized the

core–shell nanoparticles using Sn/SiO2/Ag; where Sn was used the as core material to store the thermal

energy, SiO2 was used as a shell material to provide containment and Ag shell was used to enhance the

light absorption intensity.They found the good optical absorption and TES capabilities of Sn/SiO2/Ag

composite nanoparticles which improved the volumetric absorption efficiency of DASC from medium–to–

high temperature range. Zheng et al. [297] investigated the geometry dependent heating efficiency and

stability of hollow structure micro–PCMs (h–micro–PCMs) and solid PCM core particles (s–micro–PCMs)

to enhance the thermal diffusivity and reliability of micro-PCMs for solar–thermal energy conversion and

storage systems. The results revealed more stability and higher heat diffusivity within and above the phase

transition range in case of h–micro–PCMs than s–micro–PCMs. Pethurajan et al. [311] synthesized the

SiO2/D-Mannitol micro–PCMs using sol–gel technique for solar energy harvesting and storage systems.

Fundamental thermophysical properties were studied and found the enhancement in thermal conductivity

of 1.77W/m.K. Additionally, they found the excellent thermal stability that after 100 cycles latent

heat of melting was 250.75J/g, and encapsulation ratio and efficiency were reported of 88.925% and
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85.024%, respectively. Xu et al. synthesized the micro–PCMs consisting of paraffin@Cu − Cu2O by a

hydrothermal method for solar energy storage and photo–thermal conversion and found the encapsulation

efficiency of 62.79%. Further, micro–PCMs capsules are suspended in DI water studied the photo–thermal

conversion characteristics. They results summarized that paraffin@Cu − Cu2O slurry had the better

light absorbing properties, thermal conductivity, and photo–thermal conversion performance which can

be potentially used for DASC systems. Chen et al. [312] found the melting temperature and latent

heat of 59.28◦C and 91.94J/g, respectively, of SA/MWCNTs prepared by vacuum absorption method.

Further estimated the photo–thermal conversion efficiency by suspending the SA/MWCNTs into water

making a stable suspension. They predicted the excellent photo–thermal conversion performance with

temperature increased from 30◦C to 80◦C and found the 85% receiver efficiency which shows its potential

to store solar energy for practical applications. Zhao et al. [250] developed innovative hybrid micro–

PCMs consisting Ag–Paraffin@Halloysite to store the solar energy and studied the catalytic reactions

by self–assembly method. Figure 27 shows the catalytic activity of Ag–Paraffin@Halloysite used as a

catalysis and revealed the better conversion activity of 95.3% in 6mins compared with one without heat

storage with conversion of 71.1% in 6mins for catalytic reduction of 4-nitophenol. The efficiency (η) of

solar–to–thermal energy conversion and storage systems confined with EPCMs can be determined from

Equation 10:

η =
m∆H

AIt
(10)

Here, in Eq. 10 m is the mass of confined EPCMs, ∆H is the latent heat enthalpy while phase

transformation, A is the effective surface area of solar system, I is the intensity of solar irradiation, and

t is phase transition completion duration. Recently, Kahraman et al. [299] encapsulated the various

n–alkanes eutectics such as n-heptadecane, n-octadecane, n-nonadecane, n-eicosane, and n-tetracosane

and their mixtures with PS to harvest the solar energy. They found that micro–PCMs eutectics mixtures

had reversible and isothermal phase transition temperature between 21◦C and 35.9◦C and latent heat

of enthalpy between 61.2J/g and 146.1J/g which are highly suitable for a wide range of solar thermal

applications.

6.2. Electrical–to–thermal energy storage

The energy harvesting and conversion from electrical to thermal is a very emerging area to store the

heat for beneficial usage. The fundamental evaluation parameter is the enhanced or reduced temperature

at a certain input power which encourages the researchers to develop the practical devices or systems

of higher energy conversion efficiency. From the last three decades, the researchers have been putting

keen interests on the solar–to–thermal energy harvesting and conversion using PCM which stores the

heat through absorption only in the sunshine duration. Contrarily, there is a huge challenge for the

countries located at the North–Pole of the globe which experience the lack of sunlight mostly in winter

season. To overcome this challenge few studies are available who developed the electrical conductive

micro/nano–PCMs to convert and store the energy from electrical–to–thermal. The conductive EPCMs

converts the electrical energy into heat on applying the small input voltage and store that heat in form
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Figure 27: (a) Schematic catalysis mechanism of Ag-Paraffin@Halloysite under different treatment processes. Time evolu-

tion of UVvis absorbance spectra for successive reduction of 4-nitrophenol by NaBH4 with Ag-Paraffin@Halloysite catalyst

(b) without radiation and (c) after solar radiation treatment, (d) Degradation efficiency of Ag-Paraffin@Halloysite with

and without solar radiation treatment [250], reused with the permission from Elsevier license number 4444690967317.

of latent heat while melting of the PCMs within the micro– and nano–capsules. Zheng et al. [313]

presented a joule heating system to reduce the convective heat transfer from electrothermal system to

surrounding by inserting the highly conductive and stable micro–capsules of docosane and GO-CNT as

core and shell material, respectively. The results shown in Figure 28(a-e) illustrate that with loading of

5% of micro–PCMs, the working temperature can be improved by 30% even at lower voltage and ambient

temperature which ensures a potential usage in daily household heat storage applications.

Figure 28c further presents that heat storage and release time–temperature curves are similar to

solar–to–thermal energy conversion and storage. The conversion and storage efficiency from electrical–

to–thermal energy can be calculated by using Equation 11 [314]:

η =
m∆H

V It
(11)

Here, m and ∆H are the mass and phase transition enthalpy of EPCMs, respectively and V , T and

t are the voltage, current and time duration while phase transformation, respectively. To achieve the

higher efficiency, EPCMs should have high TES capacity and high electrical conductivity so that it can be

driven by low voltage. Recently, Hussain et al. [305] synthesized the bifunctional nano–PCMs consisting

oleic acid (OA)-PEG core and SiO2/SnO2 shell materials to store the thermal and electrical energies.
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Figure 28: (a)-Illustration of convective heat dissipation in a Joule heating structure composed of nanocarbons, (b)-

illustration of prevented heat dissipation in a PCM capsule incorporated system, (c)-Temperature evaluation curves of

an electrothermal structure containing 25vol.% micro-PCM capsules, (d)-As a function of voltage, the balanced surface

temperatures obtained at 20min heating are demonstrated, and (e)-A collection of temperature evolution curves of an

electro-thermal structure containing 25vol.% micro-PCM and a neat electro-thermal heater under 6V repeated for 100

cycles [313], Reproduced with the permission of the American Chemical Society.

The authors reported the thermal and electrical conductivities of 0.7053W/mK and 1.08 × 10−7S/cm,

respectively. Additionally, it was suggested that OA-PEG/SiO2/SnO2 nano–PCMs can been used to as

electrode material for electrochemical energy storage.

6.3. Thermal management

Thermal management is highly emerging and keen requirement for the efficient performance of thermal

systems. The effective thermal management requires a highly conductive media to transfer the heat

flux from hot source towards the sink. The PCMs with their dual favourable thermal properties of

isothermal phase transition temperature and high latent of fusion have increased the demand for thermal

cooling of electronics devices, Li-ion batteries, photovoltaic modules, high power lasers, thermoelectric

and thermochemical systems, photo–thermal conversion systems, solar thermal energy storage systems,

exothermic chemical reactions and energy harvesting industrial power plants [315, 316]. For cooling of

each system, it requires confine amount of PCM and range of operating temperature. Overall, cooling
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techniques of are classified as active cooling and passive cooling. Here, we summarize the active cooling

technique based on single–phase and multi–phase fluids based on EPCMs. For cooling of high heat

generating microprocessing units, microchannel cooling technique has been introduced which uses the

heat transfer fluid (HTF) to transfer the heat energy from hot source to cold source. The HTF is selected

base on its viscosity and heat transfer capacity. The heat transfer capacity of single–phase fluid (e.g.

water) is very low to ensure the efficient thermal performance maintaining the device temperature on

comfortable level. In order to enhance the heat transfer capacity of HTF, the micro/nano–capsules are

dispersed into the base fluid. The prepared fluid after adding the micro/nano–capsules is called slurry

which has the capability to enhance the high heat transfer and high heat storage capacities by combing

the latent heat of micro/nano–capsules and sensible heats both base fluid and micro/nano–capsules. This,

EPCMs slurry (consisting on solid/liquid mixture), also called multi–phase fluid, has a multifunctional

characteristics to serve as both heat HTFs and energy storage fluids (ESFs) [317]. The emulsion of macro–

and micro–PCMs in base fluids under high pressure causes the fracture of capsules. Thus, increases the

viscosity of slurry resulting reduces the heat transfer capacity and requires higher input power needed

for pumping the slurry. Therefore, to address these issues, nano–PCMs have been dispersed into the

base fluid. The effective specific heat (Ceff ) of EPCMs slurry as a function of volume fraction (φ) of

encapsulated capsules can be defined as:

Ceff = Co + φHEPCM/∆T (12)

Here, Co is the specific heat of base fluid, HEPCM is the latent heat of dispersed EPCM per unit

volume, and ∆T is the temperature difference between the transfer surface and bulk fluid or the difference

between the encapsulated capsules melting (Tm) and freezing (Tf ) temperatures. Hong et al. [135] syn-

thesized the SiO2-encapsulated In nanoparticles and polymer–encapsulated paraffin wax nanoparticles

using colloid method and then slurry was prepared by dispersing into poly-α-olefin (PAO) and water

for potential high and low temperature applications, respectively. The heat transfer coefficients of PAO

containing 30% In nanoparticles by mass and water containing 10% paraffin wax nano–capsules by mass

are 1.6 and 1.75 times, respectively, higher than of base fluids. The comparison of adding nano-PCMs

consisting of polymer/paraffin wax of 28vol.% added with water was carried out by Wu et al. [220].

The enhancement in heat transfer coefficient was found by 50% and 70% for jet impingement and spray

cooling , respectively, compared to base fluid. Later, the authors prepared the without and with SiO2 en-

capsulated In nano–PCMs using colloid method and dispersed into PAO and conducted the experiments

in a microchannel heat exchanger to study heat transfer characteristics [106]. The authors found the

heat transfer coefficient of 47, 000W/m2.K without SiO2 coating of 30% In into PAO which was 2 times

improvement over the single phase PAO. Further, they suggested after thermal cycling test involving

5000 cycles that In nanoparticles can be used without encapsulation.

In practical applications of micro– and nano–PCMs slurries at component level, the heat transfer and

fluid flow characteristics in ducts, tubes, channels and thermal storage characteristics in a tank have been

investigated. The design of advance microchannel is shown in Figure 29 which has the significant potential

to overcome the internal heat generated inside the miniature and highly integrated electronics components

52



Figure 29: Design concept and cross-sectional view of microchannel heat exchanger [106], reused with the permission from

Elsevier license number 4444700260609.

or systems. The hybrid water–based suspensions consisting of Al2O3 nanoparticles (nanofluid) and micro–

PCMs particles (slurry) were prepared and then heat transfer characteristics were studied flowing through

a circular tube [318] and minichannel heat sink [319]. The highest heat transfer enhancement of 57% was

achieved at the highest flow rate in case of nanofluid, whereas the heat transfer enhancement was 51%

at lowest flow rate in case of slurry. Seyf et al. [320] investigated effect of mass concentration and

melting range of nano–PCMs dispersed in PAO as well as Re number on thermal and hydrodynamics

characteristics of a microtube heat sink. They found that nano–PCM slurry as a coolant enhanced the

thermal performance by decreasing the generated total entropy, thermal resistance, increasing the Nu

number and maintaining the temperature uniformity. However, an increase in the pressure drop was

observed with the increase of mass concentration which requires the more pumping power. Liu et al.

[293] prepared the micro–PCM slurry composed of water/ethanol as a base fluid and paraffin/melamine

resin micro–PCM as additive and studied the heat transfer performance in a horizontal circular tube. The

results revealed that convective heat transfer coefficients of micro–PCM slurry were about 2 times and 3

times at 5% and 10% mass fractions, respectively, higher than to the base fluid. The drastic increase of

pressure drop are due to the higher viscosity of slurry which increases by higher loading of capsules and

Re number. Moreover, the higher heat transfer rate can also be achieved by reducing the thickness of

thermal boundary layer [321].

6.4. Building

The micro and nano EPCMs are currently employed in building in various forms such as concrete

mixes, cement mortar, wall boards, gypsum plaster, sandwich panels and slabs to meet the energy con-

sumption of buildings which requires for heating, cooling, air conditioning and ventilation, water heating
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and lighting [322]. The embedment of EPCMs have significant potential to increase the thermal iner-

tia at constant mass in buildings especially mixing with concrete which influence the thermophysical

and mechanical properties of concrete [323]. Additionally, the embedment of micro– and nano–PCMs in

concrete increase the thermal and acoustic insulation of walls. Giro-Paloma et al. [324] reported the

mechanical properties of micro–PCMs synthesizing of RT-21 with acrylic shell. The nano–indentation

technique was used to determine the mechanical properties such as modulus of elasticity, load at maxi-

mum displacement, and displacement at maximum load. The results showed the significant mechanical

resistance and stiffness of RT-21 micro–capsules and also better stability was achieved with less short–

emission of volatile organic compounds. Aguayo et al. [325] proposed the infrastructural concrete mixing

with two paraffin wax based micro–PCMs for mitigating early–age cracking and freeze–and–thaw induced

damages. The evaluations of micro–PCMs on cement hydration and pore structure were carried out and

it was ascertained that mechanical properties such as comprehensive strength of cement mortars was

strongly depended on the mechanical properties of micro–PCMs. Cao et al. [326] fabricated the con-

cretes of high TES by mixing the micro–PCMs of RT − 27 coated with the LDPE–EVA copolymer shell

into portland cement concrete (PCC) and geopolymer concrete (GPC). Figure 30 shows the SEM images

PPC and GPC cements incorporating of micro–PCMs capsules. The results found higher heat storage

capacity and lower thermal conductivity, simultaneously. The significant loss in compressive strength

was observed by adding micro–PCMs capsules. However, the compressive strength fulfils the mechanical

European regulation for concrete applications.

Figure 30: SEM images of (a)-PCC without micro-PCMs, (b)-PCC containing 3.2wt.% micro-PCMs, (c)-GPC without

micro-PCMs, (d)-GPC containing 2.7wt.% micro-PCMs [326], reused with the permission from Elsevier license number

4444700728610.
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Wei et al. [327] reported the durability of cementitious composite containing commercially available

micro–PCMs. The results revealed that micro–PCMs reduced the rate and extent of water sorption,

and did not affect the dry shrinkage of cementitious composites. However, in specific cases, micro–

PCMs improved the durability of cementitious composites. Apart from the investigation on mechanical

properties, the effect of thermal deformation was examined by Young et al. [328]. The effective thermal

deformation coefficient was predicted and found similar to the shell materials. Finally, a design rule was

proposed to design the EPCM–mortar composites which found useful in the built environment and high

performance composites. The other possibilities of using EPCMs are with building structures through

wall–boards [329], gypsum plaster [330, 331], sandwish panels [332], and slabs [333] which could lead to

reduce the energy demand both in residential and commercial building sectors.

6.5. Textiles

Various schemes have been investigated of EPCMs incorporating with textiles such to protect or give a

durable finish on cotton or woolen, durable fragrances and skin softeners. Meanwhile, micro–PCMs have

been utilized for waste yeast cells, coating on the surface of fabric or embedded within fibre Nelson [334].

Sarier and his co-authors [12, 121] firstly reported the thermal regulation or thermal comfort of four dif-

ferent micro–PCMs capsules of containing n-octadecane, n-octadecane/PE600, n-eicosane/n-hexadecane,

and PEG/Na2CO3.10H2O/n-hexadecane as a core materials coated with PUF. The energy absorption

capacities were enhanced from 2.5−4.5 times relative to the reference fabric at a particular temperature.

Later on, authors found the higher thermal conductivities of micro–capsules which can be employed for

thermal cooling of clothing fabrics, medical and automobile textiles and building materials. Addition-

ally, the phase change enthalpies of 137J/g and 168J/g for n-hexadecane and n-octadecane, respectively,

were achieved using silver nanoparticles. Alay et al. [205, 206, 335] synthesized the micro–PCMs of

n-hexadecane/PBE and n-hexadecane/PMMA with the aim to increase the physical interaction between

the micro–capsules and fibre surface for heat storage and thermoregulation in fabrics. The pad–cure

method was adopted to add the micro–PCMs on woven fabrics The results showed that the cotton, cot-

ton/polyester, and microfiber polyester fabrics were capable to absorb heat of 6.56J/g and 28.59J/g with

n-hexadecane/PBE [335], 4.95J/g, 10.02J/g, and 8.38J/g, respectively, with n-hexadecane/PMMA [205].

Moghaddam and his co-authors [142, 336] prepared the micro–capsules of n-nonadecane as a core and

sodium alginate as a shell materials for application of thermal comfort of textile fabric. The authors found

the high energy storing density more than 137.83J/g for phase transition temperature of 30-31◦C which

was the suitable for thermal regulation in textile. Aksoy and his co-authors [337, 290, 338] synthesized the

micro–PCM of n-eicosane/PMMA-co-AA, n-eicosane/sodium alginate, and n-eicosane/PMMA-co-MAA

to enhance the textile thermal comfort, thermal stability and flame retardant properties incorporated

with cotton fabrics by pad–dry–cure method. The optical images proved the presence of micro–capsules

incorporated fabric homogeneously onto the surface which are mainly located between the fibers and fiber

spaces, as shown in Figure 31. The heat storage enthalpy of 97 − 114J/g was achieved which showed

the significant potential for textile applications and thermal regulating properties of micro–PCM incor-

porated with fabrics. Further, the authors reported durability of micro–capsules onto the fabric surface
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after washing and rubbing tests and inconsistencies of micro–PCMs with fabrics are due the chemical

compatibility of the fabric material and shell material of micro–capsules.

Figure 31: Optical microscopy images of the fabrics (a)-untreated, (b)-treated with microcapsule-1, (c)-treated with

microcapsule-2, and (d)-treated with microcapsule-3 [290], reused with the permission from Springer Nature license number

4444701208637.

Recently, Sun and Iqbal [339] synthesized the nano–PCMs containing n-octadecane and n-eicosane

as core materials and applied on the cotton fabric through a pad–dry–cure process and compared to

commercial available micro–PCM of n-octadecane. The results revealed that nano–PCM had 28% more

capacity to absorb latent heat than commercial micro–PCM and nano–PCM treated cotton fabric showed

the better durability due to its better adhesion with fibrous material of cotton while washing.

6.6. Foam

Foam is potentially used in structures to enhance the thermal performance, especially to reduce the

rate of heat transfer or to increase the thermal resistance, acting as a insulating material. Mostly PS

and PU are applied with micro– and nano–PCMs in building structures such as wall, windows roofs

and flours, automotive and aerospace interiors and biomedical applications. You et al. [340] synthesized

the n-octadecane/PU micro–PCMs and inserted it inside the foam. They reported that latent of fusion

of micro–PCMs depends on the weight ratios of added micro–capsules i.e. increasing the content of

micro–PCMs increases the enthalpy and vice versa. The maximum value of 12 J/g at 12.59 wt.% of

micro–PCMs was achieved. Borreguero and his co-authors [341, 342] synthesized the rigid PU foams of

varying weight concentrations of RT-27 based micro–PCMs for the purpose of building insulations and

TES. The authors reported that increasing the micro–PCMs contents decreased the thickness of foam

but increased the density and TES capacity. The PU foams with 18 wt.% of micro–capsules enhanced
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the TES capacity meanwhile along with sustaining the mechanical properties without addition of fillers.

Whereas at higher content of 21 wt.% of micro–capsules caused the reduction in mechanical properties.

However, the 11 wt.% containing foams maintained the advantages of improving TES capacity and

exhibited higher compressive strength and elastic modulus. Later, the authors fabricated the rigid PU

incorporating 18wt.% microcapsules of two difference shell materials consisting PS and PMMA, named

as mSP-(PS-TR27) and Micronalr DS 5001X [343]. Figure 32a and 32b exhibit the SEM of PU foams

containing 18 wt.% of mSP-(PS-TR27) and Micronalr DS 5001X, respectively. The results revealed that

micro–PCMs of both shell materials improved the TES capacity of PU foams. Additionally, larger size of

PS and agglomeration of PMMA micro–capsules caused the strut rupture and damaging the mechanical

properties.

Figure 32: (a)-SEM images with 200× magnification of PU foam containing 18 wt.% of mSP-(PS-TR27) and (b)-SEM

images with 800× magnification of PU foam containing 18 wt.% of Micronalr DS 5001X. [343], Reproduced with the

permission from John Wiley and Sons license number 4444710857803.

Recently, Serrano et al. [344] developed the rigid PU of varying the weight percentage from 0% to 50%

of micro–capsules of named mSD-(LDPE.EVA-RT27) and found the 40wt.% optimum weight percentage

of micro–capsules to produce thermal regulating foams having latent heat of 34.4J/g which was higher

than those rigid PU of similar materials reported in the literature. Further, the authors suggested that if

this rigid PU will be employed in building the amount of CO2 leaving to the atmosphere can be reduced

as well as saving the energy. Qiu et al. [345, 346, 347, 348] prepared the PS foam with micro–capsules

containing paraffin wax and DEEP as core and P(MAA-co-EMA as a shell materials, and found that

micro–PCM had good thermal regulation potential and TES capacity treated with foam. Later, they

synthesized the micro–PCM of hybrid shell materials of PMMA and UF coated on n-tetradecane and

found the higher enthalpy of 175.5J/g. Additionally, the authors reported that the foam treated with

micro–PCMs has the better thermal regulating properties than raw foam [348].
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6.7. Medical industry

The antibacterial effectiveness of EPCMs has been paid an significant and emerging area for the de-

velopment of hybrid functionality materials. Silver based nanomaterials are significantly used as a shell

materials with EPCMs because of their inherent antimicrobial properties in medical application. Tobaldi

et al. [349] devepoled the silvermodified titania nanoparticles through green aqueous sol–gel method to

study the antibacterial and photocatalytic properties under both the UV and visible-light exposures. Un-

der UV-light source, silver nanoparticles showed the significant antibacterial activity against Escherichia

coli (Gram-negative bacteria) than methicillin-resistant Staphylococcus aureous (Gram-positive bacteria).

Zhang et al. [286] synthesized the multifunctional micro–PCMs of n-eicosane as core and silver/silica

of double–layered as shell material and found the high antibacterial especially against Escherichia coli,

Staphylococcus aureus, and Bacillus subtilis. The antibacterial effectiveness, shown in Figure 33, revealed

that bacterial activities for Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were inhibited

up to 64.6%, 99.1%, and 95.9%, respectively, when contacting the micro–capsules for 2hrs.

Figure 33: Plots of the survival rates of different bacteria as a function of contact time for the n-Eicosane/silver/silica

microcapsules obtained at the reaction time of 20hrs [286], reused with the permission from Elsevier license number

4444720694482.

7. Future research on EPCMs

The micro and nano EPCMs have the potential features in future applications. So far many OPCMs

have been used as a core material for encapsulation, also most studies focused to develop micro–PCMs. A

few studies have been reported to encapsulate the nano–PCMs. Although, many researcher are currently

working on the preparation and characterization of nano–PCMs, however, there is the still need for further

improvement in engineering applications. Followings are suggestions for future works:
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• Long–term stability: The stability of micro/nano–PCMs is the major need for the applications in

every aspects of the life. Especially, when it is under usage of heat transfer and flow conditions.

• Efficiency enhancement: The encapsulation efficiency of the production of micro/nano–PCMs is

still quite low, which is still facing the lack of to meet the requirements of industrial applications.

• Encapsulation of IPCMs: Since the inorganic PCMs (salt hydrates and molten salts) have the high

latent of fusion during phase transformation, so they have more potential in TES applications e.g.

active and passive heating and cooling through solar energy. However, they can degrade in moisture

environment. Till yet, the research is focusing on the OPCMs to use as a core materials. Therefore,

there is need mico/nano–encapsulation of molten salts and salt hydrates to use a core materials.

• Sub–cooling or super–cooling: The super–cooling of micro/nano–PCMs is the major obstacle in

industrial applications. Further investigations of micro/nano–PCMs are needed to overcome this

issue to enhance the thermal stability and efficiency of thermal systems.

• Leakage performance: More studies are needed to adopt a standard mechanical test to study the

durability or leakage of EPCMs, especially the nano-PCMs to enhance its chemical stability.

• Application of EPCMs: Up to now, little investigations have been reported using EPCMs especially

nano–PCMs in solar energy, battery and electronic thermal management, solar energy storage, solar

panels thermal cooling control, smart building, waste heat recovery etc. Therefore, new technolo-

gies using nano–PCMs should be developed with potential feature to overcome the deficiency of

conventional technologies.

• Enhancement of thermal properties: The encapsulation of PCMs, it has been reported the melting

temperature latent heat of fusion are decreased as compared to pure PCMs. The purpose of PCMs

is to use as energy storage materials in TES systems without losing of heat transfer and fluid flow

performance. Hence, this is real challenge of EPCMs to increase or maintain the latent heat of

fusion with different melting and freezing temperatures. Therefore, new studies are needed to focus

in this direction of encapsulation of PCMs. Additionally, the lower thermal conductivity is also a

real challenge of PCMs. Some novel encapsulation techniques are needed to enhance the thermal

conductivity of PCMs at the cost of not affecting the latent heat of fusion of PCMs.

8. Concluding remarks

This review paper comprehensively covers research progress on the development of macro–, micro–

and nano–EPCMs conducted from the last few decades. Initially, the ideal characteristics of EPCMs are

elaborated for the selection of a specific criteria and application. Further, various encapsulation technolo-

gies based on different methods such as physical–mechanical, physical–chemical, chemical–mechanical and

chemical methods have been thoroughly explained to synthesis the macro–, micro– and nano–meter en-

capsulated capsules. Additionally, thermophysical properties such as thermal conductivity, latent heat of

enthalpy, encapsulation ratio and encapsulation efficiency are summarized respective to each method. In
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a similar way, detailed characteristics evaluation techniques of chemical, thermal and physical properties

have been discussed. Stability of EPCMs based on chemical and thermal properties are also discussed.

Finally, potential applications of EPCMs have been explained in detail. The following conclusions are

summarized from this review:

• The encapsulation of OPCMs coating with a polymer shell material is simple and does not require

any complication and can be achieved adopting simple polymerization techniques.

• The encapsulation of IPCMs is difficult and expensive because of the hydrophilic nature of salt

hydrates which have the characteristics to alter their water content, thus limited to used only

inverse emulsion and addition of polymerization reactions.

• Efficiency and stability of capsules during encapsulation can be restrained by monitoring the molec-

ular weight of the polymers in shell formation process.

• Lower molecular weight shell materials although increase the encapsulation efficiency but contrarily

reduce the mechanical strength while mobility of smaller molecules. Hence, there should be precise

selection of encapsulation technique and reactants to obtain the required thermophysical properties.

• The selection of each core–shell confinement technology is based on morphological parameters of

capsules such as size, distribution, degree of dispersion and environment of use and selection of shell

material. As a specific shell material has its own merits and demerits regarding to thermophysical

properties point of view.

• IPCMs as a shell materials are found favourable for encapsulation because they have high thermal

conductivity, however, they possess low encapsulation efficiency, longer cross–linking and are less

stable.

• Overall, it is concluded that after encapsulation of PCMs the leaking, sub–cooling and segregation

issues had been overcome to some extent however the melting temperature and latent heat of fusion

were decreased which limits the EPCMs for thermal management solutions.

• Considering all the encapsulation techniques, the in–situ polymerization technique is found better

offering more encapsulation efficiency and thermophysical stability.

• This review reveals the good thermal and chemical stability of EPCMs which are strongly influenced

by the morphology of encapsulated capsules.

• EPCMs are the most suitable for thermal management and TES applications in conjunction with

various subsystems such as heat sinks, micro–mini–channels, heat pipes, heat exchangers, wall-

boards, panels and slabs and so on.
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