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Abstract1

The prefrontal cortex is thought to learn the relationships between actions and their2

outcomes. But little is known about what changes to population activity in prefrontal3

cortex are specific to learning these relationships. Here we characterise the plasticity of4

population activity in the medial prefrontal cortex of male rats learning rules on a Y-maze.5

First, we show that the population always changes its patterns of joint activity between6

the periods of sleep either side of a training session on the maze, irrespective of successful7

rule learning during training. Next, by comparing the structure of population activity in8

sleep and training, we show that this population plasticity differs between learning and9

non-learning sessions. In learning sessions, the changes in population activity in post-10

training sleep incorporate the changes to the population activity during training on the11

maze. In non-learning sessions, the changes in sleep and training are unrelated. Finally,12

we show evidence that the non-learning and learning forms of population plasticity are13

driven by different neuron-level changes, with the non-learning form entirely accounted14

for by independent changes to the excitability of individual neurons, and the learning15

form also including changes to firing rate couplings between neurons. Collectively, our16

results suggest two different forms of population plasticity in prefrontal cortex during the17

learning of action-outcome relationships, one a persistent change in population activity18

structure decoupled from overt rule-learning, the other a directional change driven by19

feedback during behaviour.20

Significance statement21

The prefrontal cortex is thought to represent our knowledge about what action is worth22

doing in which context. But we do not know how the activity of neurons in prefrontal23

cortex collectively changes when learning which actions are relevant. Here we show in a24

trial-and-error task that population activity in prefrontal cortex is persistently changing,25

irrespective of learning. Only during episodes of clear learning of relevant actions are26

the accompanying changes to population activity carried forward into sleep, suggesting a27

long-lasting form of neural plasticity. Our results suggest that representations of relevant28

actions in prefrontal cortex are acquired by reward imposing a direction onto ongoing29

population plasticity.30

Introduction31

Among the myriad roles assigned to the medial prefrontal cortex a common thread is that32

it learns a model for the statistics of actions and their expected outcomes, in order to33

guide or monitor behaviour (Alexander and Brown, 2011; Euston et al., 2012; Holroyd34

and McClure, 2015; Khamassi et al., 2015; Starkweather et al., 2018; Wang et al., 2018).35

One way to probe this role is to use rule-switching tasks that depend on trial-and-error to36

uncover the statistics of each new action-outcome association. Previous work has shown37

that inactivating medial prefrontal cortex impairs the learning of new rules (Ragozzino et38

al., 1999,a; Rich and Shapiro, 2007; Floresco et al., 2008), and single pyramidal neurons39

change their firing times relative to ongoing theta-band oscillations only with successful40

rule learning (Benchenane et al., 2010). In well-trained animals, a shift in their behavioural41

strategy in response to a rule change is preceded by a shift in population activity in42

prefrontal cortex (Durstewitz et al., 2010; Karlsson et al., 2012; Powell and Redish, 2016),43

consistent with a change to a statistical model of the current action-outcome dependencies.44

We know little though about how prefrontal cortex population activity changes dur-45

ing the initial learning of rules (Peyrache et al., 2009; Tavoni et al., 2017; Maggi et al.,46

2018). The changes to population activity could be continuous or constrained only to47

periods of overt learning. And these changes could be modulations of firing rates, of firing48
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correlations, or of precise co-spiking between neurons. Knowing the continuity and form49

of plasticity in population activity would provide strong constraints on theories for how50

statistical models of the world are acquired and represented by medial prefrontal cortex.51

To address these questions, here we analyse the continuity and form of population52

plasticity in the prefrontal cortex of rats learning rules on a Y-maze (Peyrache et al.,53

2009). We report that the structure of the population’s activity markedly changes be-54

tween the periods of sleep either side of training on the maze. This turnover in neural55

activity occurs whether or not there is behavioural evidence of learning during training,56

and can be accounted for entirely by changes to the excitability of individual neurons, with57

no contribution from changes to correlations. Unique to bouts of learning is that changes58

to the structure of population activity in training are carried forward into the following59

periods of sleep. These conserved activity states are created by a combination of changes60

to individual neurons’ excitability and to rate, but not spike, correlations between neu-61

rons. Thus, prefrontal cortex population activity undergoes constant plasticity, but this62

plasticity only has a persistent direction during learning.63

Materials and Methods64

Task and electrophysiological recordings65

Four Long-Evans male rats with implanted tetrodes in prelimbic cortex were trained on a66

Y-maze task (Figure 1A). Each recording session consisted of a 20-30 minute sleep or rest67

epoch (pre-training epoch), in which the rat remained undisturbed in a padded flowerpot68

placed on the central platform of the maze, followed by a training epoch, in which the69

rat performed for 20-40 minutes, and then by a second 20-30 minute sleep or rest epoch70

(post-training epoch). Figure 1B shows the structure of these three epochs in the ten71

identified learning sessions. Every trial in the training epoch started when the rat left72

the beginning of the departure arm and finished when the rat reached the end of one of73

the choice arms. Correct choice was rewarded with drops of flavoured milk. Each rat had74

to learn the current rule by trial-and-error, either: go to the right arm; go to the cued75

arm; go to the left arm; go to the uncued arm. To maintain consistent context across76

all sessions, the extra-maze light cues were lit in a pseudo-random sequence across trials,77

whether they were relevant to the rule or not.78

The data analysed here were from a total set of 50 experimental sessions taken from79

the study of (Peyrache et al., 2009), representing training sessions starting from naive80

until either the final training session, or until choice became habitual across multiple81

consecutive sessions (consistent selection of one arm that was not the correct arm). The82

four rats respectively had 13, 13, 10, and 14 sessions. From these we have used here ten83

learning sessions and up to 17 “stable” sessions (see below).84

Tetrode recordings were spike-sorted only within each recording session for conservative85

identification of stable single units. In the sessions we analyse here, the populations ranged86

in size from 15-55 units. Spikes were recorded with a resolution of 0.1 ms. For full details87

on training, spike-sorting, sleep identification, and histology see (Peyrache et al., 2009).88

Session selection and strategy analysis89

We primarily analyse here data from the ten learning sessions in which the previously-90

defined learning criteria (Peyrache et al., 2009) were met: the first trial of a block of at91

least three consecutively rewarded trials after which the performance until the end of the92

session was above 80%. In later sessions the rats reached the criterion for changing the93

rule: ten consecutive correct trials or one error out of 12 trials. By these criterion, each94

rat learnt at least two rules.95

We also sought sessions in which the rats made stable choices of strategy. For each96

session, we computed P (rule) as the proportion of trials in which the rat’s choice of arm97
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corresponded to each of the three rules (left, right, cued-arm). Whereas P (left) and98

P (right) are mutually exclusive, P (cued− arm) is not, and has an expected value of 0.599

when it is not being explicitly chosen because of the random switching of the light cue. A100

session was deemed to be “stable” if P (rule) was greater than some threshold θ for one of101

the rules, and the session contained at least 10 trials (this removed only two sessions from102

consideration). Here we tested both θ = 0.9 and θ = 0.85, giving N = 13 and N = 17103

sessions respectively. These also respectively included 2 and 4 of the rule-change sessions.104

For the time-series in Figure 1C,E,F we estimated P (rule) in windows of 7 trials, starting105

from the first trial, and sliding by one trial.106

Characterising population activity as a dictionary107

For a population of size N , we characterised the instantaneous population activity from108

time t to t + δ as an N -length binary vector or word. The ith element of the vector was109

a 1 if at least one spike was fired by the ith neuron in that time-bin, and 0 otherwise.110

Throughout we test bin sizes covering two orders of magnitude, with δ ranging from 1 ms111

to 100 ms. For a given bin size, the set of unique words that occurred in an epoch defined112

the dictionary of that epoch. The probability distribution for the dictionary was compiled113

by counting the frequency of each word’s occurrence in the epoch and normalising by the114

total number of time bins in that epoch.115

For each session we constructed three dictionaries per bin size, and their corresponding116

probability distributions P (Epoch): pre-session sleep P (Pre), post-session sleep P (Post),117

and trials during training P (Trials). To unambiguously identify sleep periods, and for118

comparisons with previous reports of replay in PfC (Euston et al., 2007; Peyrache et al.,119

2009), we used slow-wave sleep bouts for the pre- and post-session sleep dictionaries.120

We built dictionaries using the number of recorded neurons N , up to a maximum of121

35 for computational tractability. The number of neurons used in each analysis is listed in122

Tables 1 and 2; where we needed to use less than the total number of recorded neurons, we123

ranked them according to the coefficient of variation of their firing rate between the three124

epochs, and choose the N least variable; in practice this sampled neurons from across the125

full range of firing rates. Only two learning sessions and six stable sessions were capped126

in this way.127

Trials Pre-training SWS Post-training SWS
Session ID Neurons Duration (ms) Number Duration (ms) Bouts Duration (ms) Bouts

201222 31 125.5279 23 724.0082 3 660.9652 3
201227 23 137.8321 18 703.9857 3 829.9588 3
201229 12 153.0175 33 866.0116 3 532.9798 3
181012 35 228.5572 13 481.9801 2 923.9320 5
181020 35 125.8876 29 1117.0111 4 644.9920 3
150628 25 155.9059 29 775.9994 7 1137.0150 4
150630 27 202.6222 15 742.0170 5 907.9818 4
150707 23 217.2740 48 561.9935 4 386.9965 2
190214 20 236.8101 42 130.0125 1 331.0333 2
190228 20 122.9788 26 540.0200 3 198.9732 2

Table 1. Learning session statistics. The Neurons column give the number of neurons used from each of
the ten learning sessions to build the words; eight used all recorded neurons, two were capped at 35. For
each epoch within a session, we give the total duration of spike-train data used to construct words, and
the number of trials or sleep bouts that comprised this total duration. The number of words per epoch at
a given bin size b can thus be calculated from this table as: Duration / b.
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Trials Pre-training SWS Post-training SWS
Session ID Neurons Duration (ms) Number Duration (ms) Bouts Duration (ms) Bouts

150701 21 83.9801 15 866.0116 3 532.9798 3
150706 19 140.8352 20 754.0503 3 937.0184 3
181024 35 152.8336 35 525.9901 4 525.0188 2
181025 35 80.0858 20 682.0686 6 501.0109 4
181026 35 140.2582 34 333.0157 3 779.0119 5
181027 35 132.5743 34 209.9913 2 33.9931 2
181102 35 133.6886 38 572.9771 2 521.0275 7
181103 35 93.0362 22 219.9789 3 418.0025 4
190213 21 142.4687 32 255.9889 2 605.9930 1
190301 19 899.2288 12 693.0521 5 897.0089 5
190302 22 60.0684 14 477.0404 4 279.9953 1
190303 17 132.0855 29 1043.9569 4 661.0032 4
201228 19 217.3680 41 883.9506 2 337.9834 4
201230 21 171.9406 44 180.9926 2 224.9939 3
200102 22 195.2417 42 199.0138 1 162.0023 2
200103 29 289.0712 37 308.9891 3 429.9769 4
200105 12 223.3549 45 215.9840 2 408.0112 4

Table 2. Stable session statistics. Column entries as per Table 1.

Comparing dictionaries between epochs128

We quantified the distance D(P |Q) between two dictionary’s probability distributions P129

and Q using the Hellinger distance, defined by DH(P |Q) = 1
2

∑n
i=1(
√
pi−
√
qi)

2. To a first130

approximation, this measures for each pair of probabilities (pi, qi) the distance between131

their square-roots. In this form, DH(P |Q) = 0 means the distributions are identical, and132

DH(P |Q) = 1 means the distributions are mutually singular: all positive probabilities in133

P are zero in Q, and vice-versa.134

To understand if a pair of pre- and post-training sleep dictionaries meaningfully dif-135

fered in their structure, we compared the distance between them D(Pre|Post) to the pre-136

dicted distance if they had an identical underlying probability distribution (in which case137

D(Pre|Post) > 0 would be solely due to finite sampling effects). We used a resampling138

test to estimate the predicted distance. We first created a single probability distribution139

P (sleep) for a session by calculating the probability of each word’s appearance in all sleep140

bouts across both pre and post-training sleep epochs. We then sampled P (sleep) to create141

new time-series of pre- and post-training sleep words, matching the number of emitted142

words in each epoch in the original data. By then reconstructing the dictionaries in each143

epoch from the resampled data, we obtained a prediction for the distance D(Pre∗|Post∗),144

where ∗ denotes the estimate from the resampled data. Repeating the resampling 20 times145

gave us a distribution of expected distances assuming an identical underlying probability146

distribution for words. The sampling distribution’s mean and its 99% confidence interval147

are plotted for each session in Figure 3D,E – the intervals are too small to see on this148

scale.149

We quantified the relative convergence of the training dictionary X with the dictionar-150

ies in sleep by [D(Pre|X)−D(Post|X)]/[D(Pre|X) +D(Post|X)]. Convergence greater151

than 0 indicates that the distance between the training epoch [P (X)] and post-training152

sleep [P (Post)] distributions was smaller than that between the training and pre-training153

sleep [P (Pre)] distributions.154
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Testing hypotheses for changes in dictionary structure155

To understand what drove the observed changes in the structure of population activity,156

we tested three hypotheses: independent changes in the excitability of neurons; changes in157

firing rate co-variations between neuron; and shifts in precise co-spiking between neurons.158

We tested these hypotheses in two steps:159

1. We tested whether dictionaries constructed from independently firing neurons could160

account for the observed changes in the structure of population activity, with two161

possible outcomes:162

� Yes: then we could conclude that changes in the data were due to independent163

changes to the excitability of the recorded neurons.164

� No: this implied that the correlations between neurons were also changed.165

2. To then identify the types of those correlations, we turned to dictionaries constructed166

from spikes jittered a little in time, and asked if they could account for the observed167

changes:168

� No: then we would have evidence that precise co-spiking between neurons con-169

tributed to the changes in population activity structure.170

� Yes: then changes to population activity did not depend on precise co-spiking,171

and could be accounted for by changes to co-variations in rate between neurons.172

For the independent neuron dictionaries, we shuffled inter-spike intervals for each neu-173

ron independently, and then constructed words at the same range of bin sizes. As both the174

training and sleep epochs were broken up into chunks (of trials and slow-wave sleep bouts,175

respectively), we only shuffled inter-spike intervals within each chunk. This procedure kept176

the same inter-spike interval distribution for each neuron, but disrupted any correlation177

between neurons during a trial or during a sleep bout, thus testing for dictionary changes178

that could be accounted for solely by changes to independent neurons. We repeated the179

shuffling 20 times.180

For any given data statistic sdata for a single session, we compute the same statistic181

sshuffle for each shuffled data-set, and plot the difference δ = sdata − E(sshuffle) using the182

mean E() over the shuffled data’s statistics. Confidence intervals at 99% for all δ were183

smaller than the size of the plotted symbol for δ, so are omitted for clarity.184

For the jittered dictionaries, each spike was jittered in time by a random amount drawn185

from a Gaussian of mean zero and standard deviation σ. We tested σ from 2 to 50 ms. For186

each σ we constructed 20 jittered data-sets. Words were constructed from each using 5 ms187

bins here, both as this time-scale would capture millisecond-precise spike-timing between188

neurons, and because the biggest effects in the data were most consistently seen at this189

bin size.190

We illustrated changes in the rate co-variation between neurons using the coupling191

between single neuron and ongoing population activity (Okun et al., 2015). Each neuron’s192

firing rate was the spike density function fi obtained by convolving each spike with a193

Gaussian of 100 ms standard deviation. Population coupling for the ith neuron is the194

Pearson’s correlation coefficient: ci = corr(fi, P6=i), where P 6=i is the population rate195

obtained by summing all firing rate functions except that belonging to the ith neuron.196

Relationship of location and change in word probability197

To examine the spatial correlates of word occurrence, the maze was linearised, and nor-198

malised (0: start of departure arm; 1: end of the chosen goal arm). The location of every199

occurrence of a word during the training epoch’s trials (“trial word”) was expressed as a200

normalized position on the linearised maze, from which we computed the word’s median201
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location and corresponding interquartile interval. Histograms of median word location202

were constructed using kernel density, with 100 equally spaced points between 0 and 1.203

We tested whether the trial words closer in probability to post- than pre-training sleep204

were from any specific locations, which would suggest a changing representation of a key205

location. For each word, we computed the difference in its probability between training206

and pre-training sleep δpre = |p(pre)−p(trial)|, and the same for post-training sleep δpost =207

|p(post)−p(trial)|, and from these computed a closeness index: (δpre−δpost)/(δpre+δpost).208

Closeness is 0 if the word is equidistant from training to both sleep epochs, 1 if it has an209

identical probability between training and post-training sleep; and -1 if it has an identical210

probability between training and pre-training sleep.211

When assessing identified maze segments, words were divided into terciles by thresholds212

on the closeness index at [−0.5, 0.5]; similar results were obtained if we used percentile213

bounds of [10, 90]%. We counted the proportion of words in each tercile whose median214

position fell within specified location bounds on the linearised maze. Confidence intervals215

on the proportions were computed using 99% Jeffrey’s intervals (Brown et al., 2001).216

Statistics217

Quoted measurement values are mean x̄ and confidence intervals for the mean [x̄ −218

tα/2,nSE, x̄+ tα/2,nSE], where tα/2,n is the value from the t-distribution at α = 0.05 (95%219

CI) or α = 0.01 (99% CI), and given the number n of data-points used to obtain x̄. For220

testing the changes in convergence, we used the Wilcoxon signed-rank test for a differ-221

ence from zero; for differences in population-coupling correlations, we used the Wilcoxon222

signed-rank paired-sample test. Throughout, we have n = 10 learning sessions and n = 17223

stable sessions.224

Data and code availability225

The spike-train and behavioural data that support the findings of this study are available226

at CRCNS.org (DOI: 10.6080/K0KH0KH5) (Peyrache et al., 2018). The sessions meeting227

our learning and stable criteria are listed in Tables 1 and 2.228

Code to reproduce the main results of the paper is available at:229

https://github.com/mdhumphries/PfCDictionary.230

Results231

Signatures of rule-learning on the Y-maze232

Rats with implanted tetrodes in the prelimbic cortex learnt one of four rules on a Y-maze:233

go right, go to the randomly-cued arm, go left, or go to the uncued arm (Figure 1A).234

Rules were changed in this sequence, unsignalled, after the rat did 10 correct trials in235

a row, or 11 correct trials out of 12. Each rat learnt at least two of the rules, starting236

from a naive state. Each training session was a single day containing 3 epochs totalling237

typically 1.5 hours: pre-training sleep/rest, behavioural training on the task, and post-238

training sleep/rest (Figure 1B). Here we consider bouts of slow-wave sleep throughout,239

to unambiguously identify periods of sleep. Tetrode recordings were spike-sorted within240

each session, giving populations of single neuron recordings ranging between 12 and 55241

per session (see Tables1 and 2 for details of each session and each epoch within a session).242

243

In order to test for the effects of learning on the structure of joint population activity,244

we need to compare sessions of learning with those containing no apparent learning as245

defined by the rats’ behaviour. In the original study containing this data-set, Peyrache et246

al. (2009) identified 10 learning sessions as those in which three consecutive correct trials247

were followed by at least 80% correct performance to the end of the session; the first trial248

 https://github.com/mdhumphries/PfCDictionary
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Figure 1. Task and behaviour.
(A) Y-maze task set-up (top); each session included the epochs of pre-training sleep/rest, training trials,
and post-training sleep/rest (bottom). One of four target rules for obtaining reward was enforced
throughout a session: go right; go to the cued arm; go left; go to the uncued arm. No rat successfully
learnt the uncued-arm rule.
(B) Breakdown of each learning session into the duration of its components. The training epoch is
divided into correct (red) and error (blue) trials, and inter-trial intervals (white spaces). Trial durations
were typically 2-4 seconds, so are thin lines on this scale. The pre- and post-training epochs contained
quiet waking and light sleep states (“Rest” period) and identified bouts of slow-wave sleep (“SWS”).
(C) Internally-driven behavioural changes in an example learning session: the identified learning trial
(grey line) corresponds to a step increase in accumulated reward and a corresponding shift in the
dominant behavioural strategy (bottom). The target rule for this session is ‘go right’. Strategy
probability is computed in a 7-trial sliding window; we plot the mid-points of the windows.
(D) Peri-learning cumulative reward for all ten identified learning sessions: in each session, the learning
trial (grey line) corresponds to a step increase in accumulated reward.
(E) Peri-learning strategy selection for the correct behavioural strategy. Each line plots the probability of
selecting the correct strategy for a learning session, computed in a 7-trial sliding window. The learning
trial (grey vertical line) corresponds to the onset of the dominance of the correct behavioural strategy.
(F) Strategy selection during stable behaviour. Each line plots the probability of selecting the overall
dominant strategy, computed in a 7-trial sliding window. One line per session.



9

F
re
qu
en
cy

00
00
00
00
00
00
00
00
00
00
00
0

Time

N
eu
ro
ns

00
00
00
00
00
00
00
00
00
00
00
1

00
00
00
00
00
00
00
00
00
00
01
0

00
00
00
11
00
00
00
00
00
00
00
1

00
00
01
11
00
00
0
00
00
00
00
01

...

...

...

...

Figure 2. A neural dictionary of population activity in prefrontal cortex.
A snapshot of population activity from N = 23 neurons during 500 ms of pre-training sleep, and below is
the corresponding binary word structure (black: 1; white: 0) for bins of 10 ms. One bin of the population
activity and its corresponding binary word is highlighted in grey. Right: The set of binary words and the
frequency of their occurrence over the whole pre-training sleep epoch defines a dictionary of population
activity.

of the initial three was considered the learning trial. By this criterion, the learning trial249

occurs before the mid-point of the session (mean 45%; range 28-55%). We first check this250

criterion corresponds to clear learning: Figure 1C,D shows that each of the ten sessions251

has an abrupt step change in reward accumulation around the identified learning trial252

corresponding with a switch to a consistent, correct strategy within that session (Figure253

1E).254

We further identify a set of 17 sessions with a stable behavioural strategy throughout,255

defined as a session with the same strategy choice (left, right, cue) on more than 85% of256

trials (Figure 1F). This set includes four sessions in which the rule changed. Setting this257

criterion to a more conservative 90% reduces the number of sessions to 13 (including two258

rule change sessions), but does not alter the results of any analysis; we thus show the 85%259

criterion results throughout.260

Constant plasticity of population activity between sleep epochs261

We want to describe the joint population activity over all N simultaneously-recorded262

neurons with minimal assumptions, so that we can track changes in population activity263

however they manifest. Dividing time into bins small enough that each neuron either spikes264

(‘1’) or doesn’t (‘0’) gives us the instantaneous state of the population as the N -element265

binary vector or word in that bin (Figure 2). The dictionary of words appearing in an266

epoch and their probability distribution together describe the region of joint activity space267

in which the population is constrained. Comparing dictionaries and their probabilities268

between epochs will thus reveal if and how learning changes this region of joint activity.269

If learning during training correlated with changes to the underlying neural circuit in270

prefrontal cortex then we might reasonably expect population activity in post-training271

sleep to also be affected by these changes, and so differ from activity in pre-training sleep.272

We thus compare the dictionaries in pre- and post-training sleep for the learning sessions,273

and then check if any detected changes also appear during sessions of stable behaviour.274

A first check is simply if the dictionary content changed during learning and not stable275

behaviour. We find that the words common to both sleep epochs (Figure 3A) account for276

almost all of each epoch’s activity (Figure 3B) at bin sizes up to 20 ms. Consequently,277

there are no differences between learning and stable behaviour in the overlap of dictionary278

contents between sleep epochs (Figure 3A) or in the proportion of activity accounted for279

by words common to both sleep epochs (Figure 3B). We could thus rule out that learning280

changes the dictionary content between sleep epochs compared to stable behaviour. Any281

learning-specific change ought then be found in the structure of the population activity.282

We capture this structure by the respective distributions P (Pre) and P (Post) for283

the probability of each word appearing in pre- or post-training sleep. Changes to the284

detailed structure of the pre- and post-training sleep dictionaries are then quantified by285
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Figure 3. Distributions of word probabilities change between pre- and post-training sleep.
(A) Proportion of words in the pre-training sleep dictionary that are also in the post-training sleep
dictionary, per session.
(B) Proportion of the pre-training sleep epoch’s activity that is accounted for by words in common with
post-training sleep, per session.
(C) The joint distribution of the probability of every word occurring in pre-training sleep (distribution
P (Pre)) and post-training sleep (distribution P (Post)), for one learning session. D(Pre|Post): the
distance between the two probability distributions for words.
(D) Distance between the word probability distributions for pre- and post-training sleep (x-axis) against
the expected distance if the sleep activity was drawn from the same distribution in both epochs (y-axis).
One symbol per learning session; we plot the mean and 99% confidence interval (too small to see) of the
expected distance D(Pre∗|Post∗). Words constructed using 5 ms bins.
(E) Same as (D), for stable sessions.
(F) Bin-size dependence of changes in the dictionary between sleep epochs. Difference between the data
and mean null model distance are plotted for each session, at each bin-size used to construct words.

the distance between these probability distributions (Figure 3C). These distances will286

vary according to both the number of neurons N and the duration of each epoch. So287

interpreting them requires a null model for the distances expected if P (Pre) and P (Post)288

have the same underlying distribution P (Sleep), which we approximate using a resampling289

test (see Methods). In this null model any differences between P (Pre) and P (Post) are290

due to the finite sampling of P (Sleep) forced by the limited duration of each epoch.291

In learning sessions the distance between pre- and post-training sleep probability dis-292

tributions always exceeds the upper limit of the null model’s prediction (Figure 3D). This293

was true at every bin size (Figure 3F), even at small bin sizes where the dictionaries were294

nearly identical between the sleep epochs (Figure 3A). Thus, the probability distributions295

of words consistently differ between pre and post-training sleep epochs in learning sessions.296

However, Figure 3E-F shows this consistent difference is also true for the sessions297

with stable behaviour. There is quantitative agreement too as the gap between the data298

and predicted distances has the same distribution for both learning and stable behaviour299

(Figure 3F). We conclude that the probabilities of words do systematically change between300

sleep epochs either side of training, but do so whether there is overt learning or not.301

Learning systematically updates the dictionary302

This leaves open the question of whether changes in population activity between sleep303

epochs are a consequence of changes during training. If the population changes between304

sleep epochs are unrelated to population activity in training, then the probability distribu-305

tion of words in training will be equidistant on average from that in pre- and post-training306

sleep. Alternatively, changes to population activity during training may carry forward into307
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post-session sleep, possibly as a consequence of neural plasticity during the trials changing308

the region of joint activity space in which the population is constrained. A prediction309

of this neural-plasticity model is that the directional change would thus occur predomi-310

nantly during learning sessions, so that only in these sessions is the distribution of word311

probabilities in training closer to that in post-training sleep than in pre-training sleep.312

Unpicking the relationship between the sleep changes and training requires that the313

dictionary in training also appears in the sleep epochs; otherwise changes to word prob-314

abilities during training could not be tracked in sleep. We find that the structure of315

population activity in training is highly conserved in the sleep epochs (Figure 4A), both316

in that the majority of words appearing in trials also appear in the sleep epochs, and that317

these common words account for almost all of the total duration of the trials. This conser-318

vation of the training epoch population structure in sleep allows us to test the prediction319

of a learning-driven directional change in population structure (Figure 4B).320

To do so, we take the dictionary of words that appear during training, and compute321

the distance between its probability distribution and the probability distribution of that322

dictionary in pre-training sleep (D(Pre|Learn)), and between training and post-training323

sleep (D(Post|Learn)) (Figure 4C). The prediction of the directional change model is324

then D(Pre|Learn) > D(Post|Learn). This is exactly what we found: D(Pre|Learn) is325

consistently larger than D(Post|Learn) at small bin sizes, as illustrated in Figure 4D for326

5 ms bins.327

If these directional changes are uniquely wrought by learning, then it follows that we328

should not see any systematic change to the dictionary in the stable behaviour sessions329

(Figure 4B). To test this prediction, we similarly compute the distances D(Pre|Stable)330

and D(Post|Stable) using the dictionary of words from the training epoch, and test if331

D(Pre|Stable) ≈ D(Post|Stable). Again, this is exactly what we found: D(Pre|Stable)332

was not consistently different from D(Post|Stable) at any bin size, as illustrated in Figure333

4E for 5 ms bins.334

It is also useful to consider not just which sleep distribution of words is closer to335

the training distribution, but how much closer. We express this as a convergence ratio336

C = [D(Pre|X)−D(Post|X)]/[D(Pre|X) +D(Post|X)], given the training distribution337

X = {Learn, Stable} in each session. So computed C falls in the range [−1, 1] with a338

value greater than zero meaning that the training probability distribution is closer to the339

distribution in post-training sleep than the distribution in pre-training sleep. Figure 4G340

shows that for learning sessions the word distribution in training is closer to the post-341

training than the pre-training sleep distribution across an order of magnitude of bin sizes.342

For stable sessions the absence of relative convergence is consistent across two orders of343

magnitude of bin size (Figure 4G). Both qualitatively and quantitatively, the structure of344

prefrontal cortex population activity shows a relative convergence between training and345

post-training sleep that is unique to learning.346

Changes to neuron excitability account for changes between sleep epochs347

What then is the main driver of the observed changes in the structure of population348

activity? These could arise from changes to the excitability of independent neurons, to co-349

variations in rate over tens to hundreds of milliseconds, or to the millisecond-scale precise350

timing of co-incident spiking between neurons. We first examine the drivers of the changes351

between sleep epochs we saw in Figure 3.352

Individual sessions showed a rich spread of changes to neuron excitability between the353

sleep epochs (Figure 5A). We thus begin isolating the contribution of these three factors354

by seeing how much of the change in population structure between sleep epochs can be355

accounted for by independent changes to neuron excitability. Shuffling inter-spike intervals356

within each epoch gives us null model dictionaries for independent neurons by removing357

both rate and spike correlations between them, but retaining their excitability (at least,358

as captured by their inter-spike interval distribution).359
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Figure 4. Distributions of word probabilities converge only during learning.
(A) For the training epochs, the proportion of the epoch’s dictionary (left) and duration (right)
accounted for by words in common with both sleep epochs. One symbol per learning session.
(B) Schematic of comparisons between epochs, and summary of main results. (C) Examples for one
learning session of the joint probability distributions for each word in trials and pre-training sleep (left),
and trials and post-training sleep (right), using 5 ms bins. D(Trials|X): the distance between the two
probability distributions for words.
(D) Distances for all learning sessions, for words constructed using 5 ms bins. T: Trials.
(E) As for (D), for stable sessions.
(F) Bin-size dependence of the relative convergence between the word distributions in trials and in sleep.
Each distance was computed using only the dictionary of words appearing in the trials. Numbers are
P -values from two-sided signtests for each median differing from zero.
(G) As for (F), for stable sessions.
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Figure 5. Changes between sleep epochs are accounted for by independently changing
neurons.
(A) Example excitability changes between sleep epochs, for one learning session. Each pair of bars plot
the distributions of a neuron’s inter-spike intervals in the pre- and post-training sleep epochs, each bar
showing the median (white line), interquartile range (dark shading) and 95% interval (light shading).
Neurons are ranked by the difference in their median interval between sleep epochs. We use a log-scale on
the y-axis: some neurons shift their distribution over orders of magnitude between sleep epochs. The first
neuron was silent in the post-training sleep epoch.
(B) Distances between sleep epochs for dictionaries of independent neurons (x-axis), and their expected
distances from a null model of the same dictionary in both epochs (y-axis). Independent neuron
dictionaries are constructed by shuffling inter-spike intervals within trials or sleep bouts. One symbol per
learning session; we plot the mean and 99% confidence interval (too small to see) of the expected
distance D(Pre∗|Post∗). Words constructed using 5 ms bins. S: shuffled data.
(C) As for (B), for stable sessions.
(D) Independent neuron dictionaries are consistently different between sleep epochs at all bin sizes —
compare to results for the data dictionaries in Figure 3F. Each symbol is a mean over 20 shuffled
data-sets.
(E) Departure from the expected distance between sleep epochs for each learning session (Data), and the
corresponding predicted departure by independent neurons (Shuffle; mean over 20 shuffled data-sets).
Words constructed using 5 ms bins.
(F) As for (D), for stable sessions.
(G) Difference between the recorded and shuffled data, as a proportion of the data’s departure from the
expected distance between sleep epochs. Almost all differences are less then 0.1% of the difference
between data and the null model. One symbol per session.
(H) The proportion of words in the dictionary with two or more active neurons, over all learning sessions.
(I) As for panel (G), using dictionaries that contained only words with co-activity. At all bin sizes, there
is no systematic difference between recorded and shuffled data.
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When we analyse the changes between sleep epochs for independent neuron dictionar-360

ies, the strong similarity with the results from the data dictionaries is compelling. We361

illustrate this in Figure 5B-D, by repeating the analyses in Figure 3D-F but now using362

the independent neuron dictionaries – and see the results are essentially the same. The363

departure from the null model of a single probability distribution in sleep is almost iden-364

tical between the data and independent neuron dictionaries, illustrated in Figure 5E-F for365

5 ms bins. And while the data dictionaries tend to depart further from the null model,366

this excess is negligible, being on the order of 0.1% of the total departure from the null367

model (Figure 5G).368

A potential confound in searching for the effects of correlation here are that words369

coding for two or more active neurons are infrequent at small bin sizes, comprising less370

then 10% of words at small bins sizes (Figure 5H). As a consequence, any differences371

between the independent neuron and data dictionaries that depend on correlations between372

neurons in the data could be obscured. To check for this, we repeat the same analyses of373

the changes between sleep for both the data and independent neuron dictionaries when374

they are restricted to include only co-activity words. As Figure 5I shows, this did not375

uncover any hidden contribution of correlation between neurons in the data; indeed, for co-376

activity words alone, the difference between the data and the independent model is about377

zero. Thus, the changes in word probabilities between pre- and post-training sleep can378

be almost entirely accounted for by independent changes to the excitability of individual379

neurons (Figure 5A).380

Learning-driven changes to the dictionary include rate co-variations381

Can independent changes to individual neuron excitability also account for the relative382

convergence of dictionaries in learning? Repeating the comparisons of training and sleep383

epoch activity using the independent neuron dictionaries, we observe the same learning-384

specific convergence of the training and post-training sleep dictionaries, illustrated in385

Figure 6A for 5 ms bins (compare Figure 4D-E). Figure 6B shows that the difference386

in convergence score between the data and independent neuron dictionaries is close to387

zero at most bin sizes. This suggests that the changes in population activity during the388

trials that are carried forward to the post-training sleep can also be accounted for by the389

changing excitability of individual neurons.390

To check this conclusion, we again account for the relative infrequency of co-activity391

words at small bin sizes by recomputing the distances between sleep and training epochs392

using dictionaries of only co-activity words. Now we find that, unlike the changes between393

sleep epochs, the relative convergence between training and post-training sleep for the394

data dictionaries is greater than for the independent neuron dictionaries (Figure 6C). We395

conclude that changes to the correlations between neurons during the trials of learning396

sessions are also detectably carried forward to post-training sleep.397

These correlations could take the form of co-variations in rate, or precise co-incident398

spikes on millisecond time-scales. To test for precise co-spiking, we construct new null399

model dictionaries: we jitter the timing of each spike, and then build dictionaries using 5400

ms bins to capture spike alignment. If precise co-spiking is contributing to the correlations401

between neurons, then relative convergence should be smaller for these jittered dictionaries402

than the data dictionaries. As Figure 6D shows, this is not what we found: across a range403

of time-scales for jittering the spikes, the difference in relative convergence between the404

data and jittered dictionaries was about zero. The changed correlations between neurons405

are then rate co-variations, not precise co-spiking.406

Figure 6E-H gives some intuition for these changes in rate co-variation. We measure407

the coupling of each neuron’s firing to the ongoing population activity (Figure 6E) as408

an approximation of each neuron’s rate covariation (as population-coupling is fixed to a409

particular time-scale, so it can only represent part of the co-variation structure captured410

by the dictionaries of words). The distribution of population coupling across the neurons411
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Figure 6. Convergence of dictionaries during learning is partly driven by changes in rate
co-variation, but not spike-timing.
(A) Distances between sleep and trial distributions for all learning (left) and stable (right) sessions, in an
example shuffled data-set. Words constructed using 5 ms bins. D(TS |XS): the distance between the trial
probability distribution and the probability distribution of sleep epoch X in the shuffled data.
(B) Difference between the recorded and shuffled data convergence between trial and post-training sleep
epochs, in learning sessions.
(C) As for panel B, using distributions containing only words with co-activity.
(D) As for panel C, comparing co-activity word distributions from recorded and jittered data, to test for
the contribution of precise spike timing. Spike data were jittered at a range of standard deviations
(x-axis), and words constructed using 5 ms bins.
(E) Snapshots of a single neuron’s firing rate (black) in comparison to the simultaneous population firing
rate (colour) in each epoch. C: population-coupling in each epoch.
(F) Joint distribution of the population coupling for each neuron in the training and pre-training sleep
epochs of one learning session. R: Pearson’s correlation coefficient between the two distributions of
population coupling.
(G) Same as (F), for the training and post-training sleep epochs in the same session.
(H) Correlations between population coupling in training and sleep epochs for all learning sessions.
Population-coupling is more correlated between training and post-training sleep (signed-rank test
P = 0.02, rank = 5).
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varied between epochs (Figure 6F-G), signalling changes to the co-variations in rate be-412

tween neurons. Consistent with changes to rate co-variations, the distribution of coupling413

tended to be more similar between training and post-training sleep than between training414

and pre-training sleep (Figure 6H).415

Locations of dictionary sampling during learning416

The changes to population activity in training carried forward to post-training sleep may417

correspond to learning specific elements of the task. We check for words linked to task418

elements by first plotting where each word in the training dictionary occurs on the maze419

during trials. Words cluster at three maze segments, as illustrated in Figure 7A for 3 ms420

bins: immediately before the choice area, at its centre, and at the end of the chosen arm.421

This clustering is consistent across all bin sizes (Figure 7B).422

Repeating this location analysis using the dictionaries of independent words gives the423

same three clusters (grey lines in Figure 7A-B). This suggests that the clustering of words424

at particular locations can be largely attributed to the amount of time the animals spent425

at those locations. The only departures are that the choice region is slightly under-426

represented in the data dictionaries, and the arm-end slightly over-represented. These427

departures are potentially interesting, as they correspond to key points in the task: the428

area of the maze at which the goal arm has to be chosen, and the arrival at the goal arm’s429

reward port.430

We thus check if words in these three segments are more likely to have their probabilities431

in training carried forward to post-training sleep. Figure 7C shows that when we plot the432

closeness of each word’s probability in training and sleep, we obtain a roughly symmetrical433

distribution of locations for words closer to pre-training and post-training sleep. At the434

three maze segments, we indeed find that a word’s probability in training is equally likely435

to be closer to pre-training sleep, equidistant from both sleep epochs, or closer to post-436

training sleep (Figure 7D-F). We obtain the same results if we use just co-activity words,437

or if we divide the closeness distribution into pre/equidistant/post by percentiles rather438

than the fixed ranges we use in Figure 7D-F (data not shown). There is, then, no evidence439

in this analysis that words representing specific maze locations, and putatively key task440

elements, have their changes in training carried forward to post-training sleep. Rather,441

changes to the structure of population activity during learning are distributed over the442

entire maze.443

Independent neurons capture the majority of structure in prefrontal cor-444

tex population activity445

The above analyses have shown that independently-firing neurons capture much of the446

changes to and location dependence of population activity in medial prefrontal cortex.447

This implies that independent neurons can account for much of the population activity448

structure within each epoch. We take a closer look at this conclusion here.449

A useful measure of the overall structure of the population spiking activity is the450

proportion of “1’s” that encode two or more spikes. The occurrence rates of these “binary451

errors” across different bin sizes tell us about the burst structure of the neural activity.452

Figure 8A shows that increasing the bin size applied to the data interpolates between453

words of single spikes and words of spike bursts in both training and sleep epochs. At454

bin sizes less than 10 ms, almost all 1’s in each word are single spikes; at bin sizes above455

50 ms, the majority of 1’s in each word are two or more spikes and so encode a burst of456

spikes from a neuron.457

Dictionaries of independent neurons largely recapitulate these bin size dependencies458

for all epochs (Figure 8B-D). Their only departure is about 5% more binary errors than459

in the data at bin sizes above 20 ms (Figure 8D). As by construction there are the same460

number of spikes for each neuron in the data and independent neuron dictionaries, this461
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Figure 7. Locations of words during trials of learning sessions.
(A) Scatter of the spread in location against median location for every word in the training epoch
dictionaries of the learning sessions, constructed using 3 ms bins. Spread in location is the inter-quartile
interval, which we also plot as vertical lines. On the right we plot the density of median locations for the
data (red area plot) and independent neuron (grey line) dictionaries.
(B) Density of median locations across all bin sizes, for data (red area plot) and independent neuron
(grey line) dictionaries.
(C) For each word in the training epoch dictionaries, we plot its median location against the closeness
between its training epoch and sleep epoch probability. Closeness is in the range [−1, 1], where -1
indicates identical probability between training and pre-training sleep, and 1 indicates identical
probability between training and post-training sleep. Coloured bars indicate the regions of the maze
analysed in panels D-F.
(D) Distributions of word closeness to sleep in specific maze segments, for 3 ms bins. All words with
median locations within the specified maze segment are divided into terciles of closeness by thresholds of
-0.5 and 0.5 (vertical grey lines). Symbols plot proportions of words falling in each tercile, and error bars
plot 99% confidence intervals on those proportions. Blue: arm end; orange: choice point; red: pre-choice
segment.
(E) As panel D, for 10 ms bins.
(F) As panel D, for 50 ms bins.
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Figure 8. Independent neurons capture a large fraction of population activity structure.
(A) Proportion of “1’s” that encode more than one spike (“binary error”), across all emitted words in all
learning sessions. Epoch colours apply to all panels.
(B) As panel (A), for dictionaries of independent neurons derived by shuffling neuron inter-spike intervals
to remove correlations. Proportions are means from 20 shuffled datasets of the learning sessions.
(C) Mean difference between binary error proportions in the data and predicted by independent neurons,
in percentile points.
(D) As panel (C), expressed as a proportion of the binary errors in the data.
(E) Proportion of emitted words in each epoch that have more than one active neuron, pooled across all
learning sessions (replotted from Figure 5H).
(F) As panel (E), for dictionaries of independent neurons.
(G) Median difference between the proportion of emitted co-activity words in the data and predicted by
independent neurons.
(H) As panel (G), expressed as a proportion of the number of co-activity words in the data.

implies that the data contain more spikes per burst on 50-100 ms time-scales (so that462

there are fewer bins with bursts in total).463

A useful summary of the joint structure of population activity is the fraction of emitted464

words that code for two or more active neurons. For the data, increasing the bin size465

increases the fraction of emitted words that contain more than one active neuron (Figure466

8E), from about 1% of words at 2 ms bins to all words at 50 ms bins and above. There are467

consistently more of these co-activity words in training epochs than sleep epochs for the468

same bin size, pointing to more short time-scale synchronous activity during movement469

along the maze than in sleep.470

Dictionaries of independent neurons also recapitulate these bin size and epoch de-471

pendencies of neural co-activity (Figure 8F-H). Figure 8H shows that the independent472

neuron dictionaries have more co-activity words at small bin sizes. It might be tempt-473

ing here to conclude that the data dictionaries are constrained to fewer co-activity words474

than predicted by independent neurons; but these differences are equally consistent with475

a shadowing effect from spike-sorting, where one or more near-simultaneous spikes from476

neurons on the same electrode are missed (Harris et al., 2000; Bar-Gad et al., 2001):477

when the data are shuffled, more near-simultaneous spikes between neurons are possible.478

Nonetheless, above bins of 5 ms, the disagreement between the data and independent479

neuron dictionaries is proportionally negligible (Figure 8H). Consequently, much of the480

population activity in medial prefrontal cortex is well-captured by an independent-neuron481

model, perhaps pointing to a high-dimensional basis for neural coding.482
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Discussion483

We studied here how the structure of population activity in medial prefrontal cortex484

changes during rule-learning. We found the structure of instantaneous population activ-485

ity in sleep always changes after training, irrespective of any change in overt behaviour486

during training. This plasticity of population activity could be entirely accounted for by487

independent changes to the excitability of individual neurons. Unique to learning is that488

changes to the structure of instantaneous population activity during training are carried489

forward into the following bouts of sleep. Population plasticity during learning includes490

both changes to individual neuron excitability and to co-variations of firing rates between491

neurons. These results suggest two forms of population plasticity in medial prefrontal cor-492

tex, one a constant form unrelated to learning, and the other correlated with the successful493

learning of action-outcome associations.494

To isolate learning and non-learning changes, we found useful the “strong inference”495

approach of designing analyses to decide between simultaneous hypotheses for the same496

data. We identified separable sessions of learning and stable behaviour in order to contrast497

the hypothesis that population structure would only change during overt learning against498

the hypothesis that population structure is always changing irrespective of behaviour.499

Similarly, we contrasted three hypotheses for what drove those changes in population500

structure: changes to excitability of independent neurons; changes in brief co-variations501

of rates; and changes in precise co-spiking.502

A dictionary of cortical activity states503

Characterising the joint activity of cortical neurons is a step towards understanding how504

the cortex represents coding and computation (deCharms and Zador, 2000; Wohrer et505

al., 2013; Yuste, 2015). One clue is that the joint activity of a cortical population seems506

constrained to visit only a sub-set of all the possible states it could reach (Tsodyks et507

al., 1999; Luczak et al., 2009; Sadtler et al., 2014; Jazayeri and Afraz, 2017), in part508

determined by the connections into and within the network of cortical neurons (Galan,509

2008; Marre et al., 2009; Ringach, 2009; Buesing et al., 2011; Habenschuss et al., 2013;510

Kappel et al., 2015). This view predicts that changing the network connections through511

learning would change the set of activity states (Battaglia et al., 2005).512

We see hints of this prediction in our data. We found changes to the probability of513

words in training that are detectable in post-training sleep, consistent with the idea that514

reinforcement-related plasticity of the cortical network has persistently changed the con-515

strained set of activity states. But changing the network’s connections should change not516

just the set of activity states, but also their sequences or clustering in time (Tkacik et al.,517

2014; Ganmor et al., 2015). This suggests that further insights into population plastic-518

ity with these data could be found by characterising the preservation of word sequences519

or clusters in time between training and sleep epochs, and comparing those to suitable520

alternative hypotheses for temporal structure.521

Excitability drives constant population plasticity522

A change in the statistics of a population’s neural activity is not in itself evidence of523

learning (Okun et al., 2012). Indeed, we saw here a constant shifting in statistical structure524

between sleep epochs, regardless of whether the rats showed any evidence of learning in525

the interim training epoch. As these shifts between sleep could be seen at all time-scales of526

words we looked at, and were recapitulated by dictionaries of independent neurons, they527

are most consistent with a model of independent changes to the excitability of individual528

neurons.529

Excitability changes could arise from the spontaneous remodelling of synaptic connec-530

tions onto a neuron, whether from remodelling of dendritic spines (Fu et al., 2012; Hayashi-531
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Takagi et al., 2015), or changes of receptor and protein expression within a synapse (Wolff532

et al., 1995; Ziv and Brenner, 2017). Alternatively, these changes could arise from long-533

lasting effects on neuron excitability of neuromodulators accumulated in medial prefrontal534

cortex during training (Seamans and Yang, 2004; Tierney et al., 2008; Dembrow et al.,535

2010; Benchenane et al., 2011). A more detailed picture of this constant population plas-536

ticity will emerge from stable long-term population recordings at millisecond resolution537

(Jun et al., 2017) of the same prefrontal cortex neurons throughout rule-learning.538

Learning correlates with directional population plasticity539

Unique to learning a new rule in the Y-maze was that changes to word probability in540

training were carried forward to post-training sleep. As this persistence of word probability541

occurred most clearly for short time-scale words (20 ms or less), and were partly driven542

by changes in rate co-variations, it is most consistent with a model of synaptic changes543

to the prefrontal cortex driven by reinforcement. A possible mechanism here is that544

reinforcement-elicited bursts of dopamine permitted changes of synaptic weights into and545

between neurons whose co-activity preceded reward (Izhikevich, 2007; Benchenane et al.,546

2011). Such changes in synaptic weights would also alter the excitability of the neuron547

itself, accounting for the changes between pre and post-training sleep epochs in learning548

sessions.549

A particularly intriguing question is how the constant and learning-specific plasticity550

of population activity are related. Again, stable long-term recordings of spiking activity551

in the same population of neurons across learning would allow us to test whether neurons552

undergoing constant changes in excitability are also those recruited during learning (Lee553

et al., 2012; Hayashi-Takagi et al., 2015). Another question is how the carrying forward of554

training changes of population activity into sleep depends on an animal’s rate of learning.555

In each learning session here the identified learning trial was before the half-way mark,556

meaning that the majority of words contributing to the training dictionary came from trials557

after the rule was acquired. It is an open question as to whether the same relationship558

would be seen in sessions of late learning, or in tasks with continual improvement in559

performance rather than the step changes seen here.560

Replay and dictionary sampling561

The increased similarity of word probability in training and post-training sleep suggests562

an alternative interpretation of “replay” phenomena in prefrontal cortex (Euston et al.,563

2007; Peyrache et al., 2009). Replay of neural activity during waking in a subsequent564

episode of sleep has been inferred by searching for matches of patterns of awake activity565

in sleep activity, albeit at much coarser time-scales than used here. The better match of566

waking activity with subsequent sleep than preceding sleep is taken as evidence that replay567

is encoding recent experience, perhaps to enable memory consolidation. However, our568

observation that the probabilities of words in stable sessions’ trials are not systematically569

closer to those in post-training sleep (Figure 4) is incompatible with the simple replay of570

experience-related activity in sleep. Rather, our results suggest learning correlates with571

persistent changes to the cortical network, such that words have more similar probabilities572

of appearing in training and post-training sleep than in training and pre-training sleep. In573

this view, replay is a signature of activity states that appeared in training being resampled574

in post-training sleep (Battaglia et al., 2005).575

Population coding of statistical models576

What constraints do these changes to mPfC population activity place on theories for577

acquiring and representing statistical models of actions and their outcomes? In this view,578

the joint activity of the population during the trials represents something like the joint579

probability P (a, o|state) of action a and outcome o given the current state of the world580



21

(Alexander and Brown, 2011); or, perhaps more generally, a model for the transitions581

in the world caused by actions, P (state(t + 1)|a, state(t)). Such models could support582

the proposed roles of medial prefrontal cortex in guiding action selection (by querying583

the outcomes predicted by the model), or monitoring behaviour (by detecting unexpected584

deviations from the model). The changes in the structure of population activity during585

learning are consistent with updating such models based on reinforcement.586

Our results show these dictionary changes are carried forward to the spontaneous587

activity of sleep, suggesting that the encoded statistical model is present there too. One588

explanation for this stems from the sampling hypothesis for probability encoding. In this589

hypothesis, a population encodes a statistical model in the joint firing rates of its neurons,590

so that the pattern of activity across the population at each moment in time is a sample591

from the encoded distribution (Fiser et al., 2010; Berkes et al., 2011). This hypothesis592

predicts that spontaneous activity of the same neurons must still represent samples from593

the statistical model: but in the absence of external input, these are then samples from594

the “prior” probability distribution over the expected properties of the world.595

According to this hypothesis, our finding that learning-driven changes to population596

structure are conserved in post-training sleep is consistent with the statistical model now597

reflecting well-learnt expected properties of the world – namely, that a particular set of598

actions on the maze reliably leads to reward. In other words, the prior distribution for the599

expected properties of the world has been updated. Further, the sampling hypothesis also600

proposes a role for the constant changes of excitability without obvious direction – that601

such spontaneous plasticity explores possible configurations of the network and so acts as602

a search algorithm to optimise the encoded statistical model (Kappel et al., 2015; Maass,603

2016). These links, while tentative, suggest the utility of exploring models for probabilistic604

codes outside of early sensory systems (Fiser et al., 2010; Pouget et al., 2013).605
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