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Abstract
1.	 Tropical	forests	store	and	sequester	large	quantities	of	carbon,	mitigating	climate	
change.	Lianas	(woody	vines)	are	important	tropical	forest	components,	most	con-
spicuous	in	the	canopy.	Lianas	reduce	forest	carbon	uptake	and	their	recent	in-
crease	may,	therefore,	 limit	forest	carbon	storage	with	global	consequences	for	
climate	change.	Liana	infestation	of	tree	crowns	is	traditionally	assessed	from	the	
ground,	 which	 is	 labour	 intensive	 and	 difficult,	 particularly	 for	 upper	 canopy	
layers.

2.	 We	used	a	lightweight	unmanned	aerial	vehicle	(UAV)	to	assess	liana	infestation	of	
tree	canopies	from	above.	It	was	a	commercially	available	quadcopter	UAV	with	
an	 integrated,	standard	three-waveband	camera	to	collect	aerial	 image	data	for	
150	ha	of	tropical	forest	canopy.	By	visually	interpreting	the	images,	we	assessed	
the	degree	of	liana	infestation	for	14.15	ha	of	forest	for	which	ground-based	esti-
mates	were	collected	simultaneously.	We	compared	the	UAV	liana	infestation	es-
timates	 with	 those	 from	 the	 ground	 to	 determine	 the	 validity,	 strengths,	 and	
weaknesses	of	using	UAVs	as	a	new	method	for	assessing	liana	infestation	of	tree	
canopies.

3.	 Estimates	 of	 liana	 infestation	 from	 the	 UAV	 correlated	 strongly	 with	 ground-
based	surveys	at	 individual	tree	and	plot	 level,	and	across	multiple	forest	types	
and	spatial	resolutions,	improving	liana	infestation	assessment	for	upper	canopy	
layers.	Importantly,	UAV-based	surveys,	including	the	image	collection,	process-
ing,	 and	 visual	 interpretation,	were	 considerably	 faster	 and	more	 cost-efficient	
than	ground-based	surveys.

4.	 Synthesis and applications.	Unmanned	aerial	vehicle	(UAV)	image	data	of	tree	cano-
pies	can	be	easily	captured	and	used	to	assess	liana	infestation	at	least	as	accu-
rately	as	traditional	ground	data.	This	novel	method	promotes	reproducibility	of	
results	and	quality	control,	and	enables	additional	variables	to	be	derived	from	the	
image	data.	It	is	more	cost-effective,	time-efficient	and	covers	larger	geographical	
extents	than	traditional	ground	surveys,	enabling	more	comprehensive	monitor-
ing	of	changes	in	liana	infestation	over	space	and	time.	This	is	important	for	as-
sessing	 liana	 impacts	 on	 the	 global	 carbon	 balance,	 and	 particularly	 useful	 for	
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1  | INTRODUC TION

Tropical	forests	and	their	canopies	play	a	crucial	role	in	the	mainte-
nance	and	provision	of	unique	biodiversity	and	essential	ecosystem	
services	 to	all	 life	on	Earth	 (Lowman	&	Schowalter,	2012;	Ozanne	
et	al.,	 2003).	 One	 of	 the	most	 important	 ecosystem	 services	 that	
tropical	forests	provide	is	their	ability	to	store	and	sequester	carbon	
(Pan	et	al.,	2011).	Managing	 tropical	 forests	 for	 carbon	sequestra-
tion,	therefore,	provides	a	key	opportunity	to	mitigate	some	of	the	
effects	of	climate	change	resulting	from	increasing	atmospheric	CO2 
concentrations	(Canadell	&	Raupauch,	2008).

Lianas	 (woody	 vines)	 are	 conspicuous	 components	 of	 tropical	
forests,	where	they	peak	 in	abundance,	biomass,	and	species	rich-
ness	(Schnitzer	&	Bongers,	2002).	Lianas	use	the	structural	biomass	
of	 trees	 to	 deploy	 leaves	 in	 the	 canopy,	 thus	 investing	 relatively	
more	resources	in	producing	an	extensive	leaf	canopy	than	in	woody	
tissue.	 Lianas,	 therefore,	 disproportionately	 contribute	 to	 the	 for-
est	canopy:	liana	leaves	can	comprise	up	to	30%	of	forest	leaf	area	
but	only	up	to	5%	woody	stem	biomass	of	tropical	forests	(van	der	
Heijden,	Schnitzer,	Powers,	&	Phillips,	2013).	Liana	abundance	and	
biomass	 have	 increased	 over	 the	 last	 few	 decades	 (Schnitzer	 &	
Bongers,	2011).	Consequently,	lianas	have	proliferated	in	the	forest	
canopy,	 indicated	by	 an	 increase	 in	 their	 contribution	 to	 leaf	 pro-
ductivity	as	well	as	in	the	number	of	tree	crowns	infested	(Ingwell,	
Wright,	 Becklund,	 Hubbell,	 &	 Schnitzer,	 2010;	 Wright,	 Calderón,	
Hernandéz,	 &	 Paton,	 2004).	 Partly	 due	 to	 their	 extensive	 cano-
pies,	 lianas	aggressively	compete	with	 trees,	 reducing	 tree	growth	
(Ingwell	 et	al.,	 2010;	 van	 der	 Heijden	 &	 Phillips,	 2009),	 fecundity	
(e.g.,	Kainer,	Wadt,	&	Staudhammer,	 2014),	 survival	 (Ingwell	 et	al.,	
2010;	 Phillips,	 Vásquez	 Martínez,	 Monteagudo	 Mendoza,	 Baker,	
&	Núñez	Vargas,	2005)	and,	consequently,	 forest	biomass	and	net	
carbon	uptake	(van	der	Heijden,	Powers,	&	Schnitzer,	2015).	Lianas	
pose	a	particular	problem	for	managed	forests,	where	they	can	sub-
stantially	 hinder	 carbon	 sequestration	 and	 forest	 restoration	 (e.g.,	
Marshall	et	al.,	2017).	Liana	cutting	is	often	used	to	enhance	carbon	
uptake	(Marshall	et	al.,	2017;	van	der	Heijden	et	al.,	2015);	however,	
this	is	expensive	and	labour	intensive	to	perform	over	large	extents.	
The	ability	to	identify	where	liana	management	would	be	most	ben-
eficial	would	therefore	help	target	management	of	tropical	forests.

Being	 able	 to	 accurately	 monitor	 the	 presence	 and	 degree	 of	
liana	 infestation	 in	 forest	 canopies	 over	 time	 and	 space	 is,	 there-
fore,	 important	 for	 determining	whether	 and	where	 liana	 impacts	

are	high	and/or	may	be	increasing,	particularly	in	managed	tropical	
forests.	Due	to	practical	difficulties	in	accessing	tropical	forest	can-
opies	 (Nakamura	et	al.,	2017),	assessing	 liana	canopy	 infestation	 is	
traditionally	done	by	ground-	based	 surveys	 (e.g.,	 van	der	Heijden,	
Feldpausch,	Herrero,	 van	 der	Velden,	&	 Phillips,	 2010).	 These	 are	
labour-		and	time	intensive,	and	consequently	limited	in	their	spatial	
and	temporal	coverage,	and	lianas,	therefore,	remain	understudied	
in	tropical	forests	(Marvin,	Asner,	&	Schnitzer,	2016).	Furthermore,	
the	 stratified	 nature	 of	 tropical	 forests	 often	 limits	 the	 visibility	
of	 canopy	 and	 emergent	 tree	 crowns,	 affecting	 the	 reliability	 of	
ground-	based	estimates	for	them.	As	these	larger	trees	tend	to	store	
and	sequester	the	most	carbon	and,	due	to	high	light	conditions	in	
their	crown,	often	harbour	lianas	(van	der	Heijden,	Healey,	&	Phillips,	
2008),	reliable	assessment	of	liana	infestation	for	top-	of-	the-	canopy	
trees	is	especially	important.

Assessing	lianas	from	a	vantage	point	above	the	canopy	should	
be	feasible	using	remote	sensing	platforms	which	offer	views	of	the	
canopy	with	much	less	obscuration	by	vegetation	than	possible	from	
the	ground	(Nadkarni,	Parker,	&	Lowman,	2011).	However,	satellite	
and	many	airborne	platforms	generally	provide	data	 too	coarse	 in	
temporal	or	spatial	resolution	for	this	task,	too	expensive	at	very	fine	
resolutions,	and	frequently	suffer	from	cloud	obscuration,	especially	
in	moist	forests.	Workarounds	exist:	using	hyperspectral	and	LiDAR	
sensors,	the	Carnegie	Airborne	Observatory	was	able	to	accurately	
map	heavy	 liana	 infestation	across	 the	 forests	of	Panama	 (Marvin	
et	al.,	2016).	The	use	of	such	sensors	is	very	expensive	and	restricted	
to	specialists,	however,	prohibiting	their	accessibility	to	the	major-
ity	of	 researchers	and	forest	managers.	Furthermore,	such	remote	
sensing	campaigns	are	typically	carried	out	as	one-	time	operations,	
so	frequent	monitoring	is	difficult	(Xue	&	Su,	2017).

Unmanned	aerial	 vehicles	 (UAVs)	with	 sensors	overcome	most	
of	 the	 aforementioned	 limitations	 of	 remote	 sensing	 platforms	
(Cunliffe,	 Brazier,	 &	 Anderson,	 2016).	 They	 can	 acquire	 remotely	
sensed	data	from	relatively	inaccessible	environments,	and	thus	are	
useful	for	measuring	and	(long-	term)	monitoring	of	forest	canopies	
(Kachamba,	Ørka,	Gobakken,	Eid,	&	Mwase,	2016;	Paneque-	Gálvez,	
McCall,	Napoletano,	Wich,	&	Koh,	2014;	Zahawi	et	al.,	2015;	Zhang	
et	al.,	2016).	Additionally,	UAVs	can	capture	data	at	even	finer	tem-
poral	and	spatial	resolutions	than	satellite	and	manned-	airborne	re-
mote	 sensing	 (Nakamura	 et	al.,	 2017).	 This	 is	 especially	 important	
because	visually	distinguishing	lianas	from	trees	requires	ultra-	fine	
resolution	(mm–cm)	image	data:	liana	leaves	grow	among	the	leaves	

forest	management	where	knowledge	of	the	location	and	change	in	liana	infesta-
tion	can	be	used	for	tailored,	targeted,	and	effective	management	of	tropical	for-
ests	for	enhanced	carbon	sequestration	(e.g.,	REDD+	projects),	timber	concessions,	
and	forest	restoration.

K E Y W O R D S

drone,	drone	ecology,	liana	infestation,	lianas,	remote	sensing,	tropical	forest	canopy,		
unmanned	aerial	vehicles,	visual	image	interpretation
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of	the	trees	 in	which	they	are	 located,	becoming	embedded	in	the	
canopy,	and	are	also	heterogeneous	 in	nature,	as	 lianas	are	phylo-
genetically	and	functionally	highly	diverse	(Burnham,	2004;	Gentry,	
1991).	Because	their	physical	traits	vary,	leaves	of	a	given	liana	spe-
cies	may	look	very	different	or	very	similar	to	other	liana	species	or	
the	tree	in	which	they	are	located.	Additional	textural	context,	such	
as	leaf	shape	or	arrangement,	could	allow	improved	discrimination	of	
liana	leaves	from	tree	leaves	in	cases	where	spectral	discrimination	
is	unfeasible.	Thus,	UAVs	and	the	enhanced	spatial	resolution	they	
offer	are	potentially	effective	for	assessing	canopy-	level	liana	infes-
tation.	However,	even	though	UAVs	have	been	used	to	study	other	
canopy	phenomena	(e.g.,	Zahawi	et	al.,	2015);	thus	far,	they	have	not	
been	used	to	study	lianas.

Here,	we	examine,	 for	 the	 first	 time,	 the	 applicability	 of	UAV-	
derived	image	data	to	assess	the	presence	and	degree	of	liana	infes-
tation	in	tropical	tree	canopies,	using	ground-	based	observations	as	
a	benchmark.	Specifically,	we	aim	to	assess	the	validity	of	utilizing	
a	consumer-	grade	UAV	and	camera	as	a	new	method	for	collecting	
data	on	liana	infestation,	by	(a)	assessing	interobserver	bias	in	clas-
sifying	 liana	 infestation	 from	 UAV	 images	 (reproducibility between 
observers);	 (b)	 evaluating	 the	 strength	 of	 the	 correlation	 between	
UAV-		and	ground-	derived	measures	of	liana	infestation	on	individual	
tree-		and	plot	 levels,	and	for	different	canopy	strata	 (accuracy and 
reproducibility against benchmarked method);	and	(c)	comparing	input	
time	and	costs	between	ground	and	UAV	surveys	of	liana	infestation	
(efficiency against a benchmarked method).

2  | MATERIAL S AND METHODS

2.1 | Study sites

Ground	and	UAV-	based	surveys	were	conducted	in	two	sites	across	
eastern	Sabah,	Malaysia:	Danum	Valley	Conservation	Area	(Danum)	
(4°57′N,	 117°42′E)	 and	 Sepilok	 Forest	 Reserve	 (Sepilok)	 (5°52′N,	
117°56′E)	(Figure	1).	Danum	is	characterized	by	lowland,	evergreen	

dipterocarp	forest,	covering	~43,800	ha,	and	Sepilok	by	alluvial	low-
land	dipterocarp,	 sandstone	hill	dipterocarp,	and	kerangas	 forests,	
covering	~4,300	ha.	We	surveyed	17	plots:	eight	1-	ha	plots	located	
in	the	Center	for	Tropical	Forest	Science	(CTFS)	50-	ha	plot,	three	ad-
ditional	10-	ha	plots	(Berry,	Phillips,	Ong,	&	Hamer,	2008),	and	three	
0.05-	ha	circular	plots	(Foody	et	al.,	2001)	in	Danum	and	three	1-	ha	
plots	in	Sepilok	located	in	the	alluvial,	sandstone	hill,	and	kerangas	
forests	(Nilus,	2004).

2.2 | Ground- based data collection and liana 
assessments

We	classified	the	liana	load	carried	by	each	tree	≥10	cm	DBH	within	
the	plots	using	two	methods:	(a)	crown	occupancy	index	(COI)	and	
(b)	percentage	 liana	cover	 (%LC).	The	COI	expresses	 liana	 load	 in	
the	tree	crown	on	a	simple	5-	point	ordinal	scale:	(0)	no	lianas	in	the	
crown,	(1)	1%–25%,	(2)	26%–50%,	(3)	51%–75%,	and	(4)	>75%	of	the	
crown	covered	by	liana	leaves	(Clark	&	Clark,	1990).	This	index	is	
widely	used	in	liana	research	and	accurately	measures	liana	loads	
at	both	the	individual	tree-		and	site	level	with	little	interobserver	
bias	(van	der	Heijden	et	al.,	2010).		%LC	is	a	more	detailed	estimate,	
expressed	as	the	mean	of	four	compass	quadrants	into	which	the	
tree	crown	is	visually	split	and	percentage	of	the	crown	covered	by	
lianas	estimated	to	the	nearest	5%	(cf.	Marvin	et	al.,	2016).

The	plot	corners	(or	midpoints	for	the	0.05-	ha	plots)	and	individ-
ual	trees	≥10	cm	DBH	within	each	plot	were	georeferenced	using	a	
handheld	GPS	unit	(Garmin	eTrex	Vista	HCx),	allowing	individual	tree	
crowns	to	be	identified	and	cross-	referenced	in	the	UAV	images.	We	
also	assigned	each	tree	≥10	cm	DBH	a	value	indicating	the	light	level	
its	crown	received	using	the	crown	illumination	index	(CII)	(Clark	&	
Clark,	1992).	This	ordinal	 scale	 index	 is	more-	or-	less	equivalent	 to	
canopy	stature	(1	=	understorey,	2	=	lower	canopy,	3	=	mid	canopy,	
4	=	upper	canopy,	5	=	emergent);	 it	helped	identify	individual	trees	
on	the	UAV	image	data	and	allowed	comparison	across	different	tree	
canopy	statures.

F IGURE  1 Location	of	the	2	study	
sites	and	17	plots,	which	are	in	the	state	
of	Sabah,	Malaysia,	on	the	island	of	
Borneo,	Southeast	Asia.	The	orthomosaics	
created	from	the	UAV	survey	(150	ha)	are	
shown	outlined	in	white	on	top	of	satellite	
imagery,	and	the	plots	(14.15	ha)	outlined	
in	yellow.	Satellite	imagery	source:	
DigitalGlobe	WorldView2	RGB	imagery
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The	CII,	COI,	and	%LC	values	were	assigned	by	two	independent	
observers,	who	discussed	their	estimates	in	the	field	and	agreed	final	
values	for	each	tree.	In	one	of	the	Danum	plots	%LC	data	were	not	
collected,	and	in	the	Sepilok	plots	we	only	collected	data	for	higher	
canopy-	level	trees.

2.3 | UAV data collection and liana assessments

We	acquired	images	of	the	forest	canopy	using	a	lightweight,	agile,	
inexpensive,	commercially	available	quadcopter	UAV:	a	DJI	Phantom	
3	 Advanced	 equipped	 with	 an	 integrated	 three-	waveband	 (RGB)	
camera,	mounted	on	a	three-	axis,	gyro-	stabilized	gimbal.	The	high-	
quality	Sony	EXMOR	1/2.3″	12-	megapixel	camera	has	a	narrow	94°	
field	of	view	lens	(35	mm	format	equivalent:	20	mm)	reducing	“fish-	
eye”	image	distortion,	and	an	f/2.8	aperture	and	8s–1/8000s	shutter	
speed	reducing	image	blur.	The	UAV	possesses	GPS	and	GLONASS	
positioning	 to	 enable	 autonomous	 flights	 of	 up	 to	 ~23	min.	 Each	
image	is	geo-	tagged	with	the	GPS	location	and	altitude	of	the	UAV	
at	the	point	of	capture.

The	 plots	 were	 flown	 using	 the	 automatic	 mapping	 software	
Map	Pilot,	with	predetermined	flight	plans	with	the	same	parame-
ters	(speed:	4	m/s;	image	overlap	at	ground-	level:	90%	forward,	90%	
side;	altitude:	30	and	60	m	above	canopy	surface)	in	parallel	tracks	
that	 covered	 the	 plot	 and	 a	 “buffer”	 of	 surrounding	 vegetation	 to	
minimize	edge-	effects	affecting	the	images	of	the	plot	in	processing.	
High	image	overlap	at	ground-	level	was	necessary	to	maintain	ade-
quate	overlap	for	producing	orthomosaics	at	canopy-	level	(for	more	
information	see	Supporting	Information	Appendix	S1.3).	We	identi-
fied	 canopy	 gaps	 large	 enough	 to	 allow	 the	UAV	 to	 be	 launched/

landed,	and	manually	piloted	it	through,	to	ensure	maximal	pilot	con-
trol	and	minimal	risk	of	collisions.	The	flights	were	conducted	during	
calm	 conditions	 to	 prevent	wind	 effects	 on	 leaves	 (McNeil,	 2016)	
and,	where	 possible,	when	 there	was	 even	 cloud	 cover	 to	 ensure	
diffuse	radiation	and	minimize	shadowing	in	the	canopy—improving	
clarity	 in	the	 images	and	aiding	 liana	 identification.	All	 flights	took	
place	 concurrently	with	 the	ground	assessments	 in	May	 and	 June	
2016.	Additional	details	on	 the	UAV	surveys,	and	our	experiences	
and	recommendations	for	using	UAVs	for	research,	are	in	Supporting	
Information	Appendix	S1.

In	total,	6,094	and	1,344	images	taken	30	and	60	m	above	the	
canopy	were	captured	with	spatial	resolutions	of	~10	mm/pixel	and	
~20	mm/pixel,	covering	~150	ha	and	~50	ha	of	forest,	respectively,	
within	which	the	plots	cover	14.15	ha.	The	images	were	assembled	
to	form	a	single	two-	dimensional	orthorectified	image	(orthomosaic)	
for	each	plot,	geo-	referenced	to	the	WGS84	UTM	Zone	50N	pro-
jected	 coordinate	 system,	 using	 Agisoft	 PhotoScan	 version	 1.3.0.	
An	example	Agisoft	PhotoScan	output	is	in	Supporting	Information	
Appendix	S2.	The	orthomosaics	were	exported	into	ArcGIS	to	iden-
tify	individual	trees	(supplemented	by	the	original	images,	to	provide	
multiple	 views	 from	different	 angles,	where	 necessary).	 The	30	m	
data	were	used	for	all	analyses;	the	60	m	data	were	used	to	compare	
different	spatial	resolutions.

For	each	individual	tree,	COI	and	%LC	values	were	determined	
by	visual	 image	interpretation	using	the	same	method	used	on	the	
ground	but	applied	from	above.	Interpreting	the	images	in	this	way	is	
beneficial	because	it	(a)	matches	the	visual	assessment	used	on	the	
ground	and	(b)	harnesses	the	power	of	human	interpretation	skills,	
which	 is	especially	 important	as	no	algorithm	has	been	developed	

F IGURE  2 An	example	image	taken	
using	the	DJI	Phantom	3	Advanced.	Two	
sections	of	the	image	have	been	selected	
to	show	a	(a)	liana-	free	and	(b)	liana-	
infested	tree	crown	(indicated	by	a	white	
border).	The	yellow	border	in	(b)	indicates	
the	liana	leaves

(a)

(b)
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to	 automate	 liana	 infestation	 identification	 in	 tree	 canopies	 from	
RGB	 image	data.	Any	 trees	 for	which	ground	data	were	collected,	
but	which	were	obscured	by	larger	trees	and	not	visible	on	the	UAV	
image	data,	were	excluded	from	further	analysis	on	individual	tree	
levels	 but	 retained	 for	 plot-	level	 comparisons	 of	UAV	 and	 ground	
surveys.

3  | RESULTS

Liana	load	data	were	collected	in	17	plots	across	4	forest	types,	via	
both	ground-		and	UAV-	based	methods,	for	more	than	3,500	trees.	
The	ultra-	fine	spatial	resolution	(10	mm/pixel)	of	the	UAV	data	ren-
dered	 each	 tree	 crown	 recognizable	 and	 individual	 leaves	 clearly	
identifiable	(Figure	2).	Liana	load	could,	therefore,	be	assessed:	trees	
without	 liana	 infestation	 (Figure	2a)	 could	 be	 distinguished	 from	
liana-	infested	trees	(Figure	2b).	This	remained	true	when	using	the	
coarser	~20	mm/pixel	spatial	resolution.

3.1 | Reproducibility (between observers)

We	assessed	interobserver	bias	in	classifying	liana	load	from	the	UAV	
image	data;	bias	in	ground-	based	surveys	was	examined	previously	
by	 van	 der	Heijden	 et	al.	 (2010)	 and	 therefore	 not	 assessed	 here.	
Three	independent	observers	with	differing	levels	of	experience	in	
liana	identification	classified	the	COI	and	%LC	for	200	randomly	se-
lected	trees.	We	used	Kendall’s	coefficient	of	concordance	(Kendall’s	
W)	 and	Spearman’s	 rank	 test,	 respectively,	 to	 assess	 the	 concord-
ance	of	COI	and	%LC	values	recorded	by	different	observers,	find-
ing	high	degrees	of	 concordance	 for	both	measures	 (Table	1).	 The	
same	COI	was	recorded	by	all	observers	on	75%	of	occasions	and	on	
only	2%	of	occasions	did	all	observers	classify	liana	load	differently.	
When	classifications	differed,	this	was	most	often	by	only	one	class	
(86%).

3.2 | Reproducibility (against a benchmarked 
method)

There	 was	 high	 concordance	 of	 COI	 scores	 between	 UAV	 and	
ground	surveys	for	the	full	dataset	 (Kendall’s	W	=	0.947,	p < 0.001, 
N = 3,555;	Tables	2	and	3),	with	liana	load	scored	the	same	on	71.1%	
of	 occasions.	 Classifications	 differed	 by	 one	 class	 for	 26.1%,	 and	
by	 two	or	more	 classes	 for	 2.8%	of	 the	 trees.	 The	most	 frequent	
differences	between	UAV	and	ground	surveys	(43.2%	of	trees	that	
differed)	were	when	COI	was	scored	0	(liana-	free)	by	ground-	based	
surveys	 and	 1	 (low	 infestation)	 by	 UAV	 surveys	 (Tables	2	 and	 3).	
Similar	trends	were	found	for	Danum	and	the	different	forest	types	
in	Sepilok	separately	(Supporting	Information	Appendix	S3.1).

We	used	Model	 II	 regression	 to	 test	 the	 relationship	 between	
the	UAV	and	 the	 ground-	derived	%LC	values.	Model	 II	 regression	
performs	better	than	standard	Model	I	(OLS)	regression	when	there	
are	 errors	 associated	 with	 both	 variables	 (Legendre	 &	 Legendre,	
1998),	with	the	estimated	model	having	the	same	slope	and	r2 values 

independent	of	which	way	round	the	axes	are.	To	further	evaluate	
the	relationship	between	the	UAV-		and	ground-	based	methods,	we	
also	 calculated	 the	 RMSE	with	 respect	 to	 the	 1:1	 line	with	 lower	
RMSE	values	indicating	greater	concordance	between	the	UAV	and	
ground	methods.	We	found	a	strong	relationship	between	ground-		
and	UAV-	based	assessments	of	%LC	for	the	full	dataset	(r2	=	0.867,	
p < 0.001, N	=	3,320;	Figure	3),	for	different	forest	types	separately	
(Supporting	Information	Appendix	S3.23)	and	when	using	a	coarser	
spatial	resolution	(Supporting	Information	Appendix	S3.3).	Although	
UAV-		and	ground-	based	classifications	were	similar	for	more	heavily	
infested	trees,	UAV-	based	%LC	classification	was	higher	for	 lightly	
infested	 trees,	with	 the	 regression	 line	 significantly	below	 the	1:1	
line	 for	%LC	below	40%	 (Figure	3).	This	was	mainly	caused	by	 the	
high	number	of	tree	crowns	classed	as	liana-	free	by	the	ground	sur-
vey	but	as	low-	level	liana	infestation	by	the	UAV	survey.

Since	canopies	of	taller	trees	can	be	hard	to	see	from	the	ground	
due	 to	 the	 stratified	 nature	 of	 tropical	 forests	 canopies,	 we	 also	
compared	ground	and	UAV	survey	 results	 for	 tree	crowns	 located	
in	 different	 canopy	 strata.	We	 found	 strong	 agreement	 between	
ground-		and	UAV-	derived	COI	values	(Kendall’s	W	>	0.9)	for	all	can-
opy	 stature	 classes	 except	 emergent	 trees	 (Kendall’s	 W	=	0.750;	
Table	2;	 Supporting	 Information	 Appendix	S3.4a–d).	 The	 most	
common	differences	were	again	when	COI	was	classed	as	0	by	the	
ground	 survey	 and	 1	 by	 the	 UAV	 survey,	 especially	 in	 the	 higher	
canopy	strata	(this	was	up	to	seven	times	more	likely	for	emergent	
trees).	Agreement	between	 the	 two	methods	was	greater	 for	 tree	
crowns	 in	 the	 lower	 canopy	 layers,	 and	 for	more	 heavily	 infested	
individuals	in	upper	canopy	strata	(Table	2;	Supporting	Information	
Appendix	S3.4a–d).	These	patterns	were	also	evident	when	compar-
ing	the	%LC	values;	although	ground-		and	UAV-	derived	%LC	values	
were	strongly	related	for	all	four	canopy	strata	(Figure	4),	the	regres-
sion	 line	deviated	 significantly	 from	 the	1:1	 line	 for	upper	 canopy	
and	emergent	trees.	This	was	again	caused	by	many	trees	classified	
as	liana-	free	in	the	ground-	based	surveys	and	with	low	levels	of	liana	
infestation	in	the	UAV-	based	surveys	(Figure	4c,d).

At	 plot	 level,	 there	was	 a	 strong,	 positive	 relationship	 between	
ground-		and	UAV-	based	classifications	of	(a)	the	proportion	of	liana-	
infested	trees	per	plot,	and	plot	level	(b)	mean	COI	and	(c)	%LC	values	
(r2	=	0.719,	 0.899, and		 0.920	 respectively;	 Figure	5).	 This	 indicates	

TABLE  1 Degree	of	concordance	between	different	observers	
in	independently	assessing	liana	infestation	of	tree	crowns	in	UAV	
image	data	using	crown	occupancy	index	(COI)	and	percentage	liana	
cover	(%LC).	Differences	in	COI	and	%LC	were	assessed	with	
Kendall’s	W	and	Spearman’s	rank	tests,	respectively

COI %LC

W p r p

All 0.950 <0.001

Obs.	1	&	2 0.966 <0.001 0.961 <0.001

Obs.	1	&	3 0.966 <0.001 0.942 <0.001

Obs.	2	&	3 0.955 <0.001 0.927 <0.001
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that,	although	fewer	tree	crowns	(of	smaller	trees)	are	discernible	in	
the	UAV	 image	data	 (mean	trees/ha:	ground	=	360;	UAV	=	270),	 the	
UAV	 method	 is	 nonetheless	 suitable	 for	 plot-	level	 analysis.	 UAV-	
derived	plot-	level	estimates	of	liana	infestation	were	higher	(i.e.,	under	
the	1:1	 line	 in	 Figure	5)	 than	 ground-	based	 estimates	 for	 almost	 all	
plots,	with	the	difference	more	pronounced	for	plots	with	lower	liana	
infestation.

3.3 | Efficiency

The	UAV	method	was	particularly	time-	efficient,	with	liana	infestation	
assessment	on	average	more	than	five	times	faster	than	the	ground-	
based	method,	including	both	field	and	laboratory	time	(Table	4).	Field	
campaigns	 are	 typically	 the	most	 costly	 and	 time-	limited	phases	of	
ecological	research,	and	here	the	efficiency	of	the	UAV	survey	over	
the	ground	survey	 is	particularly	enhanced.	 It	 reduces	field	time	by	
98.6%	and	the	fixed	costs	of	UAV	hardware	and	software	are	recov-
ered	 in	 the	 first	 5.5	 ha,	with	 further	UAV	 surveys	 costing	 5.5%	 as	
much	as	the	ground	survey	(Table	4).	As	fixed	costs	decrease	with	de-
velopments	in	UAV	technology	and	popularity,	the	break-even	point	
will	occur	even	sooner	than	the	5.5	ha	in	this	study.

4  | DISCUSSION

Here,	we	demonstrate,	for	the	first	time,	that	UAVs	can	be	used	as	
an	accurate,	accessible,	agile,	cost-	effective,	and	time-	efficient	new	
tool	for	collecting	data	on	liana	infestation	of	tropical	tree	crowns,	
overcoming	 limitations	 of	 existing	 methods.	 Liana	 loads	 derived	
from	UAV	surveys	and	traditional	ground	surveys	were	strongly	re-
lated	at	both	individual	tree-		and	plot	level	(Tables	2	and	3;	Figures	3	
and	4).	Furthermore,	we	found	little	interobserver	bias	in	visual	clas-
sifications	of	 liana	 loads	derived	 from	UAV	 image	data,	 regardless	
of	liana	expertise	or	previous	experience	of	liana	surveys	(Table	1),	
indicating	 high	 reproducibility	 of	 the	 UAV	 method.	 Additionally,	
the	UAV	method	was	much	more	 time-	efficient	 than	 the	 ground-	
based	method,	particularly	in	the	field,	and	considerably	more	cost-	
efficient	 over	 multiple	 surveys	 (Table	4),	 with	 initial	 investment	
recouped	within	 the	 first	 six	plots.	The	UAV	also	 remains	cheaper	
than	 most	 suitable	 satellite	 or	 manned	 aerial	 survey	 image	 data.	

TABLE  2 Percentage	of	trees	in	each	of	the	crown	occupancy	index	(COI)	classes	for	the	ground	(G)	and	UAV	surveys,	and	the	degree	of	
concordance	between	the	surveys	(Kendall’s	W)	for	the	full	dataset	(All	trees)	and	the	dataset	partitioned	by	canopy	strata.	p < 0.001 for all 
comparisons

N W

COI 0 (%) COI 1 (%) COI 2 (%) COI 3 (%) COI 4 (%)

G UAV G UAV G UAV G UAV G UAV

All	trees 3,555 0.947 44.6 34.5 13.0 24.7 12.3 11.4 12.1 12.8 18.0 16.6

Lower 1,841 0.968 33.9 31.6 16.2 22.0 15.2 13.5 13.1 14.0 22.0 19.0

Mid 989 0.936 44.5 29.6 11.0 26.7 11.2 11.7 13.6 14.3 19.5 17.7

Upper 412 0.909 61.2 39.6 10.2 28.9 7.8 7.0 10.0 10.2 10.9 14.3

Emergent 313 0.750 86.9 60.7 4.2 29.1 4.2 3.8 3.2 4.5 1.6 1.9

TABLE  3 Error	matrix	showing	the	number	of	trees	classified	in	
each	crown	occupancy	index	(COI)	class	for	the	ground	and	UAV	
surveys	for	the	full	dataset.	Counts	in	bold	indicate	when	the	two	
methods	produced	the	same	score

Ground data COI

0 1 2 3 4

U
AV
	d
at
a	
CO
I 0 1,164 54 7 2 0

1 390 358 109 16 5

2 25 43 227 93 18

3 9 6 85 259 96

4 1 1 8 59 520

F IGURE  3 Relationship	between	the	UAV-	derived	percentage	
liana	cover	(%LC)	and	the	ground-	derived	percentage	liana	cover	
(%LC).	The	solid	red	line	is	the	Model	II	regression	line,	and	its	
associated	r2	is	reported,	dashed	red	lines	are	the	95%	confidence	
intervals,	and	the	black	line	is	the	1:1	line	(i.e.,	perfect	match).	
N	=	3,320;	RMSE	(with	respect	to	the	1:1	line)	=	12.73.	Darker	dots	
indicate	more	data	points	with	similar	ground	and	UAV	values
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Thus,	UAVs	make	liana	data	collection	more	accessible	to	a	wider	va-
riety	of	researchers	and	forest	managers	and	may,	therefore,	enable	
canopy	monitoring	and	mapping	of	lianas	on	unprecedented	spatial	
and	temporal	scales.

At	 the	 plot	 level,	UAV-	based	 surveys	 consistently	 classed	 per-
cent	 liana	 infestation	higher	 than	ground-	based	surveys	 (Figure	5).	

There	 are	 two	 explanations	 for	 this.	 Firstly,	 UAVs	 were	 better	 at	
recognizing	low-	level	liana	infestation	(Tables	2	and	3;	Figures	3	and	
4).	 Secondly,	 plot-	level	 estimates	 of	 liana	 infestation	 from	 ground	
surveys	 included	 understorey	 trees	 not	 visible	 on	 the	UAV	 image	
data.	 As	 understorey	 trees	 are	 less	 frequently	 infested	 by	 lianas	
than	 larger	 trees	 (van	 der	 Heijden	 et	al.,	 2008),	 their	 inclusion	 in	

F IGURE  4 Relationships	between	
the	UAV-	derived	percentage	liana	
cover	(%LC)	and	the	ground-	derived	
percentage	liana	cover	(%LC)	for	(a)	
lower canopy (N	=	1,711;	RMSE	(with	
respect	to	the	1:1	line)	=	12.79),	(b)	mid	
canopy (N	=	931;	RMSE	(with	respect	to	
the	1:1	line)	=	12.47),	(c)	upper	canopy	
(N	=	380;	RMSE	(with	respect	to	the	1:1	
line)	=	14.96),	(d)	emergent	trees	(N	=	298;	
RMSE	(with	respect	to	the	1:1	line)	=	9.79).	
Solid	red	lines	are	the	Model	II	regression	
lines	with	their	associated	r2s	reported,	
dashed	red	lines	are	the	95%	confidence	
intervals,	and	black	lines	are	the	1:1	lines	
(i.e.,	perfect	match).	Darker	dots	indicate	
more	data	points	with	similar	ground	and	
UAV	values
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F IGURE  5 Relationships	between	ground	and	UAV-	derived	plot-	level	(a)	proportion	of	infested	trees	(%;	N	=	14;	RMSE	(with	respect	
to	the	1:1	line)	=	10.86),	(b)	mean	liana	crown	occupancy	index	(COI;	N	=	14;	RMSE	(with	respect	to	the	1:1	line)	=	0.19),	and	(c)	mean	
percentage	liana	cover	(%LC;	N	=	13;	RMSE	(with	respect	to	the	1:1	line)	=	3.68)	for	the	Danum	Valley	Conservation	Area	plots.	The	Model	
II	regression	lines	are	shown	in	red,	with	their	associated	r2s	reported,	and	the	1:1	lines	in	black.	The	1:1	line	fell	within	the	95%	confidence	
bands,	but	as	intervals	were	large	they	were	excluded	from	the	graph
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ground	surveys	reduces	plot-	level	values	of	percent	liana	infestation.	
Despite	these	differences	between	the	ground-		and	UAV-	based	sur-
veys,	there	was	a	strong	positive	relationship	between	their	results	
for	plot-	level	 liana	 infestation.	This	suggests	either	method	can	be	
used	to	compare	plot-	level	liana	infestation	rates	across	sites	(cf.	van	
der	Heijden	et	al.,	2010),	provided	that	the	same	method	is	used.

The	 fine	 spatial	 resolution	 of	UAV	 image	 data,	 combined	with	
the	 top-	of-	the-	canopy	 view,	 provides	 an	 enhanced	 perspective	 to	
study	liana	infestation.	This	makes	UAVs	particularly	useful	for	silvi-
cultural	systems,	where	liana	cutting	is	routinely	performed	for	im-
proving	timber	and	fruit	production	(Kainer	et	al.,	2014;	Sist,	Fimbel,	
Sheil,	Nasi,	&	Chevallier,	2003;	Verwer,	Peña-	Claros,	Van	Der	Staak,	
Ohlson-	Kiehn,	&	Sterck,	2008),	and	for	forest	management	or	res-
toration	purposes,	where	liana	cutting	has	been	shown	to	regener-
ate	 biomass	 (Marshall	 et	al.,	 2017).	With	UAVs,	 users	 can	 quickly,	
efficiently,	and	accurately	pinpoint	which	trees	or	areas	suffer	from	
heavy	liana	infestation,	and	those	at	risk	of	heavy	liana	infestation	
in	the	future.	This	is	feasible	over	much	larger	areas	than	normally	
possible	with	 ground-	based	methods,	 enabling	 better	 targeting	 of	
management	practices	such	as	liana	cutting,	and	saving	time,	effort,	
and money.

UAVs	 improve	 liana	 infestation	 assessment	 for	 canopy	 and	
emergent	trees,	compared	to	ground	surveys	(Table	2;	Figure	4c,d;	
Supporting	 Information	 Appendix	S3.4c,d).	 These	 tall	 trees	 store	

and	sequester	 the	most	carbon	and	are	 the	main	commercial	 spe-
cies.	Liana-	induced	changes	 in	 them	may,	 therefore,	be	an	 import-
ant	mechanism	affecting	forest-	level	and	tree-	level	carbon	storage	
and	 sequestration,	 for	which	UAVs	 represent	 a	 particularly	 useful	
management	 tool.	 Successful	 liana	 management	 may	 also	 help	 to	
increase	timber	and	fruit	productivity,	and	carbon	storage	and	se-
questration	 of	 degraded	 forests	 (van	 der	 Heijden	 et	al.,	 2015).	 In	
particular,	UAVs	increased	our	ability	to	detect	low-	level	liana	infes-
tation	in	these	trees,	which	is	particularly	difficult	from	the	ground	
as	they	are	often	partly	obscured	by	shorter	canopy	trees	(Table	3;	
Figure	4c,d).	 Although	 lianas	 exert	 limited	 effects	 at	 low	 levels	
(<50%	crown	coverage;	for	example	Ingwell	et	al.,	2010),	identifying	
them	quickly	is	important	as	infestation	progression	is	likely	as	lianas	
utilize	each	other	to	climb	into	the	tree	crown	(Putz,	1984),	stressing	
the	importance	of	repeated	surveys	of	liana	infestation.

Unmanned	 aerial	 vehicles	 answer	 this	 need,	 offering	 user-	
controlled	 deployment	 times,	 potential	 for	 high	 temporal	 fre-
quency	 and	 an	 increased	 likelihood	 of	 recognizing	 low-	level	
liana	 infestation	(Table	2;	Figure	4c,d).	This	allows	for	a	flexible	
approach	to	 liana	management,	 tailoring	 it	 for	trees	or	areas	of	
forests	at	risk	of	heavy	liana	infestation.	The	new	technique	also	
facilitates	monitoring	and	assessment	of	the	success	of	manage-
ment	practices	after	they	are	put	 in	place	 (Zahawi	et	al.,	2015),	
including	changing	where	management	efforts	are	concentrated,	

TABLE  4 Efficiency	comparison	of	the	time	taken	and	costs	required	to	collect	crown	occupancy	index	(COI)	and	percentage	liana	cover	
(%LC)	using	ground-	based	and	UAV-	based	methods	for	a	1-	ha	plot,	including	the	fixed	costs	(field	and	UAV	equipment	and	processing	
software)	required	for	the	whole	campaign	(14.15	ha	for	ground;	150	ha	for	UAV).	All	timings	are	reported	in	“person-	hours”	(i.e.,	time	taken	
to	collect	data	considering	number	of	people	required)	and	exclude	time	to	walk	to	the	plots.	All	costs	exclude	international	travel	and	costs/
ha	have	been	calculated	based	on	number	of	days	required	at	each	plot	with	daily	rates	of	£14.10	and	£27.75	for	accommodation/
subsistence	and	field	assistant	costs,	respectively.	To	replicate	most	grant	budget	costings,	field	assistant	wages	have	been	costed,	whereas	
researcher	input	time	has	not

Ground UAV

Time/ha (h) Fixed costs (£) Cost/ha (£) Time/ha (h) Fixed costs (£) Cost/ha (£)

Fielda

Accommodation/
subsistence

– – 84.60 – – 4.70b

Field	assistants – – 166.50 – – 9.25b

UAV	flight	(inc.	take-	off/
landing)

– – – 0.5 1,336 –

COI	and	%LC	assessments 40 450 – – – –

Laboratory

Data	type	up 5 – – – – –

Processing	image	data – – – 9 427.10 –

Mapping	trees	on	
orthomosaics

– – – 1 – –

COI	and	%LC	assessment – – – 2 – –

Total 45 450 251.10 12.5 1,763.10 13.95
aTraining	time	is	not	included	as	it	is	not	measured	per	ha.	We	found	5	hr	ground	and	2	hr	UAV	training	was	sufficient.	Ground-	measurement	training	
must	take	place	in	the	field;	UAV	training	can	take	place	beforehand,	although	some	flight	training	in	a	tropical	forest	is	recommended.	bWe	found	it	
possible	to	survey	three	1-	ha	plots,	at	two	altitudes	in	a	single	day.	To	generate	costs/ha,	we	have	divided	the	daily	accommodation/subsistence	and	
field	assistant	costs	by	three.	
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as	 spatial	 patterns	of	 liana	 infestation	 change	over	 time.	 It	will	
also	 help	 track	 temporal	 changes,	 not	 only	 in	 liana	 infestation	
but	also	in	wider	canopy	phenomena,	such	as	tree	crown	shape	
and	area,	 and	 timber,	 fruit,	 and	 forest-	level	biomass	productiv-
ity	and	phenology,	over	shorter	time-	scales	than	is	possible	with	
ground-	based	surveys.	The	ability	to	track	temporal	changes	en-
ables	investigation	of	the	effects	of	short-	term	phenomena,	such	
as	 drought	 events,	 on	 liana	 infestation	 and	 other	 processes	 in	
the	canopy.	The	image	data	also	represent	an	archive	of	detailed	
information	about	the	forest	canopy	that	allows	(a)	reproducibil-
ity,	as	people	can	check	previous	 results;	 (b)	additional	metrics	
to	be	derived,	for	example,	3D	models	or	digital	elevation	mod-
els	(Supporting	Information	Appendix	S2.5);	(c)	users	to	go	back	
in	 time	 and	 measure	 variables	 that	 were	 not	 measured	 at	 the	
time	 but	 are	 later	 deemed	 important.	 For	 example,	 orangutan	
nests	are	clearly	visible	 in	our	 imagery	 (Supporting	Information	
Appendix	S3.5).

Advances	in	UAV	technology	and	competitive	price	pressures	
are	 likely	 to	 improve	 the	 current	 UAV	 method	 and	 expand	 its	
applicability	 for	 forest	management.	We	 cannot	 specify	 at	what	
resolution	 lianas	 (or	 other	 canopy	 phenomena)	 become	 indistin-
guishable	 (lianas	remained	clearly	 identifiable	 in	our	coarser	spa-
tial	 resolution	 images;	 Supporting	 Information	 Appendix	S3.3),	
but	 the	advent	of	newer	UAVs	with	 larger	high-	resolution	 image	
sensors,	bright	lenses,	and	zoom	lens	technology	will	enable	even	
higher	 flights	while	 retaining	 the	 ability	 to	 identify	 lianas,	which	
may	 increase	areal	 coverage	 (it	 is	unlikely	 that	 this	will	be	possi-
ble	using	satellite	data	in	the	next	few	decades).	Further	research	
could	usefully	investigate	this	for	lianas,	as	well	as	for	other	canopy	
phenomena.	The	wide	array	of	UAV	platforms	and	sensors	already	
available	(Pajares,	2015)	allows	tailoring	of	system	choice	towards	
individual	research	and/or	monitoring	requirements.	Additionally,	
rapid	advances	in	the	miniaturization	of	hyperspectral	and	LiDAR	
sensors	increasingly	enable	them	to	be	mounted	on	UAVs	(Sankey,	
Donager,	McVay,	&	Sankey,	2017)	alongside	RGB	cameras	and	pre-
dicted	 future	 price	 drops	 will	 increase	 their	 accessibility.	 While	
RGB	 images	 allow	 visual	 species	 identification	 (Baena,	 Boyd,	 &	
Moat,	 2018;	 Getzin,	 Wiegand,	 &	 Schöning,	 2012),	 multispectral	
or	hyperspectral	sensors	may	allow	this	to	be	automated	(Baena,	
Moat,	Whaley,	&	Boyd,	2017;	Sankey	et	al.,	2018),	further	increas-
ing	the	speed	and	ease	of	 liana	 identification.	Future	work	could	
test	whether	a	suitably	equipped	UAV	could	automate	mapping	of	
liana	infestation	and	changes	in	infestation	similar	to	the	approach	
adopted	by	Marvin	et	al.	(2016)	using	airborne-	collected	data,	but	
at	much	finer	spatial	and	temporal	resolutions,	and	at	a	small	frac-
tion	 of	 the	 cost.	 Also,	 as	 liana	 and	 tree	 species	 differ	 spectrally	
(e.g.,	Sánchez-	Azofeifa	et	al.,	2009),	hyperspectral	UAVs	may	help	
discern	 liana	 and	 tree	 species,	 supporting	monitoring	 of	 tropical	
forest	 biodiversity,	 which	 is	 particularly	 important	 for	 the	 man-
agement	of	degraded	forests	(e.g.,	Marshall	et	al.,	2017).	With	the	
emergence	of	a	new	platform	and	sensor	capabilities,	the	opportu-
nities	for	using	UAVs	in	both	liana,	and	canopy	research	more	gen-
erally,	will	increase.	Thus,	the	UAV	method	presented	here	offers	a	

wealth	of	opportunities	for	forest	canopy	research	and	monitoring,	
including	liana	monitoring,	over	space	and	time	to	assist	with	tai-
lored	management	of	tropical	forests,	and	forms	a	firm	foundation	
for	exploiting	future	advances.

5  | CONCLUSIONS

The	 recent	 proliferation	 of	 lianas,	 coupled	 with	 their	 large	 im-
pacts	 on	 the	 carbon	 balance	 and	 cycle	 of	 tropical	 forests,	 has	
made	 it	 important	 to	 study	 liana	 infestation	 of	 tree	 canopies	
more	comprehensively	and	frequently	than	feasible	with	current	
methods.	Here,	we	show,	 for	 the	 first	 time,	how	capturing	RGB	
images	of	tree	canopies	via	an	inexpensive,	lightweight	UAV	can	
be	used	accurately	and	efficiently	to	assess	liana	infestation	and	
help	make	such	data	collection	more	accessible.	Liana	infestation	
data	derived	from	UAV	image	data	are	at	least	as	accurate	as	tra-
ditional	 ground	data,	 and	 superior	 in	 assessing	 liana	 infestation	
of	tree	crowns	in	upper	canopy	layers,	enabling	future	advances	
in	liana	and	tropical	forest	ecology	research.	The	support	for	fre-
quent	surveys,	data	archiving,	wealth	of	additional	data	captured,	
and	larger	geographical	extent	covered	will	enable	more	detailed	
monitoring	 of	 liana	 infestation	 and	 forest	 canopies	 over	 space	
and	time	with	the	potential	to	revolutionize	both	liana	and	canopy	
research.	These	advantages	will	be	enhanced	by	rapidly	develop-
ing	protocols	for	UAV	use	in	science	(Duffy	et	al.,	2018)	and	the	
potential	for	additional	sensors	offered	by	UAV	platforms.	UAVs	
also	provide	potential	for	tailored	and	targeted	liana	management	
protocols	 to	effectively	manage	 liana	 infestation	 to	aid	 restora-
tion	of	degraded	 forests,	 silvicultural	 systems,	 and	projects	de-
signed	 to	 increase	 carbon	 storage	 and	 sequestration	 in	 tropical	
forests.
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