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Abstract Colorectal cancers (CRCs) form a disorganized
hierarchy of heterogeneous cell populations on which cur-
rent chemotherapy regimens fail to exert their distinctive
cytotoxicity. A small sub-population of poorly differentiated
cancer stem-like cells (CSCs), also known as cancer initi-
ating cells, may exhibit embryonic and/or adult stem-cell
gene expression signatures. Self-renewal and survival sig-
nals are also dominant over differentiation in CSCs.
However, inducers of differentiation exclusive to CSC
may affect cellular pathways required for the formation
and progression of a tumor, which are not utilized in nor-
mal adult stem-cells. Nevertheless, assays for targeting
CSCs have been hindered by expanding and maintaining
rare CSCs in vitro. However, CRC-CSCs are able to form
floating spheroids (known as colonospheres) 3-dimentinionally
(3D) in a serum-free defined medium. Therefore, great efforts
have been paid to improve colonosphere forming assay as a
preclinical model to study tumor biology and to conduct
drug screening in cancer research. The 3D-colonosphere
culture model may also represent in vivo conditions for
the spontaneous aggregation of cancer cells in spheroids.
This protocol describes the development of an enrichment/
culture assay using CRC-CSCs to facilitate colorectal can-
cer research through immunofluorescence staining of
colonospheres. We have developed colonospheres from
HCT116 CRC cell line to compare and link CRC-CSC
markers to the NANOG expression level using an immunoflu-
orescence assay. Our data also show that the immunostaining

assay of colonosphere is a useful method to explore the role
and dynamics of CRC-CSCs division between self-renewal
and cell lineage differentiation of cancer cells. In principle, this
method is applicable to a variety of primary cells and cell lines
of epithelial origin. Furthermore, this protocol may also allow
screening of libraries of compounds to identify bona fide CRC-
CSC differentiation inducers.
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Introduction

CSCs have garnered substantial interest over the past few
years. However, specific cell markers enabling the identifica-
tion of CSCs in most tumor entities, and to provide a reliable
in vitro model suitable for CSC-studies are still lacking.
Therefore, to explore the self-renewal and differentiation
properties of CSCs in vitro, experimental assays must reliably
be able to distinguish CSCs and their progeny.

Human CRCs are composed of a heterogeneous mixture of
cancer cells [1, 2]. Minor proportions of these CRC cells
strongly resembled a small sub-population of self-renewing
and poorly differentiated CSCs (also known as cancer initiating
cells) [3, 4]. CSCs evade conventional drugs, and significantly
contribute to adverse survival rates [5, 6]. Recently, it was
also reported that CSCs sub-population exhibit an embryonic
stem cell gene expression signature [3, 7]. We and others
have reported the expression of embryonic proteins, including
carcino-embryonic-antigen (CEA), alkaline-phosphatase, and
NANOG, in CRC and other cancers, which may contain un-
differentiated multipotent cancer cells [3, 7–10].
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Current studies delineated a physiological balance of self-
renewal versus differentiation potential in normal and CSC
cells [11, 12]. Self-renewal and survival signals are dominant
over differentiation counterparts in CSCs [4, 13]. These sug-
gest that an overexpression of embryonic stem cell associated
proteins such as NANOG may be an essential modulator
of cancer cell drug-resistance mechanisms, which also con-
tributes to prevent differentiation in CSCs.

It was recently reported that CSCs can be grown to form
floating spheroids in vitro when plated in limited numbers in a
serum-free medium supplemented with growth factors [14].
Spheroids are characterized by their well-rounded shape,
presence of cancer cells, and their capacity to promote
in vitro expansion of CSCs compared to the bulk of
tumors [15, 16]. This helps to culture and study CSCs
in spheroid-forming assays as reported for neurospheres
[17, 18], mammospheres [19, 20] and colonospheres [21, 22].
Moreover, the spheroid-forming assay has gained wide
popularity in CSC research as it allows evaluating self-
renewal and differentiation abilities at the single-cell level.
Using this approach, we expanded colon CSCs by gener-
ating colonospheres from CRC cell line (HCT116) (Notes
4.1 and 4.2), which stably expressed exogenous NANOG
(HCT116-GFP/NANOG) [3, 10] (a CSC signature), as well as
from parental CRC (HCT116-GFP) cells and used them to
isolate potential colorectal CSCs.

In the present study, we cultured colonospheres on cover-
slip and performed immunofluorescence assay for the com-
mon markers of stemness and differentiation, CD44 [23] and
MUC2 [24, 25], respectively. CD44 is a hyaluronic acid
receptor and a transmembrane glycoprotein that regulates
several processes important for tumor progression, including
proliferation, adhesion and differentiation [23]. Interestingly,
CD44 is not only a marker for colorectal CSCs, but is also a
critical molecule for modulating stemness in CSCs [24, 26]
and plays a functional role in cancer initiation [27].
MUC2 is a large glycoprotein and main component of
the protective mucous layer in the intestine [28]. Moreover,
MUC2 is a goblet cell marker associated with epithelial
differentiation [25, 29, 30].

Furthermore, this work showed that gain of a pluripotency
marker and loss of a differentiation marker may alter not only
the exclusive CRC-CSCs signaling/pathway(s) but also those
unique cell-surface markers that are required for targeting
CRC-CSCs in order to improve colorectal cancer therapy.

Materials

The human CRC cell line HCT116 (Notes 4.1, 4.2 and 4.3),
was originally purchased from the American Type Culture
Collection (ATCC) (Cat#ATCC-CCL-247).

DMEM/F-12 (Dulbecco’s Modified Eagle Medium/
Nutrient Mixture F-12) is a basal medium used for the growth
of HCT116 cells and colonospheres, were purchased from
Life Technologies (Cat#11,320–074).

Penicillin (100/ units/ml) and Streptomycin (100 mg/ml)
antibiotics are used to prevent bacterial contamination in
cell cultures, were purchased from Invitrogen Corporation
(Cat#15,140–122).

Bioactive recombinant human FGF basic 146 aa (rhFGF)
was purchased from R&D systems and stored at −20 °C after
use (Cat#233-FB).

Recombinant mouse epidermal growth factor (EGF) was
purchased from Invitrogen and stored at 4 °C after use
(Cat#PMG8043).

N-2 Supplement (×100) was purchased from Life
Technologies and recommended for growth of colonsphere
(Cat#17,502–048).

Trypsin-EDTA (0.05 %), phenol red was purchased from
Thermo Fisher Scientific (Cat#25,300–054).

Coverslips (size: 22 × 26 mm) was purchased from VWR
Collection(Cat#631–0131).

ProLong Gold antifade reagent with DAPI was purchased
from Life Technologies (Cat#P36962).

Goat anti-rat secondary antibody, DyLight was purchased
from Bethyl Laboratories (Cat#A110-105D4).

Monoclonal rat anti-CD44 antibody was purchased from
Millipore(Cat#MAB2137).

Rabbit polyclonal anti-CD44 antibody was purchased from
Millipore (Cat#MAB2137).

Phosphate buffered saline (PBS) (Cat#D8537), Poly-L-lysine
(Cat#P4707), RPMI-1640 (Roswell Park Memorial Institute)
(Cat#R0883), FBS (Fetal Bovine Serum) (Cat#F7524) all
purchased from Sigma Aldrich.

Methods

Preparation of Poly-L-Lysine-Coated Coverslips in Sterile
6-well Cell Culture Plate

Immerse your sterile uncoated coverslips of 22 × 26 mm
thickness in 70 % ethanol for 30 min. Wash coverslips twice
in 1 ml sterile phosphate buffered saline (without calcium/
magnesium chloride) (PBS) for 5 min each.

Place the coverslips in the wells of 6-well cell culture plate
using sterile forceps and wash coverslips one time in PBS for
5 min.

Coat coverslips with 1.5 ml of the commercially premade
0.01 % poly-L-lysine solution and incubate the plate 1 h at
room temperature in hood.

Wash the coated coverslips with 1 ml sterile PBS per well.
Air-dry the coverslips and keep the 6-well plate uncovered.
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Once dried, label the plate with the name of cell lines and
date. The 6-well plate is now ready with poly-L-lysine-coated
coverslips for the immediate seeding of cells (Note 4.7).

Preparing Stem Cell Medium

Use the commercially available Dulbecco’s Modified Eagle
Medium/F-12 Nutrient Mixture (Ham) + L-Glutamine
(DMEM/F-12) medium. Optionally supplement with 1 U/ml
penicillin/streptomycin antibiotics.

Add growth factors such as human recombinant basic
fibroblast growth factor (bFGF) at 10 ng/ml concentration,
human recombinant epidermal growth factor (EGF) at
10 ng/ml concentration and 100 X N-2 supplements.
Add growth factors just before use (fresh) (Note 4.6).

Generating Colon Cancer Spheroids (Colonospheres)

Grow and maintain HCT116-GFP (control cell line) and
HCT116-GFP/NANOG (experimental cell line) in a Roswell
Park Memorial Institute (RPMI) medium, supplemented with
10 % heat inactivated fetal bovine serum (FBS) and 2 mM L-
glutamine in 75 cm2 tissue culture flasks.

Incubate flasks in a humidified incubator at 37 °C and 5 %
CO2. Change the medium every 3–4 days. This medium does
not contain penicillin/streptomycin.

Monitor the cells under an inverted microscope with
a 10× magnification. Once the cells are 60–80 % con-
fluent, aspirate media and wash with 3 ml pre-warmed
and sterile PBS. Add 2 ml of 0.05 % trypsin ethylene-
diaminetetraacetic acid (EDTA) solution and incubate in
37 °C incubator for 5 min.

Neutralize trypsin by adding 6 ml of complete culture me-
dium (described in 3.3.1) to each flask and pipette cells up and
down to obtain single cell suspension. Transfer the complete
cell suspension to a 15 ml labelled Falcon tube.

Centrifuge cells for 5 min at 350 g at room temperature
aspirate the supernatant and resuspend the pellet in 6 ml
of sterile PBS. Avoid generating bubbles when mixing
cells.

Count cells with hemocytometer and adjust accordingly the
number of cells to 3000 per 2 ml of complete stem cell medi-
um (described in section 3.2), per well of the 6-well plate.

Seed cells onto the poly-L-lysine-coated coverslips (de-
scribed in section 3.1) and incubate cells under standard con-
ditions at 37 °C and 5 % CO2 for two weeks. Colonospheres
with rigid margin will be observed by day 14.

Replace medium with freshly prepared complete stem cell
medium (described in section 3.2) every 3–4 days. Change
medium in a very gentle manner as the colonospheres grow
as floating spheroid colonies (Notes 4.4 and 4.8).

Immunofluorescent Staining of Colonospheres

Fixing and blocking of colonospheres: aspirate gently the
stem cell medium from the well edges of the 6-well plate
and empty into a hazardous waste container after 14 days of
culture. Wash colonospheres one time in 1 ml PBS.

Prepare 4 % paraformaldehyde (PFA) in PBS: add very
gently 800 μl of 4 % PFA to the side of the well and incubate
for 30min at room temperature. Caution: Paraformaldehyde is
moderately toxic by skin contact. Gloves and safety glasses
should be worn and solutions should be made inside a fume
hood.

Wash the fixed cells twice in 1 ml PBS, following aspira-
tion and emptying the collected PFA into a hazardous waste
container, and incubate for 5 min at room temperature.
Remove the PBS after 5 min.

Add 800 μl of 0.5 % Triton x-100 (diluted in PBS) to
permeabilize colonospheres at room temperature to each well.
Aspirate the Triton x-100 after 5 min and wash with PBS and
place them at room temperature for 5 min.

Block permeabilized colonospheres by adding 800 μl of
1 % bovine serum albumin (BSA) in PBS to each well and
leave the plate for 30 min at room temperature. Tilt the 6-well
plate to approximately 45° and aspirate BSA/PBS from each
well. Colonospheres are now ready for immunofluorescent
staining.

Immunofluorescence Staining for CD44 and MUC2
(Notes 4.5 and 4.9).

Dilute the primary anti-CD44 antibody to 1:200 and the
anti-MUC2 antibody to 1:100 (Table 1) in 1 % BSA blocking
buffer.

Remove blocking solution, gently add 400 μl of the
diluted primary antibody and incubate for 1 h at 37 °C
dry incubator.

Wash each well with 800 μl of washing buffer (1 % BSA,
0.1 % Tween-20 in PBS), twice for 10 min at room
temperature.

Dilute the secondary antibody in 1 % BSA blocking buffer;
a 1:200 dilution of goat anti-rat secondary antibody for CD44
(Table 1) and a 1:500 dilution of donkey anti-rabbit secondary
antibody for MUC2 (Table 1).

Remove washing buffer and add 500 μl of the secondary
antibody to each well and incubate for 1 h in dark room to
avoid bright light exposure.

Repeat washing steps (3.4.6.3) three times with at least
5 min of incubation time in each wash. Avoid exposing the
plate to bright light during washing steps. After the last wash,
leave about 200 μl of washing buffer in each well.

Label 6 microscopic slides (1–2 mm thickness) with the
name of the cell line and the marker.

Add a small drop (~10 μl) of anti-fade reagent mounting
medium with 4′,6-diamidino-2-phenylindole (DAPI) on the
middle of microscopic slides and avoid bubble formation.
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Use sharp forceps to carefully lift the cover slips from the
6-well plate. Turn the coverslip gently and place the coverslip
(with the spheroid side down) on the DAPI mounting medium
containing the microscopic slide.

Repeat step 3.4.6.9 with all coverslips. Seal with nail var-
nish and let the slides dry for 15 min. Place slides in a tray or a
slide box and incubate them overnight in a dark place or cover
with aluminium foil at 4 °C.

Capture the fluorescence images of stained colonospheres
using a fluorescence microscope with 40× or 60× magnifica-
tions [31].

Notes

CRC cell line HCT116 (S45 β-catenin mutant) overexpress-
ing the green fluorescent protein (HCT116-GFP) and/or GFP-
fused NANOGprotein (HCT116-GFP/NANOG) cell lines are
used [3].

Cells were confirmed to be mycoplasma negative. All cell
culture is undertaken in sterile mammalian tissue culture hood.

HCT116 CRC cell provide an excellent in vitro model to
dissect the molecular mechanisms that control the biology of
CRC [25, 31]. Establishment of the colonosphere formation
assay using HCT116 CRC cell lines (Fig. 1) indicated that a
small subpopulation of CRC cells (2–4 %) can be maintained

in stem cell medium to form colonospheres (Fig. 2a and data
not shown). These colonospheres are derived from a single
cancer cell grown in stem cell specific medium [32–35].
However, not every cell has the ability to survive and
proliferate in such environment [36]. This displays the
efficiency of this assay to accurately estimate the self-
renewal potential of CRC-CSCs. Furthermore, for a com-
parative analysis of the relationship between CRC-CSCs
self-renewal and differentiation, colonospheres can be cul-
tured on coverslip and examined for the expression of
stemness and differentiation markers as illustrated in
Fig. 1, e.g., CD44 and MUC2 respectively.

The colonospheres formed typical circular structure
(Fig. 2a) and within a single spheroid, the cells appeared fused
together resembling a solid cellular cluster making it hard to
distinguish as individual cells [36, 37]. Moreover, the size
of spheroids ranges from less than 50 μm to 250 μm
(Fig. 3) [38, 39]. Next, the influence of NANOG overex-
pression on the efficiency of colonosphere formation was
evaluated and compared with HCT116-GFP cells and
GFP/NANOG cells, which exhibited an increase in spheroid
formation by 14–17 %, as shown in Fig. 3c.

Stem-like self-renewal and differentiation capacities of
colonospheres can also be examined by immunofluorescence
assay. In this study, colonospheres were stained for the CD44
stemness marker (Fig. 4a) and MUC2 differentiation marker

Table 1 List of key materials used for colonosphere forming assay

Material Company Catalogue Number Comments/Description

DMEM/F-12 Life Technologies 11,320–074 Warm it up at 37 °C water bath before use

Penicillin/Streptomycin Invitrogen 15,140–122 Penicillin (100 units/ml), Streptomycin
(100 mg/ml)

Human Recombinant FGF-basic R&D system 233-FB Can be stored at −20 °C after use

Mouse Recombinant EGF Invitrogen PMG8043 Can be stored at 4 °C after use

N-2 Supplement Life Technologies 17,502–048 Can be stored at 4 °C after use

Trypsin Gibco 25,300–054

HCT 116 American Type Culture Collection ATCC-CCL-247 Frozen

Coverslips VWR Collection 631–0131 Size of coverslips is 22 × 26 mm

PBS Sigma Aldrich D8537

Poly-L-lysine Sigma Aldrich P4707

RPMI-1640 Sigma Aldrich R0883

FBS Sigma Aldrich F7524

ProLong Gold antifade reagent with DAPI Life Technologies P36962 Store at 2–8 °C or freeze at −5 to −30 °C

CD44 antibody Millipore MAB2137

MUC2 antibody Santa Cruz sc-15,334

Goat anti-rat secondary antibody, DyLight 594 Bethyl Laboratories A110-105D4

Donkey anti-rabbit secondary antibody,
Alexa Fluor 594 conjugate

Life Technologies A21207

BSA Santa Cruz sc-2323 A

PFA Fisher Scientific F/1501/PB17 Toxic to skin contact

Tween-20 Sigma Aldrich P1379
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(Fig. 4b) along with negative controls for primary antibodies
(i.e. without primary antibody) and using the CD44-siRNA
knockdown cells (Fig. 4c and data not shown), following the

steps illustrated in the above protocol. Colonosphere derived
from HCT116-GFP/NANOG cells also showed increased
CD44-expression (Fig. 4d) compared with the differentiation
marker MUC2 (Fig. 4d).

Among different published protocols there is considerable
variability which may influence the formation efficiency and
other properties of spheres [20, 37, 40]. As outlined above, we
established spheroid formation from human colon cancer cells
using DMEM/F12 medium supplemented with N-2, bFGF
and EGF. Some of previous reports recommended the use of
MEGM supplemented with B-27, bFGF, Heparin and
SingleQuots (containing insulin, recombinant epidermal
growth factor (rEGF) and hydrocortisone), while some added
only B-27 and rEGF. These protocols were assessed using
different conditions in different cell lines but no significant
difference in spheroid formation was observed in these cells
[36, 38, 39].

Below are tips for troubleshooting whichmay help increase
high colonosphere formation efficiency. First, start the
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experiment with low-passage cell line, and limit the number of
passaging. We use CRC cell lines of up to 10–12 passages (up
to 2 months of in vitro culture). Another factor is the activity
of growth factors; N-2, EGF and bFGF are added to stem cell
medium immediately before use, as these growth factors may
quickly undergo degradation in the medium. Furthermore,
Poly-L-lysine is a charge enhancer, and therefore, it can be
used for coating many surfaces as it contains L- isomer for cell
attachment. However, as outlined above, we have chosen to
coat coverslips with poly-L-Lysine while other protocols re-
ported coating with gelatine instead [41, 42].

One major advantage of using this particular protocol is
that colonospheres are generated directly on coverslips from
the beginning of the experiment; whereas other protocols gen-
erate colonospheres for 2 weeks in plates and then transfer
them to the coverslips, which requires more time. However,

the current protocol has a number of limitations. Because
colonospheres are formed in a very small fraction, to obtain
high number of colonospheres for large scale experiments,
may require using a lot of expensive stem cell growth medi-
um. Furthermore, primary colonospheres formed over a peri-
od of 10 days to 2 weeks of incubation in culture. Maybe
using of new recombinant agents and a co-culture systemwith
colonic myofibroblasts that could promote stemness activity,
can decrease the time of colonospheres formation. Moreover,
freshly prepared medium is added to the colonosphere culture
every 3–4 days, therefore there is possibility to lose the
colonospheres formed while changing media, since
colonospheres are unattached floating spheroid colonies.
While several CRC cell lines have been shown to form
colonosphere using this protocol, there may be exceptions.
However, the current protocol is restricted to the CRC cells;
in the future it might be possible to examine other epithelium-
derived cancer cell lines.

Furthermore, following this protocol, HCT116 GFP/
NANOG cells display a higher expression of CD44 relative
to HCT116GFP cells, whereas it is the opposite for MUC2. In
line with this, NANOG is one of the transcriptional factors
that been revealed to characterize colorectal CSCs as well as
is important for embryonic stem cell pluripotency and differ-
entiation [43, 44]. Therefore, inhibition of NANOG might
induce differentiation of CSCs into non-stem cancer cells.
This is consistent with recent reports that differentiation and
dedifferentiation of cancer cells might be induced by the tu-
mor microenvironment in addition to genetic mutation of nor-
mal stem cells.

Taken together, spheroid-forming assays have gained a
wide popularity in cancer stem cell research and for a wide
range of human tumor cells [45, 46]. Under the experimental
condition with a stem cell medium, only cancer cells with self-
renewal ability are expected to grow and maintain their spher-
oid morphology. The protocol defined here presents an effi-
cient method for enriching cultures of CRC cells with stem
cell features and can be applied in a wide range of cancer
primary and immortalised cell lines. In this manner, a variety
of different cell surface markers and signaling pathways can
be assessed for their influence on CSCs phenotype. In conclu-
sion, the colonosphere assay presented in this protocol is a
valuable tool for investigating the cellular and molecular path-
way(s) essential for the growth and maintenance of self-
renewal of CSCs [32] and cell fate decision, as well as cell-
cell interactions.
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