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1. Introduction

In this paper we study the Random Coefficient Autoregressive (RCA) model

Xt = (ϕ+ bt)Xt−1 + et, 1 ≤ t <∞, where X0 is an initial value. (1.1)

Model (1.1) has been paid considerable attention by the literature, mainly due to its flexibility
and analytical tractability. We refer to the monograph by Nicholls and Quinn (2012) for an
excellent survey of early results, and also to the references in the contribution by Aue and
Horváth (2011).
Estimation of (1.1), and in particular of ϕ, has been extensively studied. Aue et al. (2006)
and Berkes et al. (2009) use the quasi–maximum likelihood (QML) method to estimate the
regression coefficient, showing that the asymptotic distribution of the estimated ϕ is normal
irrespective of the actual value of ϕ, as long as E

(
b2t
)
> 0. Hill and Peng (2014) propose an

empirical likelihood (EL) based estimator which is shown to be asymptotically normal even
in the boundary case E

(
b2t
)

= 0. Finally, Schick (1996) and Koul and Schick (1996) discuss
the weighted least squares (WLS) approach, showing that it works well in comparison to the
maximum likelihood approach.

Fewer contributions are available on inference for E
(
b2t
)

= τ2 and E
(
e2t
)

= σ2. An exception is

the article by Aue and Horváth (2011), who develop a QML approach to estimate
{
ϕ, τ2, σ2

}
,

showing that the estimators of
{
ϕ, τ2

}
are consistent and always asymptotically normal,

irrespective of whether Xt is stationary or not, as long as τ2 > 0. Horváth and Trapani
(2016) extend the theory to a panel data context. In particular, the results in Horváth and
Trapani (2016) also show that, when Xt is nonstationary, the WLS estimator has a slower
rate of convergence than the ordinary least squares (OLS) estimator (see Aue et al., 2006, for
a review of results). Given that standard normal inference is desirable, employing the WLS
(or a QMLE) approach is well–justified when τ2 > 0. However, when τ2 = 0, asymptotic
normality does not hold for the WLS or the QMLE estimators in the nonstationary case,
thereby making such classes of estimators less desirable than the standard OLS estimator,
for which the limiting distribution (not normal) is known although non standard - a notable
exception is the contribution by Hill and Peng (2014), who propose a way of avoiding this
shortcoming. Thus, it is important to have a test to understand whether (1.1) is genuinely a
random coefficient model or not, which corresponds to the cases τ2 > 0 and τ2 = 0 respectively.
Despite its importance, testing for the randomness of the autoregressive root in (1.1) has not
been fully studied by the literature, in particular when Xt is nonstationary. This is primarily
due to the well-known “boundary problem” (see e.g. Davies, 1977) - Akharif and Hallin (2003)
provide an insightful discussion of this issue in the context of the RCA set-up. Nicholls and
Quinn (2012) consider a test for τ2 = 0, based on the LM principle, but this is valid only
when considering stationary data. More recently, in a seminal contribution on inference when
a parameter lies on the natural boundary of the parameter space, Andrews (2001) studies the
case of a random coefficient model under the assumption of stationarity. Similarly, Akharif
and Hallin (2003) develop an efficient test for randomness in an RCA(p) model for p ≥ 1. In
addition to requiring the estimation of the density of the innovation et, however, their test
also hinges on the assumption that the roots of the autoregressive polynomial (obtained by
setting the random shocks bt equal to zero) are outside the unit circle, thereby restricting the
presence of nonstationarity. Similar restrictions are also needed for other tests developed by the
literature: examples include Ramanathan and Rajarshi (1994), Lee (1998), Nagakura (2009),
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and also Carrasco et al. (2014), albeit the last paper fits within a more general set-up. Parallel
to these contributions, the econometric literature has also investigated the use of RCA models
as a flexible alternative to a unit root specification; in particular, tests have been developed for
H0 : τ2 = 0 when ϕ = 1. This set-up is arguably of great importance: when τ2 = 0, equation
(1.1) is the standard unit root process; conversely, the case in which ϕ = 1 and τ2 > 0 - known
in the literature as a Stochastic Unit Root (STUR) process - represents as a series which has
periods of explosive and stationary dynamics (see the seminal contribution by Granger and
Swanson, 1997). Within this framework, McCabe and Tremayne (1995) propose a test for H0 :
τ2 = 0; however, this approach constrains (1.1) to be either a unit root or a STUR process
- see also Leybourne et al. (1996) and Distaso (2008) for related contributions. Despite the
significant application potential of STUR processes, this somewhat limits the generality of the
approach: for example, the test by McCabe and Tremayne (1995) is inconsistent in presence
of a STUR process with explosive behaviour (see Nagakura, 2009), which may be potentially
useful when testing for bubbles (see Phillips et al., 2011; and Banerjee et al., 2013).

To the best of our knowledge, no test is available which can be applied even when Xt is
nonstationary, and indeed without any prior knowledge as to whether Xt is stationary or not.
Indeed, testing for genuine randomness in (1.1) with such a level of generality is not a trivial
problem, on account of the several factors mentioned above.
In this paper, we fill this gap by proposing a test for H0 : τ2 = 0. Thanks to the self-normalised
nature of the WLS estimator, our test is robust to the stationarity or lack thereof of Xt,
and no prior knowledge of this is required; also, our test is not affected by the well-known
inconsistency of the estimator of σ2 when Xt is nonstationary (see Aue and Horváth, 2011).
In addition to this, motivated by a recent paper by Dette and Wied (2016), we also study a
test for “relevant” randomness as an application of our results on the limiting distribution of
the WLS estimator of τ2.

Hypotheses of interest and testing approach

Our main contribution is to develop a test for the following hypothesis testing framework{
H0 : τ2 = 0
HA : τ2 > 0

. (1.2)

Due to the difficulties in constructing a test statistic for H0 : τ2 = 0 that does not require
prior knowledge of the dynamic properties (stationarity or not) of Xt, we construct a test
statistic which diverges to positive infinity under H0 in all possible cases, whilst being bounded
under the alternative HA. Thence, we exploit such divergence by proposing an approach
based on randomising the test statistic. In particular, we follow Corradi and Swanson (2006):
randomisation is employed in conjunction with sample conditioning, so that the asymptotics
is derived conditional on the sample. We point out that this approach, and this mode of
convergence, may be viewed as related to the bootstrap; indeed, in a cognate contribution
on testing for a unit root, Chang (2012) relies on similar arguments, explicitly based on the
bootstrap.
As mentioned above, we also consider a test for{

H0 : τ2 ≥ ∆
HA : τ2 < ∆

, (1.3)
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where ∆ > 0 is a threshold below which the researcher may consider randomness in the
autoregressive root to be negligible for practical purposes.

The paper is organised as follows. We state and discuss the main assumptions, and derive
the WLS estimator in Section 2, where we also study the asymptotics of the estimator of
τ2. Section 3 contains the construction of the test statistic and the relevant asymptotics.
Evidence from synthetic data is reported in Section 4, and some illustrations using real data
are in Section 4.2. Section 5 concludes. Technical lemmas, the proofs of the main results,
further discussion and numerical evidence are reported in the online supplement.

2. Assumptions and estimation

Depending on the value taken by E ln |ϕ+ b0|, three separate regimes can be identified for
the causal solutions of (1.1).
(i) If E ln |ϕ+ b0| < 0, then Xt converges exponentially fast for all initial values X0 to the
strictly stationary solution of

X̄t = (ϕ+ bt) X̄t−1 + et, −∞ < t <∞

(cf. Nicholls and Quinn, 2012). In particular, the stationary solution for X̄t is given by

X̄t =

t∑
s=−∞

es

t∏
z=s+1

(ϕ+ bz) . (2.1)

Note that, when τ2 > 0, E ln |ϕ+ b0| can be negative even when ϕ = 1: thus, the STUR
process can converge to a strictly stationary solutions, although in such a case X̄t has an
infinite second moment (see Hwang and Basawa, 2005).
(ii) If E ln |ϕ+ b0| > 0, then Xt exhibits an explosive behaviour. This case has also been
studied in depth in the literature: Berkes et al. (2009) show that |Xt| → ∞ exponentially fast.
(iii) In the boundary case E ln |ϕ+ b0| = 0, Xt is nonstationary. This case has been paid
comparatively less attention in the literature: Horváth and Trapani (2016) show that |Xt|
diverges in probability, but at a rate slower than exponential.
Note that the classification above holds for the RCA(1) as well as the AR(1) models, i.e.
for τ2 > 0 and τ2 = 0. However, the behaviour of the estimators for the parameters will be
different in the two models. Also, it is important to note that the STUR model mentioned
above does not naturally fall into any of these categories.

We now discuss the WLS estimators for σ2 and τ2. Let ut = et + btXt−1. We have

u2t = σ2 + τ2X2
t−1 + εt, where εt =

(
e2t − σ2

)
+
(
b2t − τ2

)
X2
t−1 + 2etbtXt−1.

Assuming that et and bt are independent, and independent over t, we get

Var (εt|Xt−1) =E
(
e2t − σ2

)2
+X4

t−1E
(
b2t − τ2

)2
+ 4σ2τ2X2

t−1

=a0 + a1X
2
t−1 + a2X

4
t−1.
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Based on these considerations, the infeasible WLS estimators of
{
σ2, τ2

}
can be defined as

(see also Janečková and Prášková, 2004)

{
σ̃2, τ̃2

}
= arg min

T∑
t=2

[
u2t − c0 − c1X2

t−1
1 +X2

t−1

]2
. (2.2)

The feasible version of (2.2) can be obtained as follows. Let

ût = Xt − ϕ̂Xt−1, (2.3)

where ϕ̂ is the WLS estimator of ϕ defined as

ϕ̂ =

T∑
t=2

XtXt−1

1 +X2
t−1

T∑
t=2

X2
t−1

1 +X2
t−1

. (2.4)

Then, based on (2.2), the feasible estimators of τ2 and σ2 are

τ̂2 =
τ̂21
τ̂22
,

with

τ̂21 =

T∑
t=2

û2tX
2
t−1(

1 +X2
t−1
)2 −

[
T∑
t=2

û2t(
1 +X2

t−1
)2
][

T∑
t=2

X2
t−1(

1 +X2
t−1
)2
][

T∑
t=2

1(
1 +X2

t−1
)2
]−1

,

τ̂22 =

T∑
t=2

(
X2
t−1

1 +X2
t−1

)2

−

[
T∑
t=2

X2
t−1(

1 +X2
t−1
)2
]2 [ T∑

t=2

1(
1 +X2

t−1
)2
]−1

,

and

σ̂2 =
σ̂2
1

σ̂2
2

,

with

σ̂2
1 =

T∑
t=2

û2t(
1 +X2

t−1
)2 − τ̂2 T∑

t=2

X2
t−1(

1 +X2
t−1
)2 and σ̂2

2 =

T∑
t=2

1(
1 +X2

t−1
)2 .

We now introduce and discuss the main assumptions. The first assumption must be satisfied
by Xt irrespective of the regime it belongs to.

Assumption 1. It holds that: (i) {bt,−∞ < t <∞} and {et,−∞ < t <∞} are independent
sequences; (ii) {bt,−∞ < t < ∞} are independent and identically distributed random vari-
ables; (iii) {et,−∞ < t < ∞} are independent and identically distributed random variables;
(iv) Eb0 = Ee0 = 0; (v) E |b0|ν <∞ and E |e0|ν <∞ for some ν > 2 (vi) σ2 > 0; and (vii)
X0 is independent of {et, bt, t ≥ 1}.



L. Horváth and L. Trapani/Testing for randomness 6

Assumption 1 is relatively standard, and it can be compared to the assumptions in Berkes
et al. (2009), or Aue et al. (2006). A useful consequence of the assumption, which we will
use extensively in the remainder of the paper, is that if τ2 = 0, then bt = 0 must hold with
probability 1.
The assumption of serial independence can be relaxed to consider (weak) dependence. All our
results would hold, unmodified, as long as the following results hold: the ergodic theorem; the
strong approximation for the partial sums of bt and of et; the Central Limit Theorem. All of
these have been derived for dependent data - see e.g. the papers by Wu (2005), Wu (2007)
and Berkes et al. (2014). Thus, our results and our test can be extended to the case of serial
dependence. Indeed, as we show later on, our test statistic requires only rates, thus avoiding
having to estimate any long run variance.

Stationary units must also satisfy the following assumption.

Assumption 2. If E ln |ϕ+ b0| < 0, then it holds that (i) P{|X̄0| = c} < 1 for all c; and (ii)
P{|e0| = c} < 1 for all c.

We point out that, in part (i), X̄0 is the stationary solution at t = 0, and not an initial
value for Xt. In essence, by Assumption 2, the process X̄t and the innovations et are “proper”
random variables, as opposed to constants. Assumption 2 is a technical requirement to avoid
degeneracy of the estimators. In particular, it is needed in order for the denominators τ̂22 and
σ̂2
2 to be nonzero with probability 1 (see Lemma A1).

When Xt is an explosive process, we need the following assumption in addition to Assumption
1.

Assumption 3. If E ln |ϕ+ b0| > 0, then it holds that (i) P{X0 +Y = 0} = 0, when τ2 > 0,
where Y =

∑∞
t=1 et exp{

∑t
s=1 ln |ϕ+ bs|}[sign(

∏t
s=1(ϕ+ bs))]; and (ii) P{X0 + Y∗ = 0} = 0,

when τ2 = 0, where Y∗ =
∑∞
s=1 es exp(−s ln |ϕ|)sign(ϕs).

Assumption 3 is also used in Berkes et al. (2009), and, together with Assumption 1, it ensures
that |Xt| → ∞ at an exponential rate, and that, when suitably normed, Xt converges to a
nonzero limit (cf. Lemma A3). Consistency and limiting distribution of τ̂2

This section contains the strong rates of convergence of τ̂2, which are needed in order to
construct the randomised test in Section 3; as an ancillary result, we also report the limiting
distribution of τ̂2.
In order to derive the rates of convergence and the asymptotic distribution, we also need to
strengthen Assumption 1.

Assumption 4. It holds that (i) if E ln |ϕ+ b0| 6= 0, then E(e20 − σ2)2 = κ4e < ∞ and
E(b20−τ2)2 = κ4b <∞; (ii) if E ln |ϕ+ b0| = 0 and τ2 = 0, then E |e0|ν <∞ and E |b0|ν <∞
for some ν > 4.
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Theorem 1. We assume that Assumptions 1–4 are satisfied. Then, for all ε > 0:
(i) if τ2 = 0, we have

τ̂2 =


o(T−1/2(lnT )3/2+ε) a.s. if |ϕ| < 1,

o(T−3/4(lnT )5/2+ε (ln lnT )
1+ε

) a.s. if |ϕ| = 1,

o(T−1(lnT )3/2+ε) a.s. if |ϕ| > 1.

(ii) if τ2 > 0 and E ln |ϕ+ b0| 6= 0 we have

τ̂2 − τ2 = o(T−1/2(lnT )3/2+ε) a.s.

Theorem 1 provides strong rates for τ̂2 and for both the cases of non random coefficients
(τ2 = 0) and random coefficients (τ2 > 0). When τ2 = 0, in particular, τ̂2 is always consistent
at a rate (at least) T−1/2. We show in Theorem 2 that, at least in the case E ln |ϕ+ b0| 6= 0,
the almost sure rates are optimal up to the (lnT )3/2+ε terms.
The only case which is left out of the theorem is the case where E ln |ϕ+ b0| = 0 and τ2 > 0.
This is due to the fact that, in this case, we are not able to compute the rate of divergence
of the denominator τ̂22 ; in turn, this is due to the fact that we are not able to find the rate
at which |Xt| diverges as t → ∞. This issue is highly non-trivial, and we also refer to the
comments, albeit in a different set-up, by Francq and Zaköıan (2012); similarly, Berkes et al.
(2009) derive a full-blown set of results for the divergence of Xt when this is nonstationary,
but no results are derived for the boundary case.

Although not directly needed for the construction of our test statistic, we now report the
limiting distribution of τ̂2 for both cases of τ2 = 0 and τ2 > 0 and under the restriction
E ln |ϕ+ b0| 6= 0. When τ2 > 0, we show that asymptotic normality holds, similarly to the
estimator for ϕ in Aue et al. (2006) and Berkes et al. (2009). When τ2 = 0, we show that
asymptotic normality holds for E ln |ϕ+ b0| < 0, whereas it fails when E ln |ϕ+ b0| > 0.
We consider the following estimator of the asymptotic variance of τ̂2 (which is constructed
under the assumption of independence)

V̂T =
(
τ̂22
)−2

WT , (2.5)

having defined the short–hand notation

WT =

T∑
t=2

[
zt

Dt(
1 +X2

t−1
)2
]2
, (2.6)

where

Dt = X2
t−1 −

[
T∑
t=2

1(
1 +X2

t−1
)2
]−1 [ T∑

t=2

X2
t−1(

1 +X2
t−1
)2
]
, (2.7)

and
zt = û2t −

(
σ̂2 + τ̂2X2

t−1
)
.

The proof of Theorem 2 requires a mildly stronger version of Assumption 4.
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Assumption 5. If E ln |ϕ+ b0| 6= 0, it holds that E|e0|ν < ∞ and E|b0|ν < ∞ with some
ν > 4.

Theorem 2. We assume that Assumptions 1–5 are satisfied, and consider the case E ln |ϕ+ b0| 6=
0.
(i) If τ2 > 0, then we have that

V̂
−1/2
T

(
τ̂2 − τ2

) D→ N (0, 1) . (2.8)

(ii) If τ2 = 0 and E ln |ϕ+ b0| < 0, then (2.8) holds.
(iii) If τ2 = 0 and E ln |ϕ+ b0| > 0, then we have that

T τ̂2
D→

∞∑
t=2

(e2t − σ2)
Dt

(1 +X2
t−1)2

. (2.9)

Theorem 2 states that τ̂2 always follows a normal distribution when τ2 > 0: this is due to the
self–normalised nature of the WLS estimator. The same result holds even in the explosive case
E ln |ϕ+ b0| > 0. Note that the asymptotic variance of T 1/2

(
τ̂2 − τ2

)
is different for stationary

or explosive regimes (cf. Lemmas A9 and A11), but V̂T provides the correct norming for both
cases. Thus, irrespective of whether the data are stationary or explosive, standard normal
inference can be applied whenever τ2 > 0. On the other hand, standard normal inference
does not hold when E ln |ϕ+ b0| > 0 and τ2 = 0. Technically, this is due to the fact that the
variance of the leading term stays bounded as T → ∞, which is a degenerate case in which
the central limit theorem cannot be shown – see e.g. Davidson (1993). Also, we do not have a
distributional result for the case E ln |ϕ+ b0| = 0. This is because, when τ2 > 0, we are not
able to derive the rate at which |Xt| diverges as t → ∞, which, in turn, makes it impossible
to show the consistency of σ̂2.
As far as rates of convergence are concerned, we are not aware of an OLS based inferential
theory for τ2; however, on the grounds of available results on the OLS estimation of ϕ when
|ϕ| > 1 (see Wang and Yu, 2015, and the references therein), it can be expected that OLS
based inference would have faster rates of convergence when E ln |ϕ+ b0| > 0, but standard
normal inference would no longer hold.
Finally, note that we are able to obtain consistent estimators for ϕ and τ2; however, when Xt

is explosive, σ̂2 is inconsistent (cf. Lemma A10).

3. Testing for randomness

As mentioned in the introduction, our results afford the construction of two different tests. In
this section, we build on the results in the previous section in order to construct two tests for
(1.2) - Section 3.1 - and (1.3) - Section 3.3 - respectively. We point out that, in this section,
we only focus on the fixed parameter case, making no attempt to investigate the presence of
power versus local alternatives. We postpone this to the next section, where we report some
theoretical results and numerical evidence.
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3.1. Testing for H0 : τ2 = 0

In this section, we propose a randomised test statistic for (1.2). Define

ψT = exp

{∣∣∣∣∣ Tκ

V̂
−1/2
T τ̂2

∣∣∣∣∣
}
, (3.1)

for some user–defined κ ∈
(
0, 12
)

- we defer comments on the choice of κ until the end of this

subsection. Note that, in (3.1), the presence of V̂
−1/2
T makes the test statistic scale invariant;

using the absolute value prevents the argument of the exponential from diverging to negative
infinity.
In the Supplement, we show that, under H0 (and for all values of ϕ), it holds that

P
{
ω : lim

T→∞
ψT =∞

}
= 1;

similarly, under HA (for E ln |ϕ+ b0| 6= 0), it holds that

P
{
ω : lim

T→∞
ψT = 1

}
= 1;

therefore, we can assume that limT→∞ ψT =∞ holds under the null, and that limT→∞ ψT = 1
holds under the alternative (except for the case E ln |ϕ+ b0| = 0, which we comment on after
Theorem 4). Given that ψT → ∞ under the null, we cannot use ψT directly and we instead
propose a randomised version of it. We present the construction of the test statistic as a four
step algorithm.

Step 1 Generate an artificial sample {ξj , 1 ≤ j ≤ R} of independent and identically dis-
tributed (across j) random variables according to the distribution function G.
Step 2 Define

ζj (u) = I [ψT ξj ≤ u] .

Step 3 Compute

ϑT,R (u) =
{G (0) [1−G (0)]}−1/2√

R

R∑
j=1

[ζj (u)−G (0)] , −∞ < u <∞

Step 4 Define the test statistic

ΘT,R =

∫ ∞
−∞

[ϑT,R (u)]
2
dF (u) ,

where F is a distribution function.

We point out that there are various ways in which the randomisation algorithm can be carried
out; the one proposed above has been employed in several contributions (we refer to Corradi
and Swanson, 2006, where it is proposed).
Consider the following regularity conditions:

Assumption 6. It holds that (i)
∫∞
−∞ |u|

2dF (u) < ∞; and (ii) G has a bounded density
function with G (0) 6= 0 and G (0) 6= 1.
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Let P ∗ denote the conditional probability with respect of {et, bt,−∞ < t < ∞}; we use the

notation “
D∗→” and “

P∗→” to define, respectively, conditional convergence in distribution and in
probability according to P ∗. Finally, we let χ2

1 denote a chi-square with one degree of freedom.

Theorem 3. We assume that Assumptions 1–6 are satisfied. If H0 holds, then, as min(T,R)→
∞ with

R1/2 exp (−Tκ)→ 0, (3.2)

it holds that ΘT,R
D∗→ χ2

1 for almost all realisations of {ei, bi,−∞ < i <∞}.

Theorem 3 states that, under the null, ΘT,R follows a chi–squared distribution with one degree
of freedom; the result holds for all samples, except for a set of measure zero. Condition (3.2)
poses a restriction on the relative rate of expansion between the actual sample size T and
the artificial sample size R as they both pass to infinity, as is customary in this literature. In
principle, (3.2) offers a selection rule for R, although it is arguably a very mild condition.

Theorem 4. We assume that Assumptions 1–6 are satisfied, and consider the case E ln |ϕ+ b0| 6=
0. Under HA, as min(T,R)→∞, it holds that

1

R
ΘT,R

P∗→
∫∞
−∞ [G(u)−G (0)]

2
dF (u)

G (0) [1−G (0)]
, (3.3)

for almost all realisations of {ei, bi,−∞ < i <∞}.

Theorem 4 states that, under the alternative, the test statistics diverges to positive infinity
as fast as R, thus ensuring consistency. From a technical point of view, the difference with
the previous theorem is that we are now ruling out the case E ln |ϕ+ b0| = 0, for the same
reasons as above (namely, the difficulty in determining at which rate |Xt| diverges when
E ln |ϕ+ b0| = 0). It could be shown that a sufficient condition to have power, in this case,
would be

T−(1/2+ε)τ̂22 →∞ a.s.

as T →∞, but there is no way of formally verifying this.

After presenting Theorems 3 and 4, we are able to make some heuristic comments on the
tuning parameter κ, defined in (3.1). According to the theory presented above, κ impacts on
the well-known trade-off between size and power. Under H0, essentially, it is required that
ψT →∞ as fast as possible as T →∞. Indeed, (3.2) arises from the fact that the test statistic
ΘT,R has a non-centrality parameter which vanishes as long as R1/2 exp (−Tκ) → 0; upon
setting R = T , such non-centrality will vanish more quickly, the larger κ is. On the other hand,
under HA, it is required that ψT converge to a finite constant (which is 1 by construction);
again it would be desirable for this to happen as fast as possible as T → ∞. In (3.1), our

results show that V̂
−1/2
T τ̂2 is driven by V̂

−1/2
T τ2, and that, in the worst case scenario, V̂

−1/2
T

diverges to infinity as fast as T 1/2. Since we require that, under HA, Tκ

V̂
−1/2
T τ̂2

→ 0, this entails

that it must be that κ < 1
2 : the smaller κ, the faster the drifting to zero. This explains why

we require κ ∈
(
0, 12
)
, and also in which way the choice of κ will affect the power and the size

of the test; we note, however, that in practice the test is not sensitive to the value of κ even
for small to moderate sample sizes T .
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These comments should also shed some light on the impact of R: on the one hand, R should
be as big as possible, in order to boost the power of the test; on the other hand, by (3.2), a
large value of R will result in size distortion.
Finally, a note on Assumption 1 and its relevance is in order. As mentioned above, the re-
quirements in the assumptions could be relaxed, as long as “strong” results (such as the LLN

and an almost sure version of the Invariance Principle) hold. Under serial dependence, V̂T
is incorrect, and, as a consequence, the results in Theorem 2 do not hold any longer. How-
ever, the test is based on rates rather than limiting distributions, and therefore the results in
Theorems 3 and 4 are robust to the presence of serial dependence.

3.2. Deciding between H0 and HA

As is customary, our test is carried out to decide between the null hypothesis of non-random
autoregression versus the alternative of a random autoregressive root. To this end, in view of
the randomised nature of our statistic, some comments on Theorems 3 and 4 are in order.
Under HA, Theorem 4 readily implies

lim
min(T,R)→∞

P ∗{ΘT,R ≥ cα} = 1,

where cα is defined as P{N (0, 1) ≥ cα} = α, α ∈ (0, 1). This result holds for all values of
E ln |ϕ+ b0| 6= 0 and - similarly to a bootstrap-based procedure - conditional on the sample,
or, equivalently, for almost all realizations of {ei, bi,−∞ < i < ∞}. In essence, the result
entails that whenever a researcher will use ΘT,R, (s)he will reject the null, when false, with
probability one.

Conversely, the implications of Theorem 3 are subtler. The theorem ensures that, under H0

lim
min(T,R)→∞

P ∗{ΘT,R ≥ cα} = α,

again conditional on the sample and for each value of E ln |ϕ+ b0| (including E ln |ϕ+ b0| = 0).
However, our test is constructed using a randomisation which does not vanish asymptotically,
as would be the case e.g. when using the bootstrap, and therefore the asymptotics of ΘT,R is
driven by the added randomness. Thus, different researchers using the same data will obtain
different values of ΘT,R and, consequently, different p-values; indeed, if an infinite number of
researchers were to carry out the test, the p-values would follow a uniform distribution on [0, 1].
This is a well-known feature of randomised tests. Of course, not withstanding this potential
shortcoming, the randomised test can be applied as is, accepting that different researchers
may obtain different outcomes with the same data: randomised tests are well-known in the
literature and, in some cases, may even have optimality properties (see e.g. Lehmann and
Romano, 2006), although the arbitrariness described above is undesirable.
However, it is possible to ensure that the decision between H0 and HA is not subject to such
arbitrariness. In particular, Geyer and Meeden (2005) propose the use of the so-called “fuzzy
confidence intervals”, which are also used in Song (2016) and can be computed as follows.
Each researcher, instead of computing ΘT,R just once, will compute the test statistic S times,

at each time s using an independent sequence
{
ξ
(s)
j

}
for 1 ≤ j ≤ R and 1 ≤ s ≤ S, thence
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defining

Q
(
τ2;α

)
= S−1

S∑
s=1

I
[
Θ

(s)
T,R

(
τ2
)
≤ cα

]
. (3.4)

The function Q
(
τ2;α

)
is called the “randomised confidence function” (see Song, 2016); an

immediate consequence of Theorems 3 and 4 is (see also Corollary 3.1 in Song, 2016)

limmin(T,R,S)→∞ P ∗{Q
(
τ2;α

)
= 1− α} = 1 for τ2 = 0,

limmin(T,R,S)→∞ P ∗{Q
(
τ2;α

)
= 0} = 1 for τ2 > 0,

(3.5)

under (3.2). As S →∞, there is no randomness in Q
(
τ2;α

)
; note also that no restrictions are

required for the rate at which S diverges to infinity, so that S can be chosen arbitrarily large.
From a computational point of view, it is possible to obtain Q

(
τ2;α

)
by modifying (3.1) as

ψ∗T = exp

(
Tκ

V̂
−1/2
T |τ̂2 − τ2|

)
, (3.6)

on a grid of values of τ2 (this could actually be done for a generic test for H0 : τ2 = τ20 , for
any value of τ20 , although in this paper we focus on the case τ20 = 0).
There are at least three ways in which Q

(
τ2;α

)
can be employed. Firstly, it can be reported as

it is: the interpretation of (the graph of) Q
(
τ2;α

)
is, in essence, the same as that of ordinary

(“crisp”) confidence intervals, namely it is a measure of the uncertainty about τ2 (see Geyer
and Meeden, 2005).1 Another possible approach, proposed by Song (2016) is to use a (mildly
conservative) rule based on the confidence set

Cα,β =
{
τ2 : Q

(
τ2;α− β

)
≥ 1− α

}
, (3.7)

deciding in favour of H0 if τ20 ∈ Cα,β , and against otherwise (in our case, of course, τ20 = 0).
As said, this non-randomised decision rule is conservative, but less and less so the smaller β;
we refer to the discussion in Song (2016), where this idea is developed and illustrated. Finally
we note that (3.5) could also lend itself directly to the construction of a decision rule. It could
be shown based on standard arguments that, under H0

lim inf
S→∞

lim
min(T,R)→∞

√
S

2 ln lnS

Q
(
τ2;α

)
− (1− α)√

α (1− α)
= −1. (3.8)

Hence, a “strong rule” to decide in favour of H0 is

Q
(
τ2;α

)
≥ (1− α)−

√
α (1− α)

√
2 ln lnS

S
. (3.9)

Decisions made on the grounds of (3.9) have vanishing probabilities of both Type I and Type
II errors; of course, the same result would be obtained by directly thresholding ψT , but in
that case the choice of the threshold may be difficult to justify.

1We note that the paper by Geyer and Meeden (2005) also provides a full-blown theory of (fuzzy) p-values,
which could be used again for the purpose of decision-making in lieu of ordinary, crisp p-values, although - in
our view - fuzzy confidence intervals are easier to understand and use.



L. Horváth and L. Trapani/Testing for randomness 13

3.3. Testing for H0 : τ2 ≥ ∆

Building on Theorem 2, and inspired by an idea by Dette and Wied (2016), it is possible to
propose a test for “relevant” randomness. As mentioned in the introduction, it is possible that
a small amount of randomness in the autoregressive coefficient (measured as τ2) may actually
be negligible for practical purposes, with a standard and simpler AR (1) model working better
than the RCA(1) model.
This corresponds to testing for (1.3), viz.{

H0 : τ2 ≥ ∆
HA : τ2 < ∆

,

where ∆ > 0 is user-defined and represents a threshold below which randomness, even if
present, can be ignored. In light of Theorem 2, this corresponds to running a one-tailed t-test
based on {

do not reject H0

reject H0
according as V̂

−1/2
T

(
τ̂2 −∆

) { ≥ cα
< cα

,

where cα is defined such that P [N (0, 1) < cα] = α, for a pre-specified level α ∈ (0, 1).
It holds that

Theorem 5. Consider the case E ln |ϕ+ b0| 6= 0, with τ2 ≥ 0. Under the assumptions of
Theorem 2, it holds that

lim
T→∞

P
[
V̂
−1/2
T

(
τ̂2 −∆

)
< cα

]
= α, (3.10)

under H0. Also, under HA, if

lim
T→∞

T 1/2
(
τ2 −∆

)
= −∞, (3.11)

then it holds that
lim
T→∞

P
[
V̂
−1/2
T

(
τ̂2 −∆

)
< cα

]
= 1. (3.12)

Theorem 5 is a direct application of Theorem 2, and thus it can only be applied to the case
E ln |ϕ+ b0| 6= 0. One main advantage of the Theorem is that it exploits the standard normal
inference afforded by the WLS estimator, which holds true even for the case of an explosive
process.

4. Numerical and empirical evidence

In this section, we illustrate the use of our test and its properties, both by simulation (Sec-
tion 4.1) and through an empirical application (Section 4.2). In particular, in Section 4.1,
consistently with similar contributions where randomised tests are developed, we consider the
performance of tests based on the direct use of ΘT,R. In Section 4.2, in order to complement
the results in the previous section, we illustrate through an application the use of (3.9).
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4.1. Simulations

In this section, we present some evidence on the properties of τ̂2, and of inference based on
it. In particular, we consider the bias and the Mean Squared Error (MSE) of τ̂2, and we also
study the empirical rejection frequencies of tests for H0 : τ2 = 0 based on ΘT,R.
Experiments are based on theRCA(1) model defined in (1.1). We have used ϕ ∈ {−1.05,−1,−0.75,−0.5,
−0.25, 0, 0.25, 0.5, 0.75, 1, 1.05}. We have conducted two sets of experiments, which differ in
the way the errors have been simulated: particularly, we have set et ∼i.i.d. N (0, 1) and

et ∼i.i.d.
√

3
5 t5, where t5 denotes a Student t distribution with 5 degrees of freedom - the fac-

tor
√

3
5 rescales the variance to unity. The latter choice should provide some evidence on the

test performance with heavy tailed data (see e.g. Rachev, 2003 for examples of applications
of heavy-tailed distributions to financial data). We have initialised the DGP by setting, in all
cases considered, X0 = 0; however, we have carried out some unreported experiments with
other initialisations, which show that results are virtually unchanged when using different
values of X0. In all experiments involving τ2 > 0, we have simulated bt ∼i.i.d. N

(
0, τ2

)
; we

have also carried out some trials with bt ∼i.i.d.
√

3
5τt5 to evaluate if the power of our test

changes in a significant way, but this does not appear to be the case. Different set-ups, and
other specifications for the other parameters, which have been used for specific experiments,
are described later on.
We generate samples of size T , with a burn-in period of 1, 000 observations to avoid de-
pendence on initial conditions, and use T ∈ {100, 200, 400, 800}. Results are based on 500
simulations; all routines have been written using Gauss 10.

WLS estimation of τ2 and testing for relevant randomness

In the first set of experiments we let τ̂2j denote the estimate of τ2 for iteration j of the
simulation. To save space, results are in Tables D1 and D2 in the Supplement, where we
report the following measures

bias =
1

500

500∑
j=1

(
τ̂2j − τ2

)
, (4.1)

MSE =
1

500

500∑
j=1

(
τ̂2j − τ2

)2
. (4.2)

We set τ2 ∈ {0, 0.125, 0.25, 0.5}: we have also experimented with other values of τ2, but
results are, conceptually, the same. Similarly, we do not report bias and MSE for the case

where et ∼i.i.d.
√

3
5 t5, since results are very similar to the ones in Tables D1 and D2. The

main findings are as follows. Based on the two metrics considered here (bias and MSE), the
WLS estimator τ̂2 seems to behave in the correct way in the majority of the cases considered,
with both measures declining as T increases - with some exceptions, e.g. when ϕ is around
zero and T = 200 and 400 (in such cases, the bias does not decline, although it does decidedly
when T = 800). This is true also for the boundary case τ2 = 0, where rates of convergence
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indicate that the estimator is consistent, but distributional results differ depending on whether
Xt is stationary or not; even in this case there are some exceptions, e.g. when ϕ = −0.75 and
ϕ = −0.5, where the bias slightly increases when switching from T = 100 to T = 200, and
seems to plateau between T = 200 and T = 400. Note how, in all cases considered, the
bias declines when T = 800; the results suggest that bias and MSE are not affected by τ2.
Finally, it is interesting to note that, for finite samples, the WLS estimator τ̂2 seems to have
a downward bias.
We also report the empirical rejection frequencies of the test for H0 : τ2 ≥ ∆, in Tables D4 and
D5 in the Supplement. We have used ∆ = 0.25; unreported experiments show that altering
∆ does not, essentially, change results. The performance of the test is so poor when T = 100
that we do not report this case. When the errors are normal, the test has the correct size for
T ≥ 400, with a tendency to be oversized in some cases for smaller samples; the empirical
rejection frequencies are all below 5% when τ2 = 0.3, even for T = 200, as expected. As far
as power is concerned, this is always good for T ≥ 800, and, as one may expect, it is better
for smaller values of τ2. Conversely, when τ2 approaches 0.25, the power worsens, again as
expected; noticeably, the power is good for the cases where |ϕ| ≥ 1, but much worse whenever

|ϕ| < 1. In the presence of errors with heavier tails (i.e., when et ∼i.i.d.
√

3
5 t5), the size of the

test, when τ2 = 0.25, has a much worse behaviour, showing a marked tendency to over-reject,
which can be interpreted as a result of Assumption 5 failing to hold. Interestingly, the test
has better power than in the presence of Gaussian errors, at least when τ2 is much smaller
than 0.25, but results become worse when τ2 approaches the boundary; as noted before, when
|ϕ| < 1 the power is usually far worse than when |ϕ| ≥ 1.

Empirical rejection frequencies for H0 : τ2 = 0 - size and power

In order to validate the results in Theorems 3 and 4, and in line with other contributions in
this literature, we report the empirical rejection frequencies when using ΘT,R - for the sake of
reproducibility, we note that numbers have been generated with seed set equal to 513. Results
have been obtained by generating ξj as i.i.d. N (0, 1), and drawing the values of u from a
discrete uniform distribution with support {−1, 1}, merely for computational simplicity; we
have also set κ = 0.1, and R = T . We have tried to modify these specifications, but results
are only marginally affected; we therefore recommend these values in applications.
Prior to discussing the results, we point out that, as mentioned at the end of Section 3, one
may not choose to use ΘR,T directly, instead preferring decisions based on Q

(
τ2;α

)
or even

using (3.9). In particular, we have simulated the outcomes of using Cα,β and (3.9) for some of
the specifications used in the main Monte Carlo exercise - although we have not done it for all
possible scenarios, due to the computational burden, we note in particular that (3.9) discerns
between the null and the alternative with a success rate of 100%, even when T = 100. We
refer to the empirical application in the next section for a full-blown implementation of Cα,β
and (3.9).

[Insert Table 1 somewhere here]
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Table 1 contains the empirical rejection frequencies of the test (carried out at a nominal level
α = 0.05) under the two distributional set-ups. Since the number of replications is set equal
to 500, the empirical rejection frequencies have a confidence interval [0.03, 0.07]. All empirical
rejection frequencies fall within this interval, thus ensuring that the test has the correct size for
all cases, and sample sizes, considered. Exceptions are the cases where ϕ = −1.05 and ϕ = −1

for T = 100, where the test is grossly oversized - at least when et ∼i.i.d.
√

3
5 t5, whereas no

particular problems arise when having Gaussian errors. This may however be viewed as a
small sample problem, since when T = 200 the size aligns itself with its theoretical values for
all cases considered.
Interestingly, the distribution of the error term et does not have virtually any impact on the
test size (with the exceptions detailed above); we have carried out a few extra experiments,
which are available upon request, with et having a Student t distribution with a larger degree of
freedom, and as can be expected results are very similar to those reported. The results in Table
1 are quite remarkable, since having an error term with a Student t distribution with 5 degrees
of freedom is at the boundary of our assumptions, where the existence of at least the 4-th
moment is required in order to have our convergence rates (indeed, in the case E ln |ϕ+ b0| = 0,
this is not enough - see Assumption 4(ii)). We conjecture that such robustness may arise from
the fact that our test is based on rates, rather than limiting distributions, for which a slightly
higher moment condition would be required.

We now turn to considering the power. In our experiments under the case E ln |ϕ+ b0| 6= 0,
we have considered τ2 ∈ {0.25, 0.5, 1}, and the same values of T as above - we do not report
the results when τ2 = 1 and T ≥ 400 since the empirical rejection frequencies are all 100%,
similarly to the case T = 200.

[Insert Tables 2 and 3 somewhere here]

Based on Tables 2 and 3, the test seems to have good power: the empirical rejection frequencies
are higher than 50% for all values of ϕ and for both distributional assumptions on et - the
only exception is the case τ2 = 0.25 when T = 100, but even in this case the power picks up
when T ≥ 200. As noted in the case of the test for (1.3), the power of the test is lower when
|ϕ| < 1, compared to the cases |ϕ| ≥ 1.

Finally, we have run some simulations - again under the two distributional assumptions of
Gaussian errors and errors with heavier tails - to investigate the power of the test when
E ln |ϕ+ b0| = 0.

[Insert Table 4 somewhere here]

Results are reported only for T = 100, since whenever T ≥ 200 the power is always 100%
with no exceptions: our test, even in the case E ln |ϕ+ b0| = 0 which is not covered by the
theory, has very good power for all cases considered.
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Power versus local alternatives

All the results derived so far, and in particular Theorem 4, refer to a fixed parameter case,
thereby leaving out the case of local-to-zero τ2 (and, also, of local-to-unit ϕ). We discuss this
case in the Supplement. In particular, we manage to show that, when ϕ is fixed and bounded
away from unity, the test for H0 : τ2 = 0 based on ΘT,R has nontrivial power as long as

T 1/2−κτ2T →∞
T 1−κτ2T →∞

according as
|ϕ| < 1
|ϕ| > 1

, (4.3)

where we have now made the dependence of τ2 on T explicit. The Supplement (see Appendix
C) also contains some (essentially negative) theoretical results on the “near-integrated” case(
ϕT − 1, τ2T

)
= O

(
T−1

)
- although left out in (4.3), it can be argued that there is no power in

such a case. The case of near integration is clearly of theoretical, but also of empirical interest,
since it entails that Xt is mildly explosive or stationary, but close to a unit root behaviour. In
the context of a standard AR (1) model, the literature has extensively studied the case of the
autoregressive root shrinking towards unity as the sample size passes to infinity, starting from
the seminal contribution by Phillips (1988). Phillips and Magdalinos (2007), in particular,
have studied the case where the autoregressive root may be close to unity from below (that is,
a stationary near unit root), and also from above (that is, an explosive near unit root). In the
RCA context, the STUR case has also received some attention, despite its technical difficulties,
and we refer to the contributions by Berkes et al. (2005) (who study near-integrated GARCH
sequences) and Aue (2008). In a recent advance, Lieberman and Phillips (2017a) bridge the
two approaches (random vs deterministic autoregressions) by introducing a hybrid case where
local-to-unit root behaviour may be due to the autoregressive coefficient shrinking to zero
deterministically, and also because of a random shock with vanishing variance - see also
Lieberman and Phillips (2014) and Lieberman and Phillips (2017b). Thus, we also report a
comprehensive Monte Carlo investigation of the properties of our test in the local-to-STUR
case. We use the same specification as above with

ϕ = ϕ (T ) = 1± T−q and bt = τT γt, τT = T−q/2; (4.4)

in (4.4), γt has zero mean, unit variance, and the same distributions (Gaussian and Student
t) as considered above. By (4.4), we are considering both near-stationary and near-explosive
cases (depending on whether ϕT = 1− T−q or ϕT = 1 + T−q); we use these expressions with
some abuse of terminology, based only on the deterministic part of the autoregressive root,
since the case ϕ (T ) = 1 + T−q may well correspond to a stationary case. Based on (4.4), we
set q = q′ − κ, where κ = 0.1 as before, and q′ ∈ {1, 0.9, 0.75, 0.6, 0.5}. Thus, in this set-up,
q′ takes into account two factors that impact on the power of our test: the proximity of ϕT to
unity (via q), and the fact that our procedure, by construction, loses some ability to discern
local alternatives (due to κ).

[Insert Table 5 somewhere here]

We know from the literature (see e.g. Phillips and Magdalinos, 2007 and Aue, 2008) that the
two cases of near-stationarity and near-explosive behaviour entail very different properties for
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the sequence Xt. This can also be evaluated in the light of Lemma C2 in the Supplement,
and especially equations (C14) and (C15). Based on the latter, in the near-explosive case
there should be nontrivial power versus alternatives which are closer to STUR than in the
near-stationary case. Indeed, the table shows that as long as q′ < 1 (and, therefore, as long
as q < 0.9), the power is higher than 50% even for T = 100, with results improving as T
increases. Conversely, in the near-stationary case, equation (C14) suggests that power can
be attained for smaller values of q′ and, therefore, of q. Indeed, the test has no power for
q′ > 0.75, suggesting that the test is unable to discern alternatives which are “too close” to a
local STUR. The power picks up when q′ ≤ 0.75, although a large T is required to have power
larger than 50%. These results reinforce the heuristic conclusion that having a local-to-STUR
from above (near-explosive) or from below (near-stationary) are very different situations,
which correspond to very different test performances. Note, finally, that the distribution of
the error term et does not seem to play any perceivable role in affecting the performance of
the test.
Finally, we have also investigated the bias and MSE of τ̂2 (Table D3 in the Supplement) and
the power of the test for (1.3) under local-to-zero alternatives (Table D6 in the Supplement)
- mainly in order to assess the quality of τ̂2. Bias and MSE exhibit a similar behaviour to
the ones in non-local cases (see Tables D1 and D2); note the negative bias. As far as testing
for H0 : τ2 ≥ ∆ is concerned, in (3.11) we require ∆ > 0. Under ∆ = ∆T → 0, we are not
able to use Theorem 2 if E ln |ϕ+ b0| ≥ 0. This is due to the fact that the WLS estimator
yields standard normal inference even in the nonstationary case, but this fails to hold in the
case of non-random coefficient (see equation (2.9)). In our experiments, the null hypotesis is
represented by the local-to-explosive case, whereas the alternative is the local-to-stationary
case. Under the null, the empirical rejection frequency has the desired behaviour, with the
test having the correct size even when T = 100 and q′ = 1, and irrespective of the distribution
of the error term et: this reinforces the idea that WLS inference is reliable in the local-to-
STUR case from above (i.e. near-explosive). Conversely, the test has good power versus the
alternative hypothesis, but only when q′ ≤ 0.6: again, this confirms the intuition that the
asymptotic distribution of τ̂2 is a less good approximation in the near-stationary case; note
the difference in power between the case of et being Gaussian and Student t, also noted in
the previous set of simulations.

4.2. Empirical illustration

Inspired by the empirical exercise in Hill and Peng (2014), we illustrate our testing procedure
(and, in particular, the use ofQ

(
τ2;α

)
and Cα,β) by applying it to several U.S. macroeconomic

and financial time series. We have considered the logs of: real GDP, M2 (as a measure of the
aggregate money supply), CPI, S&P 500, and Industrial Production. We have also analysed
the 3 month Treasury Bill rate, and the rate of unemployment. All data have been downloaded
from the website of the St Louis Federal Reserve Bank; we refer to Table 6 for a description of
the data, including whether they are seasonally adjusted or not, sample periods and sample
sizes.

[Insert Table 6 somewhere here]
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The table also contains a test for ARCH effects, applied to the first differenced data; as can
be seen, all series seem to have conditional heteroskedasticity. Note however that, although
our theory is derived under the i.i.d. assumption, as mentioned above our results would hold
also in the presence of serial dependence and heteroskedasticity, with no need to modify the
test statistic.
We base our analysis on Cα,β and (3.9). We have used Q

(
τ2; 0.05

)
, with S = 5, 000. In

the computation of Cα,β we have set β = 0.005. Unreported trials show that reducing β is
inconsequential on the results; thus, we recommend β = 0.005 as the value to be employed
in applications. Also, we have used the same specifications as in the previous section - in
particular, R = T and κ = 0.1. We note however that results are entirely unaffected by these
choices. As can be seen from the table, the estimated values of τ2, τ̂2, can be negative. In
these cases, from an empirical perspective, running the test is probably not even needed, since
a negative value of τ̂2 suggests very strongly that τ2 = 0.
Based on (3.9), and on the fact that α = 0.05 and S = 5, 000, the decision rule is based on
not rejecting H0 whenever

Q (0; 0.05) ≥ 0.9436, (4.5)

rejecting otherwise. Results are reported in Table 7.

[Insert Table 7 somewhere here]

For all series, the estimate of ϕ is always very close to 1 (recall that ϕ̂ is consistent in all
cases considered), which indicates that series are likely to be in the case of near-stationarity,
or near-explosiveness (or even in a pure deterministic or stochastic unit root case).
Considering only the series for which τ̂2 is non-negative, both the confidence sets Cα,β and the
strong rule (4.5) indicate that unemployment and Industrial Production do have a stochastic
autoregressive root, which might suggest that these two series exhibit a STUR-type behaviour.
These results should be taken with some caution, especially for the Industrial Production: the
fact that ϕ̂ < 1 but close to 1, and the very small value of τ̂2, may indicate that this is a local-
to-STUR case with a possibly near-stationary behaviour; we know from the previous section
that in such a case the test may have low power. Conversely, the case of unemployment seems
more clear-cut, with a smaller ϕ̂, and consequently a behaviour which seems to be further away
from a STUR. The case of unemployment is also interesting in light of the value of Q (0; 0.05)
and the very small (compared with τ̂2) lower bound of the confidence set Cα,β (bearing in
mind the fuzziness of the endpoints of confidence intervals): both suggest rejection of the null
of no randomness, but in a less decisive way than in the case of Industrial Production. By
way of robustness check, in this case we have experimented different values of β, but the set
Cα,β stays always clear of zero.
On the other hand, in the cases of the CPI and the T-bill series, the null of no randomness
cannot be rejected, indicating that these series have a (probably unit root) deterministic
autoregressive behaviour. Heuristically, even these cases - in light of the small values of ϕ̂− 1
and τ̂2 - may be considered local-to-STUR; however, the fact that ϕ̂ > 1 seems to suggest
that we are in a near-explosive case, where the test should have sufficient power.
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5. Conclusions

Being able to discern an RCA(1) specification from a standard AR(1) one has important
practical implications. On the one hand, the RCA(1) model offers more flexibility than its
AR(1) counterpart, being able to capture possible nonlinearities in the dynamics of a series.
On the other hand, the nonlinear nature of the RCA(1) framework makes inference more
complicated: although the WLS estimator affords standard normal inference irrespective of the
stationarity (or lack thereof) of the series, this is true only in the case of genuine randomness.
Conversely, if no randomness is present, the OLS estimator is superior to the WLS one, due
to its faster rate of convergence.
This paper bridges the existing gaps in the literature, by proposing a test for the null of
no randomness H0 : τ2 = 0. The test does not require any knowledge as to which regime
(stationary, nonstationary, or on the boundary) Xt belongs in, and it only requires minimal
assumptions on moment existence. Given that our proposed test statistic diverges under the
null, we regularise it by employing a randomised version of it, developed conditional of the
data. We then employ a “de-randomised” indicator, namely the so-called fuzzy confidence
interval, so as to ensure that different researchers using the same data will have the same
outcome from the test.
From a technical point of view, we develop an estimator of τ2 which is related to the one
studied in Aue and Horváth (2011); we complement the existing results by deriving explicit
and near-optimal rates of convergence, thereby extending the existing literature; an immediate
practical consequence of this is that we are able to develop a test for relevant randomness
(Section 3.3). In our theory, we manage to derive the full-fledged asymptotics under the null;
conversely, we are not able to derive results under the alternative for the boundary case
E ln |ϕ+ b0| = 0, or for cases which are local to it (see Appendix C in the Supplement). The
latter case is under current investigation by the authors. From a methodological point of view,
our approach to testing for a null hypothesis which is on the boundary of the parameter space
can be viewed as a possible alternative to the one proposed by Andrews (2001), being based
on rates rather than the limiting distribution.
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et i.i.d. N (0, 1) i.i.d.
√

3
5
t5

T 100 200 400 800 100 200 400 800

ϕ

−1.05 0.058 0.054 0.056 0.056 0.108 0.052 0.056 0.056

−1 0.056 0.056 0.054 0.054 0.110 0.056 0.056 0.054

−0.75 0.050 0.048 0.048 0.048 0.054 0.054 0.058 0.054

−0.5 0.048 0.052 0.048 0.050 0.054 0.052 0.052 0.052

−0.25 0.046 0.048 0.048 0.048 0.058 0.056 0.056 0.058

0 0.050 0.048 0.048 0.052 0.058 0.056 0.054 0.056

0.25 0.052 0.048 0.048 0.050 0.054 0.058 0.058 0.056

0.5 0.048 0.050 0.050 0.048 0.056 0.056 0.054 0.056

0.75 0.052 0.048 0.048 0.048 0.054 0.054 0.058 0.054

1 0.066 0.056 0.056 0.056 0.082 0.066 0.058 0.060

1.05 0.060 0.054 0.058 0.054 0.098 0.056 0.058 0.060

Table 1: Empirical rejection frequencies of the test for H0 : τ2 = 0, computed under the null.

et ∼i.i.d. N (0, 1) τ2 0.25 0.5 1

T 100 200 400 800 100 200 400 800 100 200

ϕ E ln |ϕ + b0| E ln |ϕ + b0| E ln |ϕ + b0|
−1.05 −0.096 0.804 1.000 1.000 1.000 −0.181 0.980 1.000 1.000 1.000 −0.190 1.000 1.000

−1 −0.182 0.966 1.000 1.000 1.000 −0.234 0.966 1.000 1.000 1.000 −0.195 1.000 1.000

−0.75 −0.513 0.420 0.640 0.788 0.908 −0.526 0.720 0.882 0.816 1.000 −0.405 0.978 1.000

−0.5 −0.894 0.442 0.638 0.686 0.812 −0.732 0.642 0.736 0.786 0.938 −0.515 0.946 1.000

−0.25 −1.195 0.410 0.588 0.654 0.798 −0.911 0.610 0.712 0.788 0.966 −0.617 0.944 1.000

0 −1.317 0.296 0.576 0.644 0.804 −0.956 0.584 0.730 0.752 0.912 −0.640 0.952 1.000

0.25 −1.206 0.458 0.604 0.658 0.862 −0.929 0.576 0.744 0.768 0.904 −0.606 0.956 1.000

0.5 −0.895 0.472 0.598 0.664 0.848 −0.757 0.672 0.742 0.764 0.974 −0.492 0.940 1.000

0.75 −0.545 0.454 0.630 0.786 0.958 −0.527 0.818 0.860 0.824 1.000 −0.401 0.968 1.000

1 −0.179 0.816 1.000 1.000 1.000 −0.242 0.962 1.000 1.000 1.000 −0.200 1.000 1.000

1.05 −0.110 0.888 1.000 1.000 1.000 −0.184 0.980 1.000 1.000 1.000 −0.195 1.000 1.000

Table 2: Empirical rejection frequencies of the test for H0 : τ2 = 0, computed under various alternatives - data are generated as i.i.d. N (0, 1).
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et ∼i.i.d.
√

3
5
t5 τ2 0.25 0.5 1

T 100 200 400 800 100 200 400 800 100 200

ϕ E ln |ϕ + b0| E ln |ϕ + b0| E ln |ϕ + b0|
−1.05 −0.111 0.792 0.882 0.966 1.000 −0.119 0.832 0.914 1.000 1.000 −0.068 1.000 1.000

−1 −0.165 0.800 0.864 0.912 1.000 −0.163 0.746 0.922 1.000 1.000 −0.105 1.000 1.000

−0.75 −0.480 0.442 0.588 0.632 0.812 −0.408 0.894 0.980 0.982 1.000 −0.257 0.972 1.000

−0.5 −0.810 0.342 0.496 0.598 0.798 −0.634 0.792 0.934 1.004 0.982 −0.395 1.000 1.000

−0.25 −1.080 0.288 0.414 0.604 0.834 −0.806 0.628 0.888 0.976 0.980 −0.483 0.970 1.000

0 −1.198 0.208 0.446 0.548 0.808 −0.867 0.468 0.848 0.972 0.992 −0.520 0.882 0.980

0.25 −1.098 0.272 0.432 0.522 0.800 −0.841 0.716 0.926 0.920 1.000 −0.515 0.872 0.994

0.5 −0.814 0.328 0.502 0.548 0.776 −0.663 0.816 0.892 0.998 1.000 −0.429 0.944 1.000

0.75 −0.476 0.408 0.520 0.622 0.814 −0.439 0.990 0.972 0.980 1.000 −0.289 0.952 1.000

1 −0.172 0.798 0.804 0.926 0.996 −0.205 0.842 0.854 1.000 1.000 −0.130 1.000 1.000

1.05 −0.115 0.812 0.922 0.998 1.000 −0.160 0.928 0.948 1.000 1.000 −0.102 1.000 1.000

Table 3: Empirical rejection frequencies of the test for H0 : τ2 = 0, computed under various alternatives - data are generated as i.i.d.
√

3
5
t5.{

ϕ, τ2
}

et i.i.d. N (0, 1) i.i.d.
√

3
5
t5

{
ϕ, τ2

}
et i.i.d. N (0, 1) i.i.d.

√
3
5
t5

{
ϕ, τ2

}
et i.i.d. N (0, 1) i.i.d.

√
3
5
t5

(−1.2, 1.7934) 1.000 0.992 (−0.4, 3.6250) 1.000 0.998 (0.5, 3.3390) 1.000 1.000

(−1.1, 2.2390) 1.000 0.998 (−0.3, 3.7000) 1.000 0.998 (0.6, 3.2245) 1.000 1.000

(−1.0, 2.6017) 1.000 1.000 (−0.2, 3.7305) 1.000 0.994 (0.7, 3.1311) 1.000 1.000

(−0.9, 2.8850) 1.000 0.992 (−0.1, 3.7955) 1.000 1.000 (0.8, 2.8650) 1.000 0.998

(−0.8, 3.0950) 1.000 1.000 (0.1, 3.1700) 1.000 0.990 (0.9, 2.6815) 1.000 1.000

(−0.7, 3.2570) 1.000 1.000 (0.2, 3.6190) 1.000 1.000 (1.0, 2.4440) 1.000 1.000

(−0.6, 3.3775) 1.000 1.000 (0.3, 3.5556) 1.000 1.000 (1.1, 1.9700) 1.000 0.994

(−0.5, 3.5675) 1.000 1.000 (0.4, 3.4460) 1.000 1.000 (1.2, 1.6250) 1.000 0.982

Table 4. Empirical rejection frequencies (power) for the case E ln |ϕ + b0| = 0; all numbers have been computed using T = 100.
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et i.i.d. N (0, 1)
T 100 200 400 800

Near-stationary q′
E ln |ϕ + b0| E ln |ϕ + b0| E ln |ϕ + b0| E ln |ϕ + b0|

1 −0.102 0.145 −0.075 0.120 −0.378 0.084 −0.023 0.083
0.9 −0.137 0.155 −0.091 0.141 −0.074 0.102 −0.044 0.084
0.75 −0.208 0.181 −0.152 0.226 −0.114 0.197 −0.084 0.193
0.6 −0.316 0.261 −0.287 0.333 −0.245 0.389 −0.181 0.513
0.5 −0.419 0.396 −0.372 0.542 −0.327 0.667 −0.264 0.859

Near-explosive q′

1 −0.135 0.420 −0.101 0.330 −0.074 0.276 −0.055 0.272
0.9 −0.170 0.555 −0.128 0.556 −0.100 0.509 −0.076 0.542
0.75 −0.235 0.894 −0.188 0.960 −0.154 0.980 −0.123 0.983
0.6 −0.316 0.980 −0.281 0.998 −0.234 0.999 −0.200 1.000
0.5 −0.369 1.000 −0.340 1.000 −0.311 1.000 −0.276 1.000

et i.i.d.

√
3
5
t5

T 100 200 400 800

Near-stationary q′
E ln |ϕ + b0| E ln |ϕ + b0| E ln |ϕ + b0| E ln |ϕ + b0|

1 −0.074 0.141 −0.054 0.129 −0.032 0.094 −0.029 0.086
0.9 −0.080 0.169 −0.060 0.152 −0.045 0.100 −0.035 0.085
0.75 −0.089 0.203 −0.083 0.196 −0.058 0.186 −0.061 0.182
0.6 −0.074 0.294 −0.094 0.329 −0.099 0.393 −0.077 0.547
0.5 −0.062 0.373 −0.070 0.517 −0.089 0.668 −0.099 0.897

Near-explosive q′

1 −0.082 0.353 −0.069 0.325 −0.054 0.337 −0.041 0.280
0.9 −0.089 0.501 −0.081 0.547 −0.068 0.401 −0.055 0.514
0.75 −0.094 0.811 −0.095 0.901 −0.085 0.959 −0.078 0.928
0.6 −0.068 0.928 −0.085 0.964 −0.094 0.929 −0.096 0.990
0.5 −0.016 0.907 −0.050 0.945 −0.074 0.964 −0.087 0.971

Table 5. Power versus local-to-STUR alternatives - we refer to (4.4) for details, noting that q′ = q + κ. The cases termed “near-stationary” and “near-explosive” refer,

respectively, to having set ϕ (T ) = 1 − T−q and ϕ (T ) = 1 + T−q .
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Series Unit Frequency SA Sample T ARCH(7) test

GDP Billions of dollars Quarterly YES Q1 1947-Q3 2017 283 13.13∗

CPI Index (1982-1984=100) Monthly NO Jan 1913-Nov 2017 1259 30.14∗

Ind. Prod. Index (2012=100) Monthly YES Jan 1919-Nov 2017 1187 113.7∗

M2 Billions of dollars Weekly YES 03/11/80-11/12/17 1937 16.52∗

S&P 500 Index Daily NO 24/12/12-21/12/17 1304 34.16∗

3m T-Bill Percentage Daily NO 21/12/12-20/12/17 1304 19.40∗

Unemployment Percentage Monthly YES Jan 1948-Nov 2017 839 21.57∗

Table 6. Data description of the series employed in the empirical exercise; the
column headed SA refers to whether data are seasonally adjusted or not. In the
last column, we carry out, for completeness, a test for the null of no ARCH effects
(using an ARCH(7) specification in the auxiliary regression of the test) on the first
differences of each series; the “∗” denotes rejection of the null of no ARCH effect
at 5% level.

Series ϕ̂ τ̂2 Cα,β Q (0; 0.05)

GDP 0.9988 −1.38× 10−4 − −
CPI 1.0002 8.19× 10−3

[
0, 1.96× 10−2

]
0.9496

Ind. Prod. 0.9995 2.32× 10−4
[
1.76× 10−4, 2.87× 10−4

]
0.0000∗

M2 0.9999 −6.64× 10−7 − −
S&P 500 0.9979 −5.39× 10−4 − −
3m T-Bill 1.0021 7.18× 10−5

[
0, 2.05× 10−4

]
0.9504

Unemployment 0.9884 2.39× 10−3
[
4.05× 10−4, 4.35× 10−3

]
0.9136∗

Table 7. Outcomes of estimation and testing. We have reported: the WLS esti-
mators of ϕ and of τ2 (ϕ̂ and τ̂2); the confidence set Cα,β defined in (3.7); and the
value taken by Q

(
τ2;α

)
, computed for a level α = 0.05 and for τ2 = 0 (i.e. under

the null) - in this case, the threshold based on S = 5, 000 is 0.9436, and the symbol
“∗” denotes rejection of the null of coefficient randomness.
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