
Acta Biomaterialia 14 (2015) 70–83
Contents lists available at ScienceDirect

Acta Biomaterialia

journal homepage: www.elsevier .com/locate /ac tabiomat
Revealing cytokine-induced changes in the extracellular matrix
with secondary ion mass spectrometry
http://dx.doi.org/10.1016/j.actbio.2014.12.005
1742-7061/� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +44 115 951 5115; fax: +44 115 951 5102.
E-mail address: morgan.alexander@nottingham.ac.uk (M.R. Alexander).
Adam J. Taylor a,b,c, Buddy D. Ratner c,d, Lee D.K. Buttery a, Morgan R. Alexander a,⇑
a School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
b Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
c National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, WA 98195, USA
d Department of Bioengineering, University of Washington, Seattle, WA 98195, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 August 2014
Received in revised form 22 November 2014
Accepted 8 December 2014
Available online 15 December 2014

Keywords:
ECM (extracellular matrix)
SIMS
Surface analysis
Osteoblast
Inflammation
Cell-secreted matrices (CSMs), where extracellular matrix (ECM) deposited by monolayer cell cultures is
decellularized, have been increasingly used to produce surfaces that may be reseeded with cells. Such
surfaces are useful to help us understand cell–ECM interactions in a microenvironment closer to the
in vivo situation than synthetic substrates with adsorbed proteins. We describe the production of CSMs
from mouse primary osteoblasts (mPObs) exposed to cytokine challenge during matrix secretion,
mimicking in vivo inflammatory environments. Time-of-flight secondary ion mass spectrometry data
revealed that CSMs with cytokine challenge at day 7 or 12 of culture can be chemically distinguished
from one another and from untreated CSM using multivariate analysis. Comparison of the differences
with reference spectra from adsorbed protein mixtures points towards cytokine challenge resulting in
a decrease in collagen content. This is supported by immunocytochemical and histological staining, dem-
onstrating a 44% loss of collagen mass and a 32% loss in collagen I coverage. CSM surfaces demonstrate
greater cell adhesion than adsorbed ECM proteins. When mPObs were reseeded onto cytokine-challenged
CSMs they exhibited reduced adhesion and elongated morphology compared to untreated CSMs. Such
changes may direct subsequent cell fate and function, and provide insights into pathological responses
at sites of inflammation.

� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The extracellular matrix (ECM) is known to be a key director of
the fate, behavior and function of cells and tissues. Cells may sense
surface composition, topology and mechanical properties of the
ECM. Through complex signaling pathways, these may influence
cell activities as diverse as cell adhesion, contractility, morphology
and gene expression. These, in turn, drive phenotypic characteris-
tics and regulate the remodeling of the ECM itself. In many inflam-
matory disorders, changes to ECM composition and structure drive
both disease progression and severity [1,2]. For example, in
inflammatory environments the action of cytokines such as inter-
leukin (IL)-1b, tumor necrosis factor (TNF)-a and interferon
(IFN)-c disrupt matrix homeostasis by reducing ECM deposition
and enhancing ECM resorption. Simultaneously, altered ECM
deposition in inflamed tissues can actively influence immune
responses at such sites [3].

The influence of the ECM on cell behavior can be challenging to
investigate experimentally in a biologically relevant manner.
Adsorbed protein surfaces have been widely used, although they
only provide a flat, adhesive surface that does not approach the
complexity of native ECM. Many developments have been made
in the production of decellularized tissues and organs [4–6], their
characterization [5,7,8] and developing use in the clinic [9–11].
However, whilst matrices may be produced from different tissue
sources, anatomical locations, disease models or species, given
their in vivo source, little control over matrix composition and
structure at the point of deposition is possible. Therefore, the
production of in vitro cell-secreted matrices (CSMs), where cells
of interest are stimulated to deposit an ECM in situ before decell-
ularization, providing a surface that may mimic in vivo niche envi-
ronments, have been increasingly reported, with the aim of more
closely recapitulating the in vivo environment.
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CSMs, also referred to in the literature as cell-derived matrices,
have been produced from a range of cell types, including mesen-
chymal stem cells [12–16], hematopoietic stem/progenitor cells
[17], epithelial and endothelial cells [18], fibroblasts [19,20], hepa-
tic cells [21] and osteoblasts, both primary [22,23] and from cell
lines [24]. They have found a number of applications, from early
studies to understand cell proliferation and migration [19,25], to
later studies investigating how the ECM directs stem cell differen-
tiation [14,16,26]. CSMs have also been used to understand a num-
ber of disease states, notably examining cancer cell migration and
metastasis [23,27–30], and genetic bone diseases exhibiting abnor-
mal matrix deposition [22]. Recent studies report the use of CSMs
in a broad range of studies, including those of vascularization [31],
mesenchymal stem cell (MSC) differentiation [32] and cell migra-
tion [33]. A key advantage of CSMs is that they may be manipu-
lated or modified at multiple points during their deposition. This
may be through selection of cell types [22,26], culture conditions
[14], differentiation protocols or post-decellularization modifica-
tion [22,26].

Most commonly, CSM surfaces have been studied in situ by
immunocytochemical and histological techniques [15,22], or ex
situ, solubilizing the ECM before analysis by immunolabeling tech-
niques such as enzyme-linked immunosorbent assay (ELISA) or
Western blotting. For example, Bhat et al. [22] used immunohisto-
chemistry to reveal increased levels of ECM components in CSMs
from osteoblasts from donors with the genetic bone disease cran-
iosynostysis compared to healthy donors. Whilst these approaches
may be used to identify specific components, prior knowledge is
required to select and identify appropriate targets. Spectroscopic
and spectrometric techniques are useful as they collect data repre-
sentative of the sample as a whole, rather than targeting specific
components. Recently, proteomic methods employing mass spec-
trometry have been used to study CSMs and decellularized tissues
[34], including the identification of novel matrix components from
CSM secreted by a fibrotic liver cell line [21]; a comparative anal-
ysis of CSMs that support or inhibit the maintenance of pluripoten-
cy in human embryonic stem cells [35]; and proteomic analysis of
decellularized human vocal fold mucosa [36]. However, such
approaches require solubilizing the sample, removing one of the
advantages of CSM systems – that the ECM proteins are presented
at the surface in their native ‘‘as-secreted’’ orientations and struc-
tures. Therefore in situ surface analytical methods are
advantageous.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a
surface analytical technique that has been widely used to study a
range of biological samples, including proteins [37–40], lipids
[41], DNA microarrays [42] and cultured cells [43,44], along with
‘‘soft’’ [45–47], ‘‘hard’’ [48] and decellularized tissues [7,8]. In
ToF-SIMS a primary ion beam (in this study Bi3

+) is used to impact
the surface of interest, yielding characteristic fragments from the
top few nanometers of the surface. A proportion of these fragments
are charged ions and may be analyzed using a time-of-flight detec-
tor to yield mass/charge spectra characteristic of the surface. From
these spectra information may be extracted about the chemistry
[49], structure [50] and molecular orientation [51] of the surface.
ToF-SIMS provides certain advantages in the analysis of biological
materials over both other proteomic mass spectrometry based
methods and traditional biochemical techniques. Notably, ToF-
SIMS allows surfaces to be analyzed in situ without digestion or
disruption of the surface; and does not require a priori selection
of targets of interest. When proteins are analyzed by ToF-SIMS,
the positive ion spectra are dominated by their amino acid building
blocks and associate molecular fragments [37]. The study of amino
acid homopolymers [52,53] has allowed characteristic peaks for
each amino acid residue to be identified, and this information
can be used to probe the nature and orientation of proteins at
interfaces [37].

Multivariate analysis techniques are useful to aid the interpre-
tation of data from complex, multicomponent surfaces [54]. These
mathematical methods can be used to identify distinct groupings
and subtle spectral differences in a large number of complex sam-
ples. Principal components analysis (PCA) is one multivariate tech-
nique that has been widely used to study protein-rich samples
[7,37,55,56]. PCA has previously been used to distinguish spectra
from adsorbed protein mixtures [37], decellularized tissues [7,8]
or residual ECM proteins following cell lift-off [56,57].

With carefully decellularized surfaces and powerful analytical
techniques available, this study sets out to: (i) use ToF-SIMS to
identify differences in the composition of CSMs stimulated by
exposure to the pro-inflammatory cytokines IL-1b and TNF-a and
IFN-c; (ii) compare findings from ToF-SIMS analysis with those
from complementary biochemical techniques; and (iii) relate the
structure of these CSMs to the behavior of cells reseeded on them.
2. Materials and methods

2.1. Cell culture

Mouse primary osteoblast cells (mPObs) were isolated from the
calvariae of 1- to 3-day-old CD1 mice as described previously [58].
Briefly, calvariae were dissected and digested in a solution of
0.5 mg ml�1 trypsin II S (Sigma) and 1.4 mg ml�1 collagenase IA
(Sigma). Cells released during the first two digestion periods
(10 min each) were discarded. Cells collected from the subsequent
three digestion periods (20 min each) were pooled and cultured at
a density of 6.6 � 103 cells cm�2 in a basal medium consisting of
minimum essential medium-a (Lonza) containing 10% fetal bovine
serum (Sigma), 100 U ml�1 penicillin, 100 lg ml�1 streptomycin
and 2 mM L-glutamine. Cells were passaged once before cryopres-
ervation and used experimentally before passage 4.

2.2. CSM production

The mPOb cells were plated in basal medium on 12-well tissue
culture treated polystyrene (TCP) multi-well plates or 13 mm
diameter Thermanox coverslips (Thermo) at a density of
10,000 cells cm�2. Cells were allowed to adhere overnight before
culture in osteogenic medium consisting of basal medium supple-
mented with 50 mM beta-glycerophosphate, 50 lg ml�1

L-ascor-
bate-2-phosphate and, when cytokines were not present, 10 lM
dexamethasone (all from Sigma, Inc.).

After 14 days, cultures were decellularized, but retained an
intact ECM surface on the substrate. Cultures were washed gently
with phosphate-buffered saline (PBS) before treatment with
20 mM ammonium hydroxide in water for 20 min at 37 �C with
intermittent shaking, followed by a further gentle wash in PBS
before treatment with 50 U ml�1 DNase I in PBS for 1 h at 37 �C.
Subsequent to decellularization, CSMs were washed gently in PBS
and allowed to soak overnight in PBS. CSMs were stored in PBS
at 4 �C for no more than 2 weeks before use.

2.3. Cytokine challenge

Cytokine challenge medium was prepared by supplementation
of osteogenic medium (without dexamethasone) with 1 ng ml�1

recombinant human IL-1b, 10 ng ml�1 human TNF-a and
100 ng ml�1 mouse IFN-c (all R&D systems). Both IL-1b and
TNF-a have cross-species reactivity between mouse and human,
but IFN-c does not. Control medium was not supplemented with
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cytokines. After 7 or 12 days of mPOb culture for CSM production,
cells were exposed to cytokine challenge medium or control med-
ium for 48 h, before continuation of culture in osteogenic medium.

2.4. Protein coatings

As comparator surfaces, binary mixtures of collagen I and fibro-
nectin were adsorbed onto TCP multi-well plates or Thermanox
coverslips. For ToF-SIMS analysis, single protein solutions of rat tail
collagen type I or bovine fibronectin (both Sigma) were prepared at
100 lg ml�1 in PBS. From these, 25:75, 50:40 and 75:25 vol-
ume:volume ratio mixtures were prepared. Thermanox coverslips
(13 mm diameter) were covered with 500 ll of single protein solu-
tions and mixtures before incubating for 1 h at 37 �C to allow for
protein adsorption. The protein-coated coverslips were washed
six times in ultrapure water and air dried before use. For cell cul-
ture experiments, single protein solutions of rat tail collagen type
I or bovine fibronectin (both Sigma) were prepared at 10 lg ml�1

in PBS. From these, 50:50 volume:volume ratio mixtures was also
prepared. All solutions were sterile filtered. Twelve-well TCP
multi-well plates were covered with 500 ll of protein solution
per well before incubating for 1 h at 37 �C to allow for protein
adsorption. The protein-coated wells were washed twice in PBS
before air drying and storage at 4 �C.

2.5. ToF-SIMS analysis

For ToF-SIMS analysis, CSMs were prepared as described previ-
ously on 13 mm diameter Thermanox coverslips, chosen for their
stable support under decellularization. To remove residual salts
and lipids, CSMs were immersed in 0.15 M ammonium acetate
for 1 min with gentle agitation before dehydration through 20,
40, 60, 80 and 100% ethanol in water before air drying.

Samples were mounted on a flat stage with double-sided stick-
ing tape, or in a back-mount stage and held in place by metal clips,
before entry into the instrument. ToF-SIMS spectra were obtained
for CSMs using an ION-ToF 5–100, and for adsorbed proteins using
an ION-ToF 4–100. Both instruments were equipped with a Bi3

+

liquid metal ion gun with an energy of 25 keV. The total ion dose
was kept below 1012 ions cm�2 to ensure static SIMS conditions.
The area of analysis was 500 � 500 lm, which was rastered in a
random pattern across 256 � 256 pixels. Positive ion spectra were
collected over the mass range of m/z 0–800. Spectra of negative
ions were not collected as they yield less information from protein-
aceous surfaces [4–6,14,37]. At least three replicates were pre-
pared for each sample type, with at least three spectra obtained
from separate sites on each replicate sample, yielding at least nine
spectra per treatment condition. Positive ion spectra were cali-
brated against peaks for CH2

+, CH3
+, C3H2

+ and C4H3
+ before further

analysis.

2.6. Principal components analysis

PCA performs an axis rotation to observe the variance in the
data more clearly, set along new axes called principal components
[54]. Two resulting plots are vital for interpretation: scores and
loadings. The scores are a projection of the original data points
onto the new axis (principal components) and reveal the relation-
ship between samples in a given principal component. Loadings
describe the rotation between the original axis and new principal
components axis. They reveal the variables that are responsible
for the separation seen in the scores plot. PCA was performed using
the spectragui package of the NESAC/BIO MVA Toolbox running in
MATLAB R2012a (The MathWorks, Inc.). Amino acid fragment
peaks from the list previously used by Canavan et al. for analysis
of ECM-surfaces [56] and adapted from work by Wagner and
Castner [37] were manually identified using SurfaceLab 6 (ION-
ToF) and selected in overlaid spectra from each sample set, before
adding to a peak list. Using the statistics function, peak intensities
were compiled into a single tab-separated text file. This was
imported into spectragui. Sample names were created to group
repeated samples together. Spectra were normalized against the
total ion intensity of the peak set and scaled by square-root mean
centering before principal components analysis was performed.
The calculated scores and loadings were saved to the MATLAB
workspace and plotted using Graphpad Prism 6.

2.7. F-Actin and DNA visualisation

To visualize the F-actin cytoskeleton, samples were fixed in a
solution of 4% w/v paraformaldehyde (PFA) in PBS for 30 min,
washed with several changes of PBS and permeabilized with 0.1%
Triton X-100 in PBS for 30 min. The samples were then incubated
with 66 nM AlexaFluor488 phalloidin (green) or AlexaFluor546
phalloidin (red, both Invitrogen) in a solution of 1% w/v bovine
serum albumin (BSA) in PBS for 20 min at room temperature whilst
protected for light. Where DNA staining was also desired,
1 lg ml�1 Hoechst 33258 (Invitrogen) was included with the phal-
loidin solution. Samples were then washed three times in PBS
before imaging by fluorescence microscopy.

2.8. DNA quantification

Freshly prepared CSMs, or mPOb cultures prior to decellulariza-
tion, were scraped into RIPA buffer (Sigma) on ice for 10 min.
Standards of calf thymus DNA (Sigma) were made up in RIPA
(radio-immunoprecipitation assay) buffer. Samples or standards
were diluted as required in TE buffer (10 mM Tris–HCl, 1 mM
EDTA, pH 7.5) and 100 ll was transferred to triplicate wells of
black microplates. An equal volume of PicoGreen reagent (Sigma)
diluted 1:200 in TE buffer was added. After incubation at room
temperature for 5 min protected from light, the fluorescence
intensity was measured at 480/520 nm (ex/em) with a microplate
reader (Infinite 200 Pro, Tecan).

2.9. Immunocytochemistry

The ECM components collagen I and fibronectin were visualized
by immunocytochemical staining. Samples were fixed in 4% (w/v)
PFA for 20 min. After washing with PBS, samples were permeab-
lized for 30 min with 0.1% Triton X-100 in PBS for 30 min and
washed again in PBS, before blocking for 30 min with 1% (w/v)
BSA in PBS supplemented with 3% (v/v) donkey serum. The block-
ing solution was removed and the primary antibody added without
further washing. Primary antibodies used were rabbit anti-mouse
collagen I polyclonal (Millipore, AB765P) and sheep anti-human
fibronectin polyclonal (R&D Systems, AF1918). The primary anti-
body was allowed to incubate overnight at 4 �C. Subsequently,
samples were washed with PBS (3 � 5 min) before incubation with
the secondary antibody for 1 h at room temperature. Secondary
antibodies used were donkey anti-rabbit IgG AlexaFluor488 conju-
gate or donkey anti-sheep IgG AlexaFluor546 conjugate (Both
Invitrogen). Fluorescence microscope images were taken using a
Leica DM-IRB inverted microscope and Volocity Imaging Software
(Improvision).

Fibronectin content was quantified by ELISA. CSMs were
scraped into RIPA buffer on ice for 10 min. The fibronectin concen-
tration was determined using a fibronectin mouse ELISA kit
(Abcam) according to the manufacturer’s instructions and stan-
dardized against known concentrations of mouse fibronectin.

Percentage area coverage of collagen I was determined by
image analysis of representative images of samples stained by
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immunocytochemistry as described above. Representative images
were thresholded manually in ImageJ to select positively stained
areas only. Consistent thresholding parameters were used for all
images. After conversion to a binary image, the percentage area
was calculated using ImageJ’s measure function, limiting the ROI
to the threshold of the binary image.

2.10. Histology

Collagens and glycosaminoglycans were visualized by staining
with Sirius Red and Alcian Blue. Samples were fixed in 10% (v/v)
neutral buffered formalin in PBS for 20 min and rinsed three times
with tap water before staining for proteoglycans with Alcian Blue
solution (0.5% w/v Alcian Blue 8GX, 1% v/v acetic acid in distilled
water) for 10 min. The samples were then rinsed in tap water for
1 min before staining in molybdophosphonic acid (1% w/v in dis-
tilled water) for 15 min. The samples were rinsed again in tap
water before staining for collagens with Sirius Red solution (1%
w/v Sirius Red 3B, 30% v/v saturated picric acid in distilled water)
for 1 h. The samples were then rinsed once again and imaged
immediately by bright-field microscopy.

Elution and absorbance measurement of dye from Sirius Red
stained samples was used to quantify collagen content of CSMs.
Formalin fixed samples were rinsed in tap water for 1 min before
staining in Sirius Red solution (1% w/v Sirius Red 3B, 30% v/v satu-
rated picric acid in distilled water) for 1 h. Samples were then
rinsed in tap water and allowed to dry. The dye was eluted into a
50:50 v/v mixture of ethanol and 50 mM NaOH. Triplicate 100 ll
samples were transferred to a 96-well multi-well plate and the
absorbance at 540 nm was read using a microplate reader (Infinite
200 Pro, Tecan). The samples were calibrated against known con-
centrations of bovine collagen I dried onto multi-well plates before
staining.

2.11. Total protein quantification

The total protein content of CSMs was determined using a
micro-BCA protein assay kit (Thermo). Samples were collected
with a cell scraper into RIPA buffer on ice and diluted as required
in PBS. The micro-BCA assay was performed according to the man-
ufacturer’s instructions. Absorbance was measured at 526 nm
using a microplate reader (Infinite 200 Pro, Tecan), and standard-
ized against known concentrations of BSA in RIPA buffer.

2.12. Adhesion

mPOb cells were seeded at 10,000 cells cm�2 in serum-free
basal medium onto cytokine-challenged CSMs, adsorbed proteins
or untreated tissue culture polystyrene in 12-well plates. After
30 min or 2, 4 or 6 h, plates were washed three times with PBS
to remove unadhered cells. The remaining live cells were stained
with 4 lm calcein AM (Invitrogen) in basal medium for 30 min at
37 �C whilst protected for light. They were then washed in PBS
before scraping into 200 ll of RIPA buffer on ice to lyse the cells
and release fluorescent calcein. The fluorescence intensity of
100 ll lysate samples was measured at 494/517 nm (ex/em) using
a microplate reader (Infinite 200 Pro, Tecan). The results were stan-
dardized against known cell numbers prepared by serial dilution.

2.13. Morphological assessment

The mPOb cells were seeded onto CSMs or adsorbed proteins at
5000 cells cm�2 in basal medium and incubated at 37 �C and 5%
CO2 for 24 h before PFA fixation and staining for the F-actin cyto-
skeleton as described previously. Representative fluorescence
microscope images of F-actin stained samples were imported into
ImageJ. Regions of interest (ROIs) following the perimeter of least
100 cells per sample image were manually selected using the wand
(tracing) tool and measured using the Analyze Particles package.
The cell spread area represents the area of each ROI. The aspect
ratio is calculated as the ratio of the major axis length to the minor
axis length for an ellipse fitted around the ROI. Scatter plots of cell
area vs. cell aspect ratio were produced in R, displaying a density
heat map to aid visualization of sub-populations.

2.14. Statistical analysis

All statistical analysis was performed in Prism 5 (Graphpad).
Where only two groups were compared, an unpaired t-test was
used. Where multiple comparisons were made, one- or two-way
analysis of variance (ANOVA) was employed followed by Sidak’s
multiple comparisons test [59].
3. Results

3.1. Decellularization

The CSMs were produced by seeding mPObs on tissue culture
plastic multi-well plates or Thermanox coverslips and culturing
for 14 days in an osteogenic medium. Subsequently, monolayer
cultures were decellularized in a two-step protocol using a low-
concentration alkaline solution and a nuclease treatment. Staining
of mPOb cultures prior to decellularization and CSM for both DNA
and the F-actin cytoskeleton was performed, along with quantifica-
tion of residual dsDNA and assessment of metabolic activity. Visi-
ble F-actin and DNA are eliminated by decellularization (Fig. 1A)
and dsDNA levels are significantly (Fig. 1B, p < 0.0001, t-test)
reduced, to 1.27 ± 0.154 lg cm�2

. Calcein fluorescence seen on CSMs
treated with calcein AM are significantly reduced compared to live,
confluent mPObs prior to decellularization (Fig. 1C, p < 0.0001, t-
test.). The fluorescence intensity of CSMs is less than 1% of that seen
for mPObs, suggesting the almost total cessation of cellular metabo-
lism by decellularization. As well as confirming the removal of cellu-
lar components, the retention of ECM components collagen I and
fibronectin was assessed by immunocytochemical staining. In CSMs,
both collagen I and fibronectin are seen as a dense fibrous matrix
that appears little disrupted compared to mPOb cultures before
decellularization, with little change in spatial distribution and level
of staining (Fig. 1A). When observed by phase contrast microscopy,
CSMs appear as a dense, intact network that adheres across the sur-
face (Fig. 1A).

3.2. ToF-SIMS analysis

Representative positive ion ToF-SIMS spectra of CSM surfaces,
model adsorbed protein films and the underlying Thermanox sub-
strate, shown in Fig. 2, reveal a complex pattern of characteristic
peaks. The spectra of the Thermanox substrate (Fig. 2C) can be eas-
ily visually distinguished from those from CSMs (Fig. 2D–F) and
adsorbed proteins (Fig. 2A and B). Thermanox is understood to
be a customized poly(ethylene terephthalate) (PET) resin subse-
quently functionalized to contain nitrogen-based groups to
improve cell adhesion [60]. Many prominent peaks are known
fragments of the PET backbone, including the PET repeat unit (m/
z 193) and the benzoyl fragment C7H5O+ (m/z 104), whilst others,
not seen in the spectra of pure PET reported previously [61], can
be identified as nitrogen-containing organic secondary ions, pre-
sumably resulting from proprietary modifications to PET, including
negative ions m/z 26 and m/z 42.

The spectra of the proteinaceous surfaces analyzed are visibly
distinct from that of the underlying Thermanox substrate. Positive



Fig. 1. (A) Representative phase contrast and fluorescence microscope images of
CSMs before (left) and after (right) decellularization, stained for DNA (Hoechst) and
F-actin (Alexa 488–phalloidin conjugate), along with immunocytochemical staining
for fibronectin and collagen I. Scale bars represent 200 lm. (B) Quantification of
dsDNA in CSMs before (left) and after (right) decellularization by PicoGreen assay.
(C) Assessment of cell metabolic activity by calcein AM staining before (left) and
after (right) decellularization. The bars in (B) and (C) represent mean ± 1 SD, n = 3.
⁄⁄⁄⁄Significant difference, p < 0.0001, t-test.
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ion spectra are dominated by peaks that have been identified as
fragments associated with the amino acid building blocks of the
proteins found at the surface, such as m/z 30 (common to all amino
acids, although most characteristic of glycine) and m/z 43 and 59
(arginine). The prominent peak at m/z 70 found in all proteina-
ceous spectra is not unique to a single amino acid residue but
may result from arginine, leucine or proline. Whilst it is possible
to identify known fragments of individual amino acids in the spec-
tra, the complexity of the ToF-SIMS spectra from proteinaceous
surfaces makes it difficult to directly identify differences between
samples of interest and associate differences with particular pro-
teins. Therefore, PCA was used to identify differences in the inten-
sities of known amino acid peaks in the positive ion spectra of the
CSMs and adsorbed proteins. Fig. 3 presents scores and loadings
plots for the first three principal components of all samples. The
scores represent the relationship between samples, whilst the
loadings reveal which peaks are responsible for the separation
shown in the scores plot.

Principal component 1 (PC1) separates the as-received Therma-
nox substrate from all CSM surfaces and model protein coatings,
and describes 90% of the variance in the data set. The associated
scores plot (Fig. 3A) shows that PC1 gives high positive scores
(0.39 ± 0.017, mean ± 1 SD) to sample points on the Thermanox
substrate, whilst all other samples are scored negatively (min:
�0.087; max: �0.023). The corresponding loadings plot (Fig. 3B)
shows five peaks with positive loadings greater than 0.1 and 15
with negative loadings less than �0.1. Positively loaded peaks on
PC1 include m/z 86 (C5H12N+) and m/z 100 (C4H10N3
+). Untreated

Thermanox coverslips would not be expected to yield fragments
of amino acid residues leucine/isoleucine (m/z 86) or arginine
(m/z 100). Therefore, these peaks are likely products of nitrogen
functionalization of the Thermanox detected at similar mass/
charge values. Most of the remaining peaks from the peak list load
negatively on PC1 towards the protein containing CSMs and
adsorbed proteins.

Principal component 2 separates CSM surfaces significantly
(p < 0.0001) from all model protein coatings and describes 6% of
the variability within the data set. In the scores plot (Fig. 3C),
CSM surfaces are scored positively (min: 0.030; max: 0.053) and
are significantly different from all other groups (p < 0.0001). How-
ever, they are not significantly separated from one another
(p > 0.9). The Thermanox substrate has a low positive PC2 score
(0.0081 ± 0.0038). Adsorbed binary mixtures of collagen I and
fibronectin are scored in decreasing order, moving from fibronec-
tin, which is scored neutrally (�0.0024 ± 0.0045), to collagen I,
with a high negative PC2 score. The corresponding loadings plot
(Fig. 3D) shows that the majority of peaks have positive PC2 load-
ings greater than 0.1 (21 of 45). Only six peaks have negative PC2
loadings less than �0.1. These are peaks at m/z 68 (C4H6N+ Pro), 70
(C4H8N+ Arg/Leu/Pro), 73 (C3H7N+ Arg), 115 (C4H7N2O2

+ Gly), 117
(C5H9OS+ Met) and 127 (C5H11N4

+ Arg).
Principal component 3 reveals significant differences between

CSM surfaces with different cytokine challenge regimes. It
describes 3% of the variability within the data set. In the scores plot
for PC3 (Fig. 3E), all CSM surfaces are significantly separated from
one another (p < 0.05). CSM surfaces produced with cytokine treat-
ment on day 7 score neutrally (�0.0040 ± 0.0062), whereas those
treated on day 12 have a more negative score (�0.019 ± 0.0077).
CSM surfaces not treated with cytokines have the most negative
scores of the three CSM surfaces (�0.026 ± 0.0035). The scores plot
clearly and significantly separates the five collagen I/fibronectin
model protein coatings in order, from pure fibronectin, with a high
positive score (0.051 ± 0.0040), through mixtures moving from
positive to neutral scores, to pure collagen I, with a high negative
score (�0.038 ± 0.0068). The Thermanox substrate scores neutrally
(�0.0031 ± 0.0070). The loadings plot for PC3 (Fig. 3F) highlights 10
peaks that exhibit positive loadings greater than 0.1. These include
peaks that can be identified with the amino acids threonine (m/z
68, 74), valine (m/z 72), tryptophan (m/z 130, 159, 170) and tyro-
sine (m/z 136). Six peaks have negative loadings less than�0.1, five
of which may be attributed to amino acid residues glycine (m/z 30),
arginine (m/z 43, 100), proline (m/z 68) and leucine/isoleucine (m/z
86). The peak at m/z 44 may be associated with alanine or cysteine.

Plots for principal component 4 (PC4) and above are not shown.
PC4 describes 0.954% of the variability in the data set. No signifi-
cant separation between sample groups was observed in this or
higher PCs, suggesting that this and further PCs describe variability
within sample groups or noise within the data set.

3.3. Histological and immunocytochemical analysis

Whilst the composition of ECM secreted by cells cultured
in vitro is too complex for all components to be identified using
ToF-SIMS, ToF-SIMS has been demonstrated here to be a useful tool
to identify the key compositional changes in CSMs. However, it is
important to compare the conclusions drawn from ToF-SIMS spec-
tra with those drawn from conventional biochemical techniques.

Quantification of the collagen mass in CSM surfaces through
Sirius Red staining (Fig. 4B and A) reveals a significant decrease
in collagens with cytokine treatment on day 7 of culture
(p < 0.0001, two-way ANOVA with Sidak’s multiple comparisons
test) from 9.75 ± 1.05 lg in untreated CSMs to 5.45 ± 0.582 lg in
treated CSMs (mean ± 1 SD) – a 44.1% reduction. No significant



Fig. 2. Representative positive ion ToF-SIMS spectra obtained from CSMs with (D, E) or without (C) cytokine challenge, adsorbed collagen I (A) or fibronectin (B) coatings, or
as-received Thermanox (C). Prominent peaks are labeled with their mass/charge.
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difference in the collagen content of CSMs was observed with cyto-
kine treatment on day 12 of culture (p < 0.05).

Representative bright-field microscopy images of CSM surfaces,
stained with Sirius Red and Alcian Blue for collagens and glycos-
aminoglycans (GAGs) respectively, show a dense web-like network
of collagens in untreated matrices (Fig. 4E). In matrices subjected
to cytokine challenge at day 7, a notable disruption of the collagen
matrix was observed, with areas of little or no staining. This does
not appear to be seen with cytokine challenge at day 12. All CSM
surfaces show positive staining for GAGs in a diffuse network of
fibers. The GAG deposition or structure does not appear to be
affected by treatment with cytokines at either time point.

Representative fluorescence microscope images of CSMs stained
for collagen I (Fig. 4B) show that it is deposited in an interwoven,
fibrous matrix, intact across the substrate. More staining is seen
in CSMs not treated with cytokines, and it appears to be almost
continuous across the surface. By comparison, there appears to
be less staining in CSM surfaces treated with cytokines. This is par-
ticularly notable in CSM treated at day 7 of culture, where areas
without collagen I staining can be seen. Additionally, the stained
areas appear to be less organized than those seen in their untreated
counterparts. Using image analysis to quantify the percentage area
positively stained using consistent thresholding (Fig. 4A), a signif-
icant decrease in collagen I coverage is seen in CSM treated at day 7
compared to its untreated control (p < 0.05, two-way ANOVA with
Sidak’s multiple comparisons test), with coverage reduced from
76.9 ± 13.1 to 52.0 ± 10.70% (mean ± 1SD, n = 3) – a 32.4% reduc-
tion. No significant reduction in coverage is observed with cytokine
treatment at day 12 (p > 0.05).

The total protein content of CSM lysates was determined by
micro-BCA (Fig. 4C) and fibronectin was assayed by ELISA
(Fig. 4F). No significant differences in total protein concentrations
or fibronectin levels between CSM surfaces were found (p > 0.05,
two-way ANOVA with Sidak’s multiple comparisons test).



Fig. 3. Principal components analysis scores (left) and loadings (right) plots for principal components 1 (A, B), 2 (C, D) and 3 (E, F) from PCA of amino acid peaks selected from
ToF-SIMS spectra obtained from as-received Thermanox coverslips (gray); adsorbed binary mixtures of fibronectin and collagen type I (blue through purple); and CSM
surfaces with or without cytokine challenge (red = challenge at day 7, orange = challenge at day 12, green = no challenge). The scores plots (left) show individual sample
scores, along with boxes marking median, 25th and 75th percentiles and whiskers marking minimum and maximum values. Notable significant differences are highlighted
(⁄p < 0.05, ⁄⁄⁄⁄p < 0.0001, ANOVA with Sidak’s multiple comparisons test). The scores represent the relationship between samples. In the loadings plots (right), highly loading
peaks are labeled with their mass and assigned amino acid identity. The loadings show which peaks are responsible for the separation seen in the scores plots.

76 A.J. Taylor et al. / Acta Biomaterialia 14 (2015) 70–83



Fig. 4. (A) Quantification of collagen I surface coverage in cytokine-challenged CSMs assessed by image analysis of CSMs stained for collagen type I by immunofluorescence;
representative images used are shown in (B). (C) Quantification of total protein in cytokine-challenged CSM surfaces by micro-BCA assay. (D) Quantification of collagen
content in cytokine-challenged CSMs by elution of dye from Sirius Red stained samples. (E) Representative bright-field microscope images of CSMs stained with Alcian Blue
(GAGs, blue) and Sirius Red (collagens, pink). (F) Quantification of the fibronectin content of cytokine-challenged CSMs by ELISA. In all plots bars represent mean ± 1 SD
(n = 6). Significant differences between challenged and unchallenged CSMs are highlighted (⁄p < 0.05, ⁄⁄⁄⁄p < 0.0001, ns p > 0.05, two-way ANOVA with Sidak’s multiple
comparisons test). The scale bars represent 200 lm in all images.
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3.4. Cell adhesion

The adhesion of mPOb cells to CSMs and adsorbed proteins was
assessed under serum-free conditions (Fig. 5). At all time points
studied, adhesion to pure collagen I was significantly lower than
for either pure fibronectin or a 50:50 v:v mixture of collagen I
and fibronectin (p < 0.0001, two-way ANOVA with Sidak’s multiple
comparisons tests). Cell adhesion was also significantly lower than
on untreated tissue culture polystyrene at 30 min and 2 h. Adhe-
sion to CSMs reached higher levels than for adsorbed proteins.
The proportion of cells adhered to all CSM surfaces was signifi-
cantly higher than all protein surfaces at the 2 and 6 h time points
(p < 0.001). However, after 30 min, adhesion to all CSM surfaces
was significantly lower than to pure fibronectin (p < 0.001),
although the differences were not always significant for other
CSM/protein comparisons at this time point.

Comparing the influence of cytokine challenge during CSM pro-
duction on subsequent mPOb adhesion, significant decreases were
observed at the 2 h (p < 0.05) and 6 h (p < 0.0001) time points
between CSM surfaces exposed to cytokines at day 7 and their
associated untreated comparator. Whilst significant, these differ-
ences remain small, with cytokine challenge at day 7 decreasing
the percentage adhesion at 6 h from 73.48 ± 5.4 to 63.80 ± 4.9%.
No significant differences in adhesion were noted when cytokine
challenge occurs at day 12 of CSM production. Furthermore, no sig-
nificant differences were observed between CSMs not treated with
cytokines at day 7 or 12, indicating that these control groups are
comparable (p < 0.05).

3.5. Cell morphology

Representative fluorescence microscope images of F-actin-
stained mPOb cells seeded at sub-confluence onto CSMs or model
proteins are shown as insets in Fig. 6. Clear morphological differ-
ences can be noted. Cells seeded onto CSMs appear more irregular
in shape, more elongated and less spread than those seeded on
proteins. The morphological characteristics of mPObs seeded at
sub-confluence onto CSMs or model proteins were assessed by
image analysis to quantify the cell spread area and aspect ratio.
Fig. 6 shows these as scatter plots. Cells on CSMs (all groups) can
be seen to have a significantly smaller cell spread area than those
on collagen or a 50:50 v:v mix of collagen I and fibronectin
(p < 0.001). Few cells on CSMs are seen with a spread area
>4000 lm2. Little difference in the distribution of cell spread area
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Fig. 5. Bar chart showing adhesion of mPOb cells to CSMs, with or without cytokine challenge (left), and adsorbed ECM proteins (right). mPOb cells were seeded in serum-free
conditions at 10,000 cells cm�2. After 30 min and 2 and 6 h, non-adhered cells were removed by washing in PBS and the remaining attached cells were quantified by staining
with calcein AM. The fluorescence of calcein was normalized against known cell numbers. Bars represent mean ± 1 SD, n = 6. Significant differences in adhesion between
treated and control matrices are highlighted (⁄p < 0.05, ⁄⁄⁄⁄p < 0.0001, ANOVA with Sidak’s multiple comparisons tests).

Fig. 6. Scatter plots showing cell area vs. cell aspect ratio (long axis/short axis) for mPOb cells seeded onto cytokine-challenged CSMs (A) or adsorbed proteins (B). Cells were
seeded at 10,000 cells cm�2 for 24 h before fixing in PFA and staining the F-actin cytoskeleton with Alexa 488–phalloidin conjugate. Cells were imaged by fluorescence
microscopy before manually bounding >100 cells per sample in ImageJ to calculate the cell area and aspect ratio. The heat map represents the probability density
(low = white, high = red). Insets show representative images used for image analysis. Scale bars represent 200 lm.
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is seen between CSMs exposed to different cytokine challenge
regimes. However, some differences in the distribution of cell
aspect ratios observed are noted. Whilst the majority of cells on
all surfaces exhibit aspect ratios between 1 and 4, a notable num-
ber of cells on CSMs appear with elongated morphologies, with
aspect ratios between 4 and 8. Few cells are seen with such elon-
gated morphologies on adsorbed proteins or TCP. Scatter plots also
reveal a number of very highly elongated cells with an aspect ratio
of >9, observed only on CSMs exposed to cytokine challenge (either
at day 7 or 12) during production. Cells with these morphologies
are clearly separated from the bulk population, with very few cells
observed with aspect ratios between 8 and 9. On CSMs not exposed
to cytokines, few mPObs are seen with aspect ratios >8.
4. Discussion

4.1. Decellularization

First, we validated the effectiveness of the decellularization pro-
tocol. A key characteristic of decellularized matrices is that cellular
components have been removed, while extracellular components
and structure are retained [62]. For CSMs to be useful surfaces,
they must also remain intact and adhere to the underlying sub-
strate throughout decellularization, storage and subsequent use,
as well as support the culture of relevant cell types [14,18].

In this study, a decellularization protocol of a low-concentration
ammonium hydroxide treatment to lyse cells followed by a nucle-
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ase treatment to remove residual nuclear material was used. Sim-
ilar protocols have been reported previously, to produce CSMs
from endothelial [63] and osteoblast cell types [23,24]. One of
the most widely used decellularization protocols for the produc-
tion of CSMs also utilizes ammonium hydroxide treatment,
together with Triton X-100 detergent treatment [13,14,18,22].
Detergent treatment was not used in this study as decellularization
appeared effective without its use. It has been suggested that
detergent use may disrupt some ECM structures and components
such as GAGs [62], whereas decellularization with ammonium
hydroxide alone has been demonstrated to retain these compo-
nents [24].

Staining for, and quantification of, DNA has been the most
widely used and recommended assessment of decellularization
effectiveness [62]. The CSMs produced in this study showed no vis-
ible DNA with Hoechst staining (Fig. 1A), and dsDNA levels were
quantified to be under 1.5 lg dsDNA cm�2 (Fig. 1B). The removal
of other cellular architecture, such as the F-actin cytoskeleton
[18,64], and cessation of metabolic activity [14] have also been
considered by earlier studies, and provide further validation of
decellularization. The protocol used in this study was shown to
effectively obliterate cytoskeleton, as assessed by F-actin staining
(Fig. 1A). Additionally, elimination of intracellular esterase activity
demonstrated the effective cessation of cellular metabolism
(Fig. 1A).

Successful decellularization should not only remove cellular
products, but also retain ECM components in a structural and con-
formational presentation close to that found prior to decellulariza-
tion. Collagen I and fibronectin are key components of the ECM
produced by osteoblasts, both in vivo, in the osteoid matrix that
precedes mineralization, and in in vitro cultures. Immunofluores-
cence imaging shows that both are retained in CSMs in similar lev-
els and structures to those seen prior to decellularization (Fig. 1A).

The matrix surface appears intact and continuous. Where dam-
age or loss of matrix surfaces was observed, this tended to be seen
at the lower edge of the matrix, where contact during the aspira-
tion of medium or decellularization solutions was possible. As
such, care was taken when preparing CSMs to avoid contacting
the ECM surface. Others have reported similar challenges with
matrix fragility [65]. Prewitz and co-workers [18] recently showed
that covalent binding of fibronectin to a glass substrate signifi-
cantly increased matrix robustness.

To assess the effects of pro-inflammatory cytokines on mPOb
cultures being prepared for CSM surfaces, two cytokine challenge
regimens were used. The combination of 1 ng ml�1 IL-1b,
10 ng ml�1 TNF-a and 100 ng ml�1 IFN-c was selected on the basis
of their reported synergistic effect and prior studies demonstrating
their effectiveness in promoting an inflammatory response in
mPObs [58]. This is the first study of CSMs produced following
cytokine exposure, although Mountziaris et al. [66] had previously
described the behavior of MSCs exposed to TNF-a and cultured on
cell-derived matrices grown on acellular PCL/ECM scaffolds.

4.2. ToF-SIMS analysis

Having prepared and validated mPOb deposited CSMs from
cytokine-challenged environments, ToF-SIMS analysis of both
cytokine-challenged CSMs was performed. To test the hypothesis
that collagen content is reduced by cytokine challenge, particularly
at day 7, when there is time for matrix remodeling, CSM surfaces
were compared to model proteins: specifically, mixtures of
collagen I and fibronectin adsorbed onto Thermanox coverslips.
Fibronectin was selected as a non-collagenous protein secreted
by osteoblasts, critical for their differentiation [67] and survival
[68], and demonstrated above to be present in the CSM surfaces.
Fibronectin is readily identifiable by ToF-SIMS analysis due to its
distinctive content of the cyclic amino acids tyrosine and trypto-
phan [39].

From examination of the raw ToF-SIMS spectra, it is difficult to
distinguish between CSM groups and adsorbed proteins, both
being formed predominantly of the same 21 amino acids, whilst
the as-received Thermanox substrate is easily distinguishable
(Fig. 2).

As with previous surface analytical studies of ECM samples
[7,8,56,57], multivariate analysis is required to aid the identifica-
tion of spectral differences between sample groups. To further sim-
plify the number of variables (mass peaks) used for multivariate
analysis and eliminate peaks from other components, such as the
substrate or residual cellular material, these studies examined
the intensities of specific peaks known to be characteristic of
amino acid fragments.

Using an amino acid fragment peak list previously used to study
ECM surfaces [57], PCA of cytokine-treated CSMs revealed spectral
differences between surfaces from different treatment regimes,
with CSMs treated at day 12 being more similar to untreated CSMs
than those treated at day 7 (Fig. 3). Identification of highly loading
peaks in PCA comparing both CSMs to each other and to model pro-
tein coatings, using a subset of known amino acid related peaks,
suggests that these differences are due to the reduction in relative
collagen content with cytokine treatment.

The first principal component separates the as-received
Thermanox substrate from the other samples (Fig. 3A and B). As
its spectral differences from the other samples are easily identifi-
able in the raw spectra, it is not surprising that the first principal
component dominates the variance in the data set. With the peak
list restricted to those thought to be characteristic of amino acids
(i.e. supervised PCA), it is somewhat surprising that Thermanox
yields secondary ions at these mass/charge ratios. However, pro-
prietary nitrogen functionalization of the PET backbone, e.g. by
gas plasma modification, could result in nitrogen-containing posi-
tive ion fragments with masses, structures and charges similar to
several amino acid fragments.

Further discussing PC1, consideration of the substrate is impor-
tant for ToF-SIMS analysis of thin samples or those of incomplete
coverage. Here these are considered by including the bare sub-
strate in the PCA. Some previous studies of ECM components on
a poly(N-isopropyl acrylamide) (pNIPAM) substrate have included
known substrate peaks [57,69], whilst in later studies from the
same group these were not considered [56].

In principal component 2, which separates CSMs from adsorbed
proteins (Fig. 3C), the large number of peaks loading positively,
contributing to the high score of CSM surfaces compared to the
few peaks loading negatively (Fig. 3D), illustrates the complexity
of CSM surfaces compared to single proteins or binary protein mix-
tures. CSM surfaces contain many components that have been
secreted and remodeled by a population of cells in response to
their environment. These may include structural ECM proteins
such as elastin, or ECM proteins, such as osteopontin or osteocal-
cin, that are involved in osteogenesis and maturation from a colla-
gen-rich osteoid matrix to mineralized bone-like nodules. In
comparison, the defined components and controlled adsorption
conditions of the model protein coatings make them simpler sur-
faces than CSM, with known composition and homogeneous spa-
tial distribution and orientation – all surface characteristics that
may influence the resulting spectra. Whilst binary mixtures of col-
lagen I and fibronectin can be separated from one another, PC2
does not allow CSM surfaces to be distinguished according to cyto-
kine exposure.

Comparing the scores in PC3 with those for model protein mix-
tures, it can be seen that CSM surfaces are collagen rich, displaying
scores between those for 100% collagen I and a 75:25 collagen
I:fibronectin ratio (Fig. 3E). Untreated CSM surfaces score more
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towards the pure collagen sample than those treated with cyto-
kines, which score towards fibronectin-containing protein mix-
tures. This suggests that untreated CSM shares more spectral
similarities with pure collagen than those exposed to cytokine
challenge. The neutral scoring of the Thermanox substrate indi-
cates that it does not contribute to the peaks seen in the loadings
plot for PC3 (Fig. 3F).

In summary, principal components analysis of cytokine treated
CSMs allows for the identification of distinct spectral differences
between surfaces from different treatment regimes, with CSMs
treated at day 12 being more similar to untreated CSMs than those
treated at day 7. Identification of highly loading peaks in PCA com-
paring both CSMs to each other and to model protein coatings
using a list of known amino acid-related peaks suggests that these
differences are due to the reduction in relative collagen content
with cytokine treatment.

Assessment of the composition of complex protein-rich surfaces
is challenging. Whilst proteomics-based techniques allow detailed
and accurate compositional analysis, and have been employed to
study a range of decellularized systems, including CSMs [21,34–
36], they typically require sample digestion. ToF-SIMS, on the other
hand, allows for samples to be examined as deposited – retaining
their natural structure and conformations. Although ToF-SIMS
can be used to readily identify components in single [37] and bin-
ary [39] adsorbed protein systems, it is difficult to quantitatively
assess the composition of multicomponent protein surfaces. How-
ever, it is possible to describe qualitative trends through compari-
son with reference protein spectra [38]. This approach has been
taken by the few studies that have reported ToF-SIMS analysis of
ECM-based systems. Two sequential studies performed ToF-SIMS
analysis of decellularized tissues, including oesophagus, bladder,
small intestine and liver. PCA using an amino acid peak list was
able to distinguish samples by both anatomical location and
method of preparation [8]. Separate PCAs of decellularized tissues
and model proteins were qualitatively compared and associated
with tissue origin, although no conclusions on the identification
of ECM components were drawn [7].

In another series of studies, multivariate analysis of ToF-SIMS
data allowed for pNIPAM-coated tissue culture polystyrene after
thermal cell-sheet lift-off to be distinguished from both the under-
lying substrate and surface modification [57]. By deriving principal
components from model proteins alone to form a model into which
data from surfaces of interest were projected, the residual ECM
could be associated with laminin, as opposed to fibronectin or col-
lagen [56]. Whilst such surfaces may not be considered as true
decellularized matrices, as their purpose is to release intact and
viable cell sheets from the surface, leaving some residual extracel-
lular components, rather than to retain ECM structures for subse-
quent experiments, they nevertheless provide a useful
comparator to the CSMs presented here.

Whilst the compositions of ECMs naturally produced in vitro
are too complex for all of their components to be identified using
ToF-SIMS, it has been demonstrated to be a useful tool to identify
key compositional changes. In order to confirm these conclusions,
it is necessary to compare them with standard biochemical
techniques.

4.3. Validation of ToF-SIMS conclusions with biochemical techniques

Inspection of CSMs treated with pro-inflammatory cytokines at
day 7 of culture when stained with Sirius Red and Alcian Blue
(Fig. 4E) or by immunofluorescence for collagen I (Fig. 4B) showed
that cytokine treatment disrupts the level and distribution of colla-
gen content. However, no significant difference is seen with cyto-
kine challenge at day 12. These results validate the conclusions
reached from ToF-SIMS data that cytokine challenge at day 7 of
matrix production leads to a reduction in collagen content com-
pared to untreated matrices, whilst when cytokine challenge takes
place at day 12 there is less change in collagen content. After
12 days of osteogenic culture, mPObs are expected to exhibit a
more mature osteoblastic phenotype than after only 7 days of cul-
ture. This more mature phenotype may be more resistant to cyto-
kine challenge. Additionally, CSMs exposed to cytokine challenge
at day 12 had little time for altered ECM deposition to occur prior
to decellularization on day 14.

No significant change in total protein content of CSM surfaces is
seen with cytokine challenge at either time point (Fig. 4C). A reduc-
tion in the collagen content but maintenance of the overall protein
content would suggest that levels of another non-collagenous ECM
protein may be elevated. However, no significant increase in fibro-
nectin content is observed by ELISA (Fig. 4F).

Previous studies in primary calvarial cells [70] and MC3T3-E1
cells [71] showed that exposure to TNF-a alone could reduce colla-
gen production by 30–35%. Stimulation with IL-1b alone decreases
collagen deposition in both MC3T3-E1 cells [72] and the osteosar-
coma cell line MG-63 [71]. These studies support the drop in colla-
gen identified from ToF-SIMS analysis and the subsequent
quantification of a 44.1% reduction in collagen content in CSM after
exposure to a cocktail of pro-inflammatory cytokines at day 7 in
our model.

Whilst several studies have suggested that IL-1b [72] and IFN-c
[73] induce a slight decrease in non-collagenous protein expres-
sion by bone cells, no significant decrease in fibronectin or total
protein content was seen in CSMs produced after exposure to a
combined cocktail of cytokines at early or late time points.

The mechanisms of action of IL-1b, TNF-a and IFN-c have been
well described. These pro-inflammatory cytokines are understood
to influence the ECM through multiple pathways, including the
down-regulation of collagen I gene expression [74,75]. TNF-a in
particular has also been shown to disrupt collagen fibril assembly
[76]. Additionally, cytokines, including IL-1b and TNF-a, are known
to promote expression of a range of matrix metalloproteases
(MMPs), many of which exhibit collagenolytic activity [3,77].
Whilst IFN-c has been shown to down-regulate several MMPs,
the synergistic effect these cytokines in bone cells has been dem-
onstrated to result in a loss of collagen [78]. Reduced percentage
area and increased heterogeneity of collagen I coverage may poten-
tially be explained by the action of MMPs to actively degrade pre-
viously deposited ECM, although their presence or activity was not
investigated here. Not all ECM components are down-regulated by
inflammatory cytokines. The deposition of proteoglycans, includ-
ing decorin, biglycan and versican, which both act to structurally
organize the ECM and are part of complex transduction networks
for inflammatory signals, are increased in fibroblasts treated with
IL-1b and TNF-a [79]. Decorin expression is increased in smooth
muscle cells treated with IL-1b. Whilst not explored in this study,
it may be hypothesized that cytokine-induced proteoglycan syn-
thesis is a factor in the maintenance of total protein levels
observed in cytokine-challenged CSMs.

4.4. Adhesion of reseeded mPOb cells

As the initial interaction between seeded cells and a surface,
adhesion plays an important role in subsequent cell behavior. On
proteinaceous surfaces, this is mediated by the interactions of cell
binding ligands with specific amino acid binding motifs found in
the surface’s constituent proteins. The serum-free adhesion of
mPOb cells was higher on CSM surfaces than on any single ECM
protein or binary mixture. Whilst the adsorbed protein coats will
present appropriate binding motifs, their homogeneous nature
may mean that these sites are sub-optimally oriented or available
for integrin interactions. CSMs, however, are deposited in situ in a
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complex structure of fibers and bundles determined by the secret-
ing cell population, and therefore may present binding sites with
better accessibility and availability. Additionally, CSMs contain a
wide mixture of components, some of which may complement
and assist in cell binding. Differences in the adhesion of mPOb cells
to different adsorbed protein mixtures were observed (Fig. 5).
Adhesion was consistently lowest on pure collagen I and highest
on pure fibronectin, with the 50:50 v:v binary mixture showing
intermediate adhesion, corresponding to previously reported
results [80]. This is likely due to differences in the rate of integrin
binding. Binding to collagen I is predominantly through the a1b1
and a2b1 integrins, whilst fibronectin binding is mediated through
the interaction of a range of integrins with the Ar–Gly–Asp (RGD)
motif [81]. Mixed formulations may not perform as expected for
simple binary mixtures as collagen I contains a specific fibronectin
binding site that regulates fibronectin fibril formulation, possibly
leading to more complex interactions between the two compo-
nents [82].

A small but significant decrease in cell adhesion is seen between
CSMs exposed to cytokine challenge at day 7 and their control. A
similar difference is not observed with cytokine challenge at day
12. This difference in adhesion may be due to several changes in
the CSM induced by exposure to cytokines during deposition. The
drop in collagen content and increase in the heterogeneity of dis-
tribution caused by cytokine challenge, demonstrated earlier,
may result in decreased density of binding motifs in collagen I
available for integrin binding or the distortion of ECM structure
and potentially other related parameters, including mechanical
and topological properties, leading to concealed or obscured bind-
ing sites. It has recently been shown that cell adhesion is depen-
dent on the matrix fiber stiffness, orientation and available
adhesive area [83]. Alternatively, cytokine treatment may have
damaged other ECM components that support cell binding, such
as fibronectin, with its extensive RGD motifs. Although beyond
the scope of the present investigation, these hypotheses may be
tested in future studies through the use of integrin blocking or
knockdown experiments.

4.5. Morphology of reseeded mPOb cells

When seeded at sub-confluence to minimize cell–cell interac-
tions, mPOb cells were shown to present a smaller spread area
and higher aspect ratio on CSM surfaces (Fig. 6A) than on adsorbed
proteins (Fig. 6B), although many cells remained rounded (aspect
ratio <3). A large number of cells were seen with more elongated
aspect ratios. This corresponds with previously reported studies
of cell morphology on CSMs [84].

Cell spreading and aspect ratio may be controlled by a range of
surface parameters, including, but not limited to, ECM composi-
tion, stiffness and ligand dentistry, topographic roughness and
alignment, ECM restriction, porosity, elastic behavior and cross-
linking, and may influence cell–cell signaling, cell contractility, cell
adhesions and cell motility [85]. CSMs present a fibrous surface
rather than the homogeneous relatively flat surface of adsorbed
proteins. Alignment of cells along these structures, through both
preferential movement and spatial restriction, can be seen to result
in elongation of cell shape. Additionally, the presumably more het-
erogeneous distribution of binding ligands in CSMs may lead to
contortion of cell shape as focal adhesions are formed.

On CSMs not exposed to cytokines, mPObs reach a maximum
aspect ratio of �8. However, on CMSs that did see cytokine chal-
lenge, both at day 7 and at day 12, a notable cluster of small, highly
elongated cells is noted. This cluster, representing <7% of cells, is
clearly separated from the bulk population. Importantly, biochem-
ical analysis could not identify a significant difference between
CSMs with or without cytokine treatment at day 12. However,
ToF-SIMS analysis was able to separate these matrices, indicating
both the advantages of sensitive surface analysis techniques and
that the mechanisms causing this difference in cell behavior may
be more complex than a simple alteration of ECM composition
and collagen distribution.

Considering the effects of cytokine treatment on osteoblast CSM
as previously discussed, it is possible to hypothesize as to the cause
of this morphological cluster. First, it may be due to areas of
decreased availability of specific binding ligands, either through
decreased density or by deactivation through cryptic or unfolding
mechanisms [86]. Equally, cytokine challenge may alter levels of
ECM crosslinking, which may control folding and stretching in
new ECM deposited by reseeded cells as they interact with the
matrix [87]. Previous studies have demonstrated that decreased
collagen density may yield an increased cell aspect ratio and a
decreased surface area, increasing the number of projections of
fibroblasts [88]. Decreased collagen coverage prompted by cyto-
kine challenge may increase the size of lacunar area (areas without
matrix), and hence between available collagen I binding sites. Sup-
porting this hypothesis, Dumas et al. [89] showed that mechanical
stimulation during CSM production increased matrix lacunar areas,
leading to a subsequent decrease in cell circularity. In synthetic
studies, altering the spacing and size of protein islands may manip-
ulate the cell morphology by controlling integrin clustering and
focal adhesion maturation [90,91]. Secondly, possible changes to
ECM topology may lead to localized spatial restriction of cells as
they align to features of the matrix. A variety of synthetic systems
have shown how topography, both random and aligned, can direct
cell morphology [92]. In a CSM system, Cukierman et al. [93]
showed that flattening matrices with a weight increased the cell
spread area and reduced the aspect ratio of reseeded fibroblasts.
Thirdly, changes to ECM stiffness or elasticity may also come into
play. The fibrous nature of ECM can result in complex non-elastic,
viscous behavior [94]. Prewitz and co-workers [18] showed that
CSMs from different culture environments exhibit significantly dif-
ferent Young’s moduli. It is likely that all of these mechanisms, and
more, contribute to the effects observed. Although not investigated
in this study, these factors could be considered through the com-
parison of cell behavior on CSMS to that on other quasi-vivo sub-
strates such as Matrigel, or synthetic substrates with controlled
stiffness and topography. The possibility that the observed changes
in both morphology and adhesion are the effects of an inflamma-
tory response to residual cytokines, entrapped within the matrix
from prior cytokine challenge and retained post-decellularization,
must be considered as a potential confounding factor. Previous
studies have shown that growth factors, including bone morphoge-
netic proteins and vascular endothelial growth factor, may be
retained in CSMs [23,24]. However, preliminary studies to measure
the inflammatory marker nitric oxide on mPOb cells reseeded on
cytokine challenged showed this to be not significantly different
from baseline (data not shown), suggesting that this is not a con-
founding effect on the conclusions drawn here.

5. Conclusions

This study has demonstrated the production of CSMs from
mouse primary osteoblasts exposed to cytokine challenge during
matrix deposition. CSMs were found to be cell free, and to retain
relevant ECM components and structure. Analysis of ToF-SIMS
spectra obtained from CSMs allows the different cytokine chal-
lenge regimes to be differentiated. Comparison with adsorbed pro-
tein mixtures of collagen I and fibronectin suggest that the spectral
differences between matrices produced with and without cyto-
kines are associated with a loss of collagenous proteins. This is con-
firmed by histology and immunocytochemistry, demonstrating a
drop in collagen coverage and mass in CSMs exposed to cytokine
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challenge midway through matrix deposition. These differences in
ECM composition and structure were demonstrated to influence
the adhesion and morphology of cells reseeded on cytokine-chal-
lenged matrices, which may direct subsequent cell fate and
function.

The production and analysis of novel CSMs from simulated
inflammatory environments demonstrated in this study further
highlights the utility of CSM systems to investigate ECM-based dis-
ease states. This work provides insights into the effect of cytokines
involved in inflammation on ECM composition and structure, as
well as subsequent cellular behavior. It builds on previous surface
analytical studies of ECM materials and represents the first inves-
tigation of CSMs by ToF-SIMS. It also provides a basis for further
application of surface analytical techniques to examine a range of
decellularized systems.
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Appendix A. Figures with essential color discrimination

Certain figures in this article, particularly Figs. 1, 3–6 are diffi-
cult to interpret in black and white. The full color images can be
found in the on-line version, at http://dx.doi.org/10.1016/
j.actbio.2014.12.005.
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