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This paper considers the problem of testing for an explosive bubble in financial
data in the presence of time-varying volatility. We propose a sign-based variant
of the Phillips, Shi and Yu (2015) test. Unlike the original test, the sign-based
test does not require bootstrap-type methods to control size in the presence
of time-varying volatility. Under a locally explosive alternative, the sign-based
test delivers higher power than the original test for many time-varying volatility
and bubble specifications. However, since the original test can still outperform
the sign-based one for some specifications, we also propose a union of rejections
procedure that combines the original and sign-based tests, employing a wild
bootstrap to control size. This is shown to capture most of the power available
from the better performing of the two tests. We also show how a sign-based
statistic can be used to date the bubble start and end points. An empirical
illustration using Bitcoin price data is provided.
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1 Introduction

Empirical identification of explosive behaviour in financial asset price series is closely
related to the study of rational bubbles, with a rational bubble deemed to have occurred
if explosive characteristics are manifest in the time path of prices, but not for the
dividends. Consequently, methods for testing for explosive time series behaviour have
been a focus of much recent research. Phillips et al. (2015) [PSY] model potential
bubble behaviour using a time-varying autoregressive specification, which allows an
explosive autoregressive regime over a subset of the data, and suggest testing for such
a property using a double supremum of forward and backward recursive right-tailed
Dickey-Fuller (DF) unit root tests, a generalisation of the original and widely-used
Phillips et al. (2011) [PWY] test that employed a single supremum of forward-only
recursive DF tests.
These papers assume constant unconditional volatility in the underlying error pro-

cess, yet, in practice, time-varying volatility is a well-known stylised fact observed in
empirical financial data (see, for example, Rapach et al. (2008)). Harvey et al. (2016)
[HLST] demonstrate that the asymptotic null distribution of the PWY test depends on
the nature of the volatility, so if the test is compared to critical values derived under a
homoskedastic error assumption, its size is not controlled under time-varying volatil-
ity. This lack of size control typically leads to serious over-sizing, and consequently
frequent spurious identification of a bubble. HLST propose a wild bootstrap method to
provide critical values for the PWY test, which delivers correct asymptotic size in the
presence of time-varying volatility (while retaining the same local asymptotic power as
the original PWY test, were it infeasibly size-corrected to account for the time-varying
volatility). An entirely similar bootstrap approach can be applied to the PSY test.1

In this paper we suggest a new approach to obtaining heteroskedasticity-robust
inference in the presence of a bubble. Instead of calculating the PSY statistic (denoted
PSY ) directly from the observed data series, yt say, we calculate it from the series of
cumulated signs of the first differences of the data, i.e. a cumulation of sign(∆yt) =
∆yt/ |∆yt| (for nonzero∆yt),which is clearly invariant to the variance of ∆yt (assuming
a zero mean for ∆yt). As a direct consequence of this, the sign-based PSY statistic
(denoted sPSY ) is then exact invariant to the pattern of time-varying volatility and
therefore, unlike PSY , requires no wild bootstrap procedure to control size. Sign-
based approaches to testing for unit roots against stationary autoregressive models
have been considered by, inter alios, Campbell and Dufour (1995) and So and Shin
(2001), although these are not based on the cumulations of sign(∆yt). Unit root
testing using cumulated standardised differences is also considered by Beare (2018)
(in a context of full sample testing against a stationary alternative), but our method
is quite distinct in that we standardise by |∆yt|, rather than using a nonparametric
estimator of the spot standard deviation, resulting in the sign of ∆yt.
We derive the asymptotic distribution of the sign-based test under the unit root null

and alternative of a local to unit root explosive regime. Here, we derive a stochastic

1Relatedly, a wild bootstrap methodology is employed in the context of recursive testing in Shi et
al. (2018b) and Phillips and Shi (2018b) to address the additional size control issues that arise under
multiple testing.
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expansion of the partial sum process (PSP) of signed first differences, allowing for time-
varying volatility and a time-varying autoregressive coeffi cient, thereby extending the
results of Boldin (2013) for a homoskedastic constant coeffi cient model. We then use
this result to establish the asymptotic properties of our test statistics.
Using a number of different specifications for the bubble process and pattern of

time-varying volatility, we show that the local asymptotic power of sPSY compares
very well with that of PSY and it is, rather more often than not, the more powerful
of the two test procedures, sometimes by a significant margin. Although sPSY has a
good deal of merit as a stand alone test, because for some bubble process and volatility
pattern settings the power of PSY is higher than that of sPSY , we then proceed to
consider a union of rejections approach (cf. Harvey et al. (2009)), whereby the null
is rejected in favour of explosive behaviour if either PSY or sPSY rejects. We find
that the union of rejections testing strategy performs very well across the full range
of volatility and bubble specifications that we consider, capturing much of the power
available from either test. In common with PSY , a feasible variant of the union test
does require a (joint) wild bootstrap to ensure asymptotic size control. In the paper we
refer mainly to the test of PSY and its sign-based counterpart, but we simultaneously
consider variants appropriate for the original test of PWY.
We then move on to consider how a modified variant of our sign-based statistic can

be used to date the start and end of a bubble. We propose a new dating strategy based
on maximising a dating statistic. Under a mildly explosive assumption for the bubble
magnitude, we show that our proposed dating strategy is consistent for estimating the
start and end of the bubble. This, of course, is a relevant property to establish from
the viewpoint of an applied researcher who is interested in characterising the timeline
of a historical bubble episode in relation to, say, economic or financial events that are
known to have occurred.
The rest of the paper is organised as follows. Section 2 outlines the heteroskedas-

tic bubble model, describes the PSY testing approach and introduces our sign-based
version of the PSY test. Here we also establish the limit distributions of these tests
under local bubble alternatives. Asymptotic size (where relevant) and local powers
are compared in section 3. The union of rejections procedure and the associated wild
bootstrap method are outlined in section 4. Finite sample properties of the tests are
explored in section 5. Our sign-based dating methodology is described and its consis-
tency properties shown in section 6. A generalisation of our sign-based test to account
for possible asymmetry of the innovation distribution is given in section 7. Section 8
briefly discusses extensions to the basic model. An empirical illustration of our new
testing and dating procedures, using Bitcoin price data, is provided in section 9, with
section 10 concluding the paper. Proofs of our asymptotic results are provided in an
appendix.
We use the following notation: 1(.) denotes the indicator function; b·c the integer

part; ⇒ weak convergence;
p⇒ weak convergence in probability, and

p→ convergence in
probability. D = D[0, 1] denotes the space of right continuous with left limit (càdlàg)
processes on [0, 1]. Finally,‘x := y’(‘x =: y’) indicates that x (y) is defined by y (x). In
this paper, we study two types of models for the explosive behaviour in data, and we
use the following terminology: (i) locally explosive refers to the alternative where the
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autoregressive root is 1 + cT−1, with c a positive constant and T the sample size; (ii)
mildly explosive refers to the alternative specified in Phillips and Magdalinos (2007),
where the root is 1 + cT−α with α ∈ (0, 1). Formally, our sign function is defined as
sign(x) = −21(x 6 0) + 1.

2 The heteroskedastic stochastic bubble model: PSY
and sign-based PSY tests

We will consider the time series process {yt} generated according to the following DGP
(cf. HLST, Phillips and Shi, 2018a)

yt = µ+ ut (1)

ut =


ut−1 + εt, t = 2, ..., bτ 1T c,
(1 + δ1,T )ut−1 + εt, t = bτ 1T c+ 1, ..., bτ 2T c,
(1− δ2,T )ut−1 + εt, t = bτ 2T c+ 1, ..., bτ 3T c,
ut−1 + εt, t = bτ 3T c+ 1, ..., T

where δ1,T ≥ 0 and δ2,T ≥ 0. We assume that the initial condition u1 is such that
u1 = op(T

1/2). Here εt is a zero-mean, (possibly) heteroskedastic innovation process
whose precise assumptions are detailed later.
The DGP imposes a unit root on yt up to time bτ 1T c, after which yt is explosive

(when δ1,T > 0) until time bτ 2T c.2 If τ 2 < 1, the explosive regime then terminates
at some in-sample date, at which point the model permits a possible collapse, where
δ2,T > 0 and stationary mean-reverting behaviour acts to proxy the collapse regime.
The null hypothesis, H0, is that no bubble is present in the series and yt follows a unit
root process throughout the sample period i.e. H0 : δi.T = 0, i = 1, 2 (equivalently,
H0 : τ 1 = 1). The alternative hypothesis, H1 : δ1,T > 0 and δ2,T > 0, comprises any
one of the following four scenarios for the behaviour of yt:

DGP 1 0 < τ 1 < 1, τ 2 = τ 3 = 1
(unit root, then bubble to sample end)

DGP 2 0 < τ 1 < τ 2 < 1, τ 2 = τ 3
(unit root, then bubble, then unit root to sample end)

DGP 3 0 < τ 1 < τ 2 < 1, τ 3 = 1
(unit root, then bubble, then collapse to sample end)

DGP 4 0 < τ 1 < τ 2 < τ 3 < 1
(unit root, then bubble, then collapse, then unit root to sample end)

For the majority of our analysis, under H1 we will consider locally explosive alter-
natives (and collapses) of the form δi.T = ciT

−1, ci > 0, i = 1, 2; the scaling by T−1

providing the appropriate Pitman drift for asymptotic power comparisons of the tests.

2Note that while we assume the presence of a unit root regime at the beginning of the sample prior
to any explosive behaviour in keeping with much of the recent literature on bubble testing, this is not
critical for our analysis and the explosive regime could originate at the sample start date.
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In section 6 below, when we consider dating the start and end points of the bubble, a
slightly stronger, mildly explosive, bubble magnitude will be assumed for δ1,T . For the
innovation process εt we make the following assumptions:

A1 εt = σtzt where zt ∼ IID with E(zt) = 0, E(z2t ) = 1 and E(|zt|r) < ∞ for some
r ≥ 4.

A2 The volatility term σt satisfies σt = σ (t/T ), where σ (·) ∈ D is non-stochastic and
strictly positive.

A3 The CDF of zt, denoted F (z), is such that f(z) = F ′(z) is continuous at 0 and
satisfies f(0) > 0 with supz f(z) <∞.

A4 F (0) = 1/2.

Under Assumption A2, the innovation variance is non-stochastic, bounded and dis-
plays a countable number of jumps. It also allows for variance processes displaying
(possibly) multiple one-time volatility shifts (which need not be located at the same
point in the sample as the putative regimes associated with bubble behaviour), polyno-
mially (possibly piecewise) trending volatility and smooth transition variance breaks,
among other things. The conventional homoskedasticity assumption, that σt = σ for
all t, is also permitted, since here σ(s) = σ for all s. Assumption A3 ensures F (z) is
continuously differentiable in a small neighbourhood around zero, and that the density
f(z) exists, is strictly positive, and is bounded from above. Assumption A4 implies
that E(sign(zt)) = 0, which is necessary for the invariance principle of the partial sum
of the signs to hold. Assumption A4 also implies the median of zt is zero, in addition
to the zero mean assumption from A1; the imposed distributional assumption on zt
is only slightly weaker than assuming the distribution of zt is symmetric about zero.
Note that monthly financial returns, which are often used in a bubble testing context,
are usually found to be symmetric about zero; see, for example, Tsay (2010, Table
1.2), Christoffersen (2012, Section 2). In section 7 below we will consider relaxing this
symmetry assumption.
Under Assumptions A1-A2, the following invariance principle holds for the PSP of

εt:

T−1/2
brT c∑
t=1

εt ⇒
∫ r

0

σ(h)dW (h) =: Wσ(r).

Under Assumptions A1-A2 and A4, we have the following invariance principle for the
PSP of sign(εt) := −21(εt ≤ 0) + 1:

T−1/2
brT c∑
t=1

sign(εt) = T−1/2
brT c∑
t=1

sign(zt)⇒ W s(r). (2)

Here W (r) and W s(r) are standard Brownian motion processes, with the correlation
coeffi cient being the constant −2E{1(zt ≤ 0)zt}. Notice that Wσ(r) is a stochastic
integral dependent on the volatility function σ(s). Also note that sign(εt) is exact
invariant to σt.
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2.1 The PSY test

The PSY statistic is used to testH0 againstH1, the alternative being that yt behaves as
an explosive AR(1) process for at least some sub-period of the sample. In this context,
and in the absence of knowledge concerning the timing of any potential explosive
behaviour, PSY propose a test based on the double-supremum of recursive right-tailed
DF tests. Specifically, the statistic is given by

PSY := sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

DF (λ1, λ2)

where DF (λ1, λ2) denotes the standard DF test, that is the t-ratio for φ̂(λ1, λ2) in the
fitted ordinary least squares (OLS) regression

∆yt = α̂(λ1, λ2) + φ̂(λ1, λ2)yt−1 + ε̂t (3)

calculated over the sub-sample period t = bλ1T c, ..., bλ2T c. That is

DF (λ1, λ2) :=
φ̂(λ1, λ2)√

σ̂2(λ1, λ2)
/∑bλ2T c

t=bλ1T c+1 (yt−1 − ȳ)2

where ȳ := (bλ2T c − bλ1T c)−1
∑bλ2T c

t=bλ1T c+1 yt−1 and σ̂
2(λ1, λ2) := (bλ2T c − bλ1T c −

2)−1
∑bλ2T c

t=bλ1T c+1 ε̂
2
t . The PSY statistic is therefore the supremum of a double sequence

of statistics with minimum sample length bπT c. We assume that τ 1 ≥ π, such that
the onset of a bubble regime (should one occur), begins after the shortest sub-sample
considered. The single-supremum statistic of PWY arises as a special case of the PSY
statistic: PWY := supλ2∈[π,1]DF (0, λ2).
We now state the large sample behaviour of PSY under a locally explosive H1 for

DGP 4. Its behaviour under DGPs 1-3, and under H0, arise as special cases.

Theorem 1 For model (1), under H1 with δi.T = ciT
−1, ci > 0, i = 1, 2 and Assump-

tions A1-A2,

PSY ⇒ sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

Lc1,c2(λ1, λ2) =: MMc1,c2

where

Lc1,c2(λ1, λ2) :=
Ũ(λ2)

2 − Ũ(λ1)
2 −

∫ λ2
λ1
σ(r)2dr

2
√

(λ2 − λ1)−1
∫ λ2
λ1
σ(r)2dr

∫ λ2
λ1
Ũ(r)2dr

and

Ũ(r) := U(r)− (λ2 − λ1)−1
∫ λ2

λ1

U(h)dh

with

U(r) :=


Wσ(r) r ≤ τ 1
V1(r) τ 1 < r ≤ τ 2
V2(r) τ 2 < r ≤ τ 3
V2(τ 3) +Wσ(r)−Wσ(τ 3) r > τ 3
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where

V1(r) := e(r−τ1)c1Wσ(τ 1) +

∫ r

τ1

e(r−h)c1dWσ(h)

V2(r) := e−(r−τ2)c2V1(τ 2) +

∫ r

τ2

e−(r−h)c2dWσ(h).

Corresponding limiting distributions under DGP 1, DGP 2 or DGP 3 are obtained by
imposing the relevant restrictions on τ 2 and τ 3. The limit distribution of PSY under
the null hypothesis H0 is given byMM0,0 (or, equivalently, on setting τ 1 = 1 such that
U(r) = Wσ(r)). The limit of the PWY test is supλ2∈[π,1] Lc1,c2(0, λ2) =: Mc1,c2 , with
distribution M0,0 under H0. The limits of both PSY and PWY are dependent on the
(limit) form of heteroskedasticity σ(s) under the null and alternative hypotheses.

2.2 The sign-based PSY test

Let Ct be the cumulated sum of signs Ct :=
∑t

i=2 sign(∆yt), t = 2, ..., T . The sign-
based analogue of (3) is then given by

sPSY := sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

sDF (λ1, λ2) (4)

where sDF (λ1, λ2) denotes the t-ratio for ρ̂(λ1, λ2) in the fitted (without intercept)
OLS regression

∆Ct = ρ̂(λ1, λ2)Ct−1 + et

calculated over the period t = bλ1T c, ..., bλ2T c, i.e.

sDF (λ1, λ2) :=
ρ̂(λ1, λ2)√

ŝ2(λ1, λ2)/
∑bλ2T c

t=bλ1T c+1C
2
t−1

where ŝ2(λ1, λ2) := (bλ2T c−bλ1T c−1)−1
∑bλ2T c

t=bλ1T c+1 e
2
t . The sign-based analogue of the

PWY test arises as a special case of the sPSY test: sPWY := supλ2∈[π,1] sDF (0, λ2).
Under the null hypothesis, since sign(∆yt) = sign(zt), these tests are exact invariant
to the pattern of heteroskedasticity σt.
For DGP 4, the next Theorem gives the large sample behaviour of sPSY under a

locally explosive H1.

Theorem 2 For model (1), under H1 with δi.T = ciT
−1, ci > 0, i = 1, 2 and Assump-

tions A1-A4,

sPSY ⇒ sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

Lsc1,c2(λ1, λ2) =: MM s
c1,c2

(5)

where

Lsc1,c2(λ1, λ2) :=
U s(λ2)

2 − U s(λ1)
2 − (λ2 − λ1)

2
√∫ λ2

λ1
U s(r)2dr
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with

U s(r) :=


W s(r) r ≤ τ 1
W s(r) + 2f(0)X1(r) τ 1 < r ≤ τ 2
W s(r) + 2f(0)X2(r) τ 2 < r ≤ τ 3
W s(r) + 2f(0)X2(τ 3) r > τ 3

(6)

and

X1(r) := c1

∫ r

τ1

{V1(h)/σ(h)} dh

X2(r) := X1(τ 2)− c2
∫ r

τ2

{V2(h)/σ(h)} dh

where V1(r) and V2(r) are as defined in Theorem 1.

Once more the corresponding limiting distributions under DGP 1, DGP 2 or DGP 3
obtain by imposing the relevant restrictions on τ 2 and τ 3, with the limit distributions
of sPSY under the null hypothesis H0 being given by MM s

0,0 (or on setting τ 1 =
1 so that U s(r) = W s(r)). The limit of the PWY sign test, sPWY , is given by
supλ2∈[π,1] L

s
c1,c2

(0, λ2) =: M s
c1,c2

, with distribution M s
0,0 under H0. Note that MM s

0,0

and M s
0,0 are invariant to σ(s), while under the alternative hypothesis, the limits of

sPSY and sPWY depend on the pattern of heteroskedasticity σ(s), and also the
density of zt via the appearance of f(0).
For π = 0.1, limit null critical values for sPSY and sPWY , for the standard sig-

nificance levels, are given in Table 1 under “T =∞”. These are computed using direct
simulation of the limiting functionals of Theorem 2, using 2000 Monte Carlo repli-
cations, and approximating the Brownian motion process involved using NIID(0, 1)
random variates, with the integrals approximated by normalized sums of 1000 steps.
Also shown in Table 1 are finite sample critical values for sPSY and sPWY based
on generating εt as NIID(0, 1) (with u1 = ε1) for T = 100, 200 and 400. It is clear
that convergence of the finite sample critical values to their asymptotic counterparts is
fairly slow (particularly for sPSY ), but this is not uncommon for extremum statistics
based on sub-samples.

Remark 1 By construction, both the original PSY and PWY statistics, and the
sign-based variants sPSY and sPWY , are numerically invariant to the nuisance pa-
rameter µ in the DGP (1). For PSY and PWY this follows due to the inclusion of
an intercept term in the Dickey-Fuller regressions (3), while for sPSY and sPWY
the statistics only make use of Ct, which, being based on the (sign of) ∆yt, does not
depend on µ. Hence the finite sample and limit distributions of these statistics, and
consequently their finite sample and asymptotic sizes and local powers, do not depend
on µ. One could also envisage tests of the form of PSY and PWY but based on
Dickey-Fuller regressions that exclude an intercept term. Such tests would have finite
sample distributions that depend on the nuisance parameter µ under both the null and
alternative, while it can easily be shown that their asymptotic null and local alternative
distributions would be invariant to µ provided µ = o(T 1/2).
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3 Asymptotic size and power of the tests

We now consider the asymptotic size and power of the PSY and PWY tests, and
asymptotic powers of sPSY and sPWY tests. The sizes and powers are computed
via direct simulation of the limiting functionals in Theorems 1 and 2, again using 2000
Monte Carlo replications.

3.1 Size

Sizes for PSY and PWY are examined in the case of volatility shifts of the form

σ(s) = 1(0 ≤ s ≤ τσ1) + σ11(τσ1 < s ≤ τσ2) + 1(τσ2 < s ≤ 1).

We simulate the asymptotic sizes of upper-tail nominal 0.05-level tests, and use the limit
null critical value which would be obtained under homoskedasticity, i.e. from the dis-
tributionsMM0,0 andM0,0 evaluated assuming σ(s) = 1, which is akin to ignoring any
possibility of heteroskedasticity. We consider the range of values σ1 ∈ {1, 1/6, 1/3, 3, 6}.
The results are given in Table 2. We do not show size results for sPSY and sPWY as
they are always correctly sized asymptotically.
Panel (a) of Table 2 sets τσ1 ∈ {0.4, 0.8} and τσ2 = 1. This represents a single

volatility shift at time fraction τσ1, which might be thought of as being akin to DGP 1
with the bubble episode being replaced by a heteroskedastic one. It is evident that PSY
and PWY are both badly oversized when σ1 > 1, this oversize being particularly serious
for σ1 = 6. Comparing PSY and PWY , we see that the length of the heteroskedastic
episode, as measured by τσ1, actually has little effect on the degree of oversize present
in PSY , while for PWY we see a modest decrease in size with increasing τσ1.
In Panel (b) we set τσ1 ∈ {0.1, 0.5} and τσ2 = 0.7. Here there is a change in

volatility between time fractions τσ1 and τσ2, which is now akin to DGP 2 with the
bubble episode being replaced by a heteroskedastic one. Here we see that PSY is badly
oversized for both σ1 < 1 and σ1 > 1, and for all τσ1. While PWY is similarly oversized
for σ1 > 1, for σ1 < 1 (modest) oversize is only evident when τσ1 = 0.1. This represents
something of a departure in behaviour between the two tests, indicating that the size
of PSY is more sensitive to the presence of heteroskedasticity.

3.2 Power

We now examine the asymptotic power of the tests under a locally explosive H1, for
both a benchmark case of homoskedasticity, and also in the presence of heteroskedas-
ticity. We do this in the context of DGP 1, DGP 2 and a representative DGP involving
a collapse regime (specifically, DGP 4), noting that we find the specification of the
collapse regime to have relatively little bearing on the powers of the tests. We simulate
the asymptotic powers of upper-tail nominal 0.05-level tests. For PSY and PWY ,
we infeasibly size-correct when a particular pattern of heteroskedasticity is present by
taking critical values from the σ(s)-dependentMM0,0 andM0,0 limit distributions. For
sPSY and sPWY , the critical values are the limit ones from Table 1. To evaluate the
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powers of these tests we (implicitly) assume that zt ∼ NIID(0, 1) and correspondingly
set f(0) = 1/

√
2π = 0.399.

The model parameter settings we consider are as follows:

DGP 1 τ 1 ∈ {0.4, 0.8}
σ(s) = 1(0 ≤ s ≤ τ 1) + σ11(τ 1 < s ≤ 1)
(unit root, then bubble to sample end)

DGP 2 τ 1 ∈ {0.1, 0.5}, τ 2 = 0.7
σ(s) = 1(0 ≤ s ≤ τ 1) + σ11(τ 1 < s ≤ τ 2) + 1(τ 2 < s ≤ 1)
(unit root, then bubble, then unit root to sample end)

DGP 4 τ 1 ∈ {0.1, 0.5}, τ 2 = 0.7, τ 3 = 0.8, c2 = c1
σ(s) = 1(0 ≤ s ≤ τ 1) + σ11(τ 1 < s ≤ τ 3) + 1(τ 3 < s ≤ 1)
(unit root, then bubble, then collapse, then unit root to sample end)

We set c1 ∈ {2, 4, 6, 8} and σ1 ∈ {1, 1/6, 1/3, 3, 6}; σ1 = 1 representing the benchmark
homoskedastic case. In each DGP, the heteroskedastic episode is made coincident with
the bubble (or bubble and collapse) regime(s), which seems a reasonable restriction to
impose and it limits the number of cases to consider. The results are given in Table
3. As there are still a large number of table entries, as a simple gauge of the broad
relative power performance of PSY compared with sPSY , and PWY with sPWY ,
entries where the power of one test exceeds that of the other by at least 0.04 are
underlined.
The results for DGP 1 appear in Table 3(a). Considering τ 1 = 0.4, it is fairly evident

that, outside of the homoskedastic case, PSY is generally less powerful than sPSY ,
and PWY is less powerful than sPWY . It is also evident that PWY can perform
very poorly compared to sPWY when σ1 < 1. When τ 1 = 0.8, PSY is dominated
by sPSY for σ1 < 1 but now shows some gains when σ1 > 1. PWY is generally now
more powerful than sPWY unless σ1 < 1, where sPWY can offer substantial gains.
In Table 3(b) we give the results for DGP 2. For τ 1 = 0.1, PSY is less powerful than
sPSY and it is noticeable that PSY can have much lower power for σ1 < 1 - something
which was not observed under DGP 1. The same is also true when we compare PWY
with sPWY . For τ 1 = 0.5, PSY remains inferior to sPSY when σ1 < 1 while PWY
is now better performing than sPWY unless σ1 < 1, where the ranking is reversed.
Under DGP 4 in Table 3(c), the results are throughout very similar to those found for
DGP 2 in Table 3(b), suggesting that the addition of the collapse period, in itself, has
very little effect on the power of these suprema-based tests. As such, similar comments
apply here as made under DGP 2. Under heteroskedasticity, then, our results clearly
demonstrate that sPSY and sPWY can, in terms of asymptotic power, be considered
as very worthy competitors to their standard counterparts. Particularly, but by no
means exclusively, they have better power properties for downward volatility shifts; a
case which proves to be a distinct weakness for PWY throughout.
Tables 3(a)-3(c) also report (infeasibly size-adjusted) local asymptotic power results

for variants of PSY and PWY that exclude an intercept in the Dickey-Fuller regres-
sions (cf. Remark 1), which we denote by PSY0 and PWY0. These results are obtained
under the assumption that µ = o(T 1/2), in which case the limit distributions for PSY0
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and PWY0 are invariant to µ and take the same form as those for PSY and PWY ,
respectively, as given in section 2.1, but with Ũ(r) replaced by U(r). Comparing PSY0
and PWY0 with PSY and PWY , it is clear that, as would be expected, exclusion of the
intercept term results in superior local asymptotic power when µ = o(T 1/2) is satisfied
(apart from a few minor exceptions for PWY ). What is noteworthy is that in cases
where sPSY and sPWY display power gains over their PSY and PWY counterparts,
sPSY and sPWY can often also achieve power gains over PSY0 and PWY0. In what
follows, we retain our main emphasis on the original PSY and PWY tests rather than
the PSY0 and PWY0 variants, due to the potential for the latter to have finite sample
behaviour influenced by the unknown nuisance parameter µ, an issue we revisit in the
finite sample results of section 5.
One interesting observation from the local asymptotic power results is that un-

der homoskedasticity, PSY and PWY are in general more powerful than sPSY and
sPWY , respectively, for large c1, while the sign-based tests are in general more powerful
for smaller values of c1. The latter finding may appear surprising since the sign-based
tests are motivated by heteroskedasticity considerations, but there is no theoretical
reason why these procedures cannot perform better than the original PSY and PWY
tests, since there are no optimality claims associated with PSY and PWY in terms of
power under homoskedasticity. What is also interesting is that (on the basis of these
limit simulations at least), sPSY is always found to be more powerful than sPWY ,
under homoskedasticity and heteroskedasticity, while there is no such unambiguity
present between PSY and PWY .
For sPSY and sPWY , as a robustness check we also evaluated powers of these

tests under an (implicit) assumption that zt ∼ t(5) (a fat tailed distribution) setting
f(0) = Γ(3)/(Γ(5/2)

√
5π) = 0.380. Since this value of f(0) is little different to 0.399,

the powers change very little, but are always slightly smaller than for zt ∼ NIID(0, 1)
because the offset terms in (6) are smaller in absolute value (the power differences have
a mean (standard deviation) [maximum] of 0.009 (0.006) [0.021] for sPSY and 0.008
(0.006) [0.023] for sPWY ).
Of the four statistics, arguably then, sPSY seems to emerge as the one with the

best overall performance, followed by PSY . However, since there is no unique ranking
between these two tests, we can consider a simple method which attempts at harnessing
the better power of each for a given DGP setting, via a union of rejections strategy,
which we detail in the next section.

4 A union of rejections strategy

Our approach is fundamentally based around that of Harvey et al. (2009), who consider
the problem of testing for a unit root in the presence of uncertainty surrounding whether
or not a linear trend is present in the deterministic component by combining tests which
do and do not allow for trends, rejecting the unit root null if either test rejects. In
the current context we consider a combination of sPSY and PSY , although the same
method is directly applicable to a combination of sPWY and PWY . Specifically,
denoting the asymptotic ξ level null critical value of sPSY by cvsξ (from the σ(s)-
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invariantMM s
0,0 distribution) and that of PSY by cvξ (from the σ(s)-dependentMM0,0

distribution) a union of rejections strategy can be written as the decision rule

Reject H0 if {sPSY > ψξcv
s
ξ or PSY > ψξcvξ}

where ψξ is a scaling constant that ensures the decision rule yields asymptotic size of
ξ under H0. Defining a single statistic uPSY as

uPSY := max

(
sPSY,

cvsξ
cvξ

PSY

)
the decision rule is then equivalent to

Reject H0 if uPSY > ψξcv
s
ξ =: cvuξ .

An application of the continuous mapping theorem (CMT) along with the results in
Theorems 1 and 2 yields the asymptotic distribution of uPSY as

uPSY ⇒ max

(
MM s

c1,c2
,
cvsξ
cvξ

MMc1,c2

)
.

Note that this union of rejections strategy as it stands is doubly infeasible as the
uPSY statistic itself uses the σ(s)-dependent cvξ, and also the critical value cvuξ is
σ(s)-dependent via ψξ. The scaling constant ψξ can be determined from the limit
distribution of uPSY with c1 = c2 = 0, but there is actually no need to calculate it
explicitly since, for a given value of cvsξ/cvξ, all we actually require is the critical value
cvuξ which is obtained directly from the null limit distribution of uPSY .
Infeasibly size-corrected limit powers for uPSY and its sPWY /PWY -based coun-

terpart, denoted uPWY , are also shown in Tables 3(a)-(c). The immediate feature we
observe for the union procedures is that, throughout, their power levels are always re-
ally quite close to the higher of the two constituent tests. This is never something that
can be guaranteed in general with such union-based procedures, due to the implicit
scaling constant ψξ essentially having the effect of always inflating the critical values
applied to each constituent test. Here, however, the impact of this scaling appears
to be really rather modest, thereby rendering the union a rather effective tool in this
particular instance.
Thus far only sPSY and sPWY represent properly feasible test procedures as they

are asymptotically size controlled without requiring knowledge of σt. For PSY and
PWY, and uPSY and uPWY , asymptotic size control can be obtained by employing
a wild bootstrap scheme to construct the relevant critical values. This is shown to be
valid in the context of the PWY test in HLST, and we now outline how this applies
to PSY and uPSY .
The wild bootstrap algorithm is:

1. Generate a wild bootstrap sample {ybt}Tt=1 by setting

yb1 = 0, ybt = ybt−1 + ∆ytwt, t = 2, .., T

where the wt are NIID(0, 1) variates.
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2. Use the wild bootstrap sample to compute the pair of statistics PSY and sPSY .

3. Repeat step 1 and step 2 M times, denoting the resulting pairs of statistics by
{PSY b

1 , sPSY
b
1 }, ..., {PSY b

M , sPSY
b
M}.

Note that under H0, since sign(∆ybt ) = sign(ztwt), sPSY b
m is exact invariant to σt.

The next Theorem details the joint asymptotic distribution of PSY b
m and sPSY

b
m

under a locally explosive H1.

Theorem 3 Under H1 with δi.T = ciT
−1, ci > 0, i = 1, 2 and Assumptions A1-A4(

PSY b
m

sPSY b
m

)
p⇒
(
MM0,0

MM s
0,0

)
jointly, for any 1 ≤ m ≤M .

The marginal convergence result regarding PSY b
m follows directly from HLST. Noting

that sign(∆ybt ) = sign(ztwt) + op(1), the proof of the marginal convergence result
for sPSY b

m follows the same strategy as HLST and the proof of Theorem 2 of this
paper. The joint convergence occurs because both statistics are calculated from the
same bootstrap sample (this result is needed below for the asymptotic validity of the
union of rejections strategy). The proof of Theorem 3 is therefore straightforward and
omitted for the sake of brevity. The Theorem demonstrates that the wild bootstrap
procedure is first order valid in approximating the asymptotic joint null distribution
of the PSY and sPSY statistics under a locally explosive H1 (which includes H0 as a
special case).
The ξ level bootstrap critical values are obtained from the empirical distribution

functions of PSY b
m and sPSY b

m calculated from M bootstrap replications. Denoting
these critical values as cvbξ and cv

b,s
ξ , a rejection ofH0 for PSY is obtained if PSY > cvbξ

and a rejection of H0 for sPSY is obtained if sPSY > cvb,sξ . As T,N → ∞, it
follows that cvbξ and cv

b,s
ξ converge in probability to cvξ and cvsξ , so these individual

bootstrap procedures are correctly sized in the limit. Consequently, PSY inherits
exactly the same asymptotic local power properties under H1 as its infeasibly size-
corrected counterpart of section 3.2 (this is trivially true of sPSY as cvsξ does not
depend on σt).
The wild bootstrap counterpart of the union statistic uPSY is given by

uPSY b
m := max

(
sPSY b

m,
cvb,sξ
cvbξ

PSY b
m

)

for m = 1, ...,M . It follows from Theorem 3 that

uPSY b
m

p⇒ max

(
MM s

0,0,
cvsξ
cvξ

MM0,0

)
.
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The ξ level bootstrap critical value for the union is obtained from the empirical distri-
bution function of uPSY b

m, and denoting this critical value as cv
b,u
ξ we reject H0 when

uPSY b > cvb,uξ , where

uPSY b := max

(
sPSY,

cvb,sξ
cvbξ

PSY

)
.

Here uPSY b is a feasible variant of uPSY that replaces cvsξ/cvξ with cv
b,s
ξ /cv

b
ξ. Note

that this approach does not require knowledge of the scaling constant ψξ, as the size
control is obtained implicitly using the bootstrap critical values. As T,N →∞, uPSY b

is correctly sized in the limit underH0 because cv
b,u
ξ converges in probability to cvuξ , and

it has the same limiting local power function as uPSY underH1. An entirely analogous
wild bootstrap approach can be implemented for PWY (as in HLST), sPWY and
uPWY .

5 Finite sample size and power of the tests

We now turn to an examination of the finite sample properties of the various wild
bootstrap procedures. Our simulations are based on the model (1) with T = 100. Here
we set µ = 0 and u1 = ε1, where εt = σtzt with the zt generated as NIID(0, 1) random
variates. Table 4 shows 0.05-level finite sample sizes; Tables 5(a)-(b) report powers
for the constellations of parameter settings used in our previous asymptotic size and
power simulations given in Table 2 and Tables 3(a)-(b). For brevity we omit results
pertaining to DGP 4. Here the limit volatility functions σ(s) are discretised to σt(t/T )
in an obvious way. Once again 2000 Monte Carlo replications are used and we employ
M = 499 bootstrap replications.
As regards finite sample size accuracy, there is a definite tendency for (bootstrap)

PSY to be undersized, with size often dropping below 0.03 (and occasionally below
0.01, including in the homoskedastic case). In comparison, the size of (bootstrap)
sPSY (whose size is invariant to σ1) is reasonably accurate at 0.059. Interestingly,
the undersize of PSY does not translate into substantial undersize of the (bootstrap)
union uPSY ; its size is never below 0.04, so sPSY is clearly having an offsetting effect
within the combination. PWY also has some tendency to undersize (unless σ1 = 6
when it can be modestly oversized), but to a lesser degree than PSY . The size of
sPWY is very accurate at 0.054 and uPWY offers better size control than PWY .
Considering finite sample power, Table 5(a) gives results for DGP 1. When τ 1 = 0.4,

PSY is generally less powerful than sPSY . In fact, the latter’s superiority in this
regard is more readily apparent here than in the asymptotic context (Table 3(a));
this is probably a manifestation of the undersizing of PSY noted above. There is no
clear winner when comparing PWY and sPWY , unlike in the asymptotic case where
sPWY was generally the better performing test. However, it is still the case that
PWY can have very low power compared to sPWY when σ1 < 1. When τ 1 = 0.8,
PSY is dominated by sPSY unless σ1 > 1 and PWY outperforms sPWY unless
σ1 < 1 which is similar to the asymptotic case although the magnitudes involved can
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differ between the finite sample and asymptotic cases. The finite sample results for
DGP 1 would reasonably suggest that sPSY is a better performing test than PSY
overall; while there is no clear ranking between PWY and sPWY , PWY can have
very low power for σ1 < 1. Results for DGP 2 are given in Table 5(b). When τ 1 = 0.1,
we see that PSY and PWY are, respectively, less powerful than sPSY and sPWY ,
and the differences are often particular marked. For τ 1 = 0.5, PSY is again generally
inferior to sPSY , while PWY performs better than sPWY unless σ1 < 1, in which
case sPWY can offer substantial gains. These findings are again largely in accordance
with the asymptotic results (Table 3(b)).
Throughout Table 5, we also see that the union procedures have power levels close

to whichever constituent test is displaying the higher power under given circumstances.
Overall then, it would appear reasonable to conclude that our asymptotic power sim-
ulation results provide a decent indicator of how the various bootstrap procedures will
perform in practice, even when only data series of modest length are available. Lastly,
we note that while we have implemented the sPSY and sPWY tests using bootstrap
critical values here, we could of course simply use their finite sample critical values
from Table 1 (T = 100). Upon doing this, we found the difference in powers to have
a mean (standard deviation) [maximum] of 0.017 (0.011) [0.041] for sPSY and 0.005
(0.004) [0.014] for sPWY , implying the two critical value methods yield insignificantly
different results.
Finally, in Table 6 we report finite sample size and power results for wild bootstrap

versions of the PSY0 and PWY0 tests that exclude an intercept from the Dickey-Fuller
regressions. Here we consider the illustrative case of DGP 1 using the same settings
as in the results of Tables 4 and 5, only now we consider a range of values for µ
(µ ∈ {0, 10, 20, 50}) in order to investigate the sensitivity of these tests to µ in finite
samples (note that the bootstrap critical values do not depend on µ). When µ = 0, the
bootstrap PSY0 test displays some oversize, while bootstrap PWY0 has approximately
correct size unless σ1 > 1 where it can be modestly oversized. As µ increases, we observe
an increase in the upward size distortion for PSY0 when σ1 ≤ 1 and a decrease in size
when σ1 > 1, to the point that undersize can be displayed for large σ1 and µ. On the
other hand, PWY0 remains approximately correctly sized when σ1 ≤ 1 but can be very
undersized for σ1 > 1 and large µ. Turning to the test powers, even greater sensitivity
to µ can be observed, and we observe that an increase in µ corresponds to a decrease
in finite sample power for PSY0 and PWY0. Even for µ = 10, the power of PSY0 and
PWY0 can be reduced by up to 0.175 and 0.137, respectively, compared to the µ = 0
case. These reductions in power become more marked as µ increases, with PSY0 and
PWY0 powers for µ = 50 reduced by up to 0.470 and 0.414, respectively, compared to
when µ = 0. Overall, we observe that the finite sample properties of the PSY0 and
PWY0 tests are highly sensitive to the unknown DGP parameter µ, reinforcing our
recommendation for use of the PSY /PWY and sPSY /sPWY procedures which offer
robustness (exact invariance) to µ.
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6 Dating bubble start and end points using sign-
based statistics

We now consider how to consistently estimate the bubble start and end points, τ 1
and τ 2 when δ1,T > 0. For simplicity, we examine this issue within the context of
DGP 2. Consistent estimation is not possible using the current Pitman drift bubble
magnitude δ1.T = c1T

−1, c1 > 0, so in what follows we replace this with a stronger,
mildly explosive bubble magnitude of the form δ1,T = c1T

−α where α ∈ (0, 1).3 PWY
and PSY propose dating strategies for the start and end points of the bubble based on
repeated implementation of their recursive tests over expanding samples, using critical
values that diverge to infinity but at a rate slower than the derived divergence rate
of the statistics over the mildly explosive regime. We considered implementing the
PWY/PSY dating approach using our sign-based statistics, and it is not diffi cult to
show that the sign-based statistics diverge at the rate T 1/2 in the mildly explosive
regime, allowing τ 1 to be estimated consistently.4 However, the sign-based statistics
are unable to consistently estimate τ 2 with the PWY/PSY dating strategy.5 In view
of this, we pursue a dating strategy based on maximising sub-sample statistics.
By way of motivation, in view of the sPSY statistic of (4), fairly intuitive estimators

of (τ 1, τ 2) are provided by the maximisers

(τ̂ 1, τ̂ 2) := arg max
λ1∈[0,1−π] λ2∈[λ1+π,1]

sDF (λ1, λ2).

However, while it can be shown (under Assumptions A1-A4) that τ̂ 2
p→ τ 2 we find that

τ̂ 1 does not consistently estimate τ 1. A solution to this inconsistency is obtained on
replacing ŝ2(λ1, λ2) with the quantity (s̃2(λ1, λ2))

ε, for some 0 < ε ≤ 1 , where

s̃2(λ1, λ2) :=
bλ2T cŝ2(0, λ2)− bλ1T cŝ2(0, λ1)

bλ2T c − bλ1T c − 1

with the definitions of ŝ2(0, λ1) and ŝ2(0, λ2) being implied from Section 2.2. We can
then state a result which pertains to the modified statistic

sDF ∗(λ1, λ2) :=
ρ̂(λ1, λ2)√

(s̃2(λ1, λ2))ε/
∑bλ2T c

t=bλ1T c+1C
2
t−1

by showing that (after suitable normalisation) the probability limit of sDF ∗(λ1, λ2) is
a well-defined (piecewise) deterministic function, with (τ 1, τ 2) being its unique max-
imiser. In the next theorem, we show that the maximiser of the dating statistic

3The consistency results in this section also hold when α = 0, which represents a fixed magnitude
(rather than mildly explosive) bubble.

4The PWY and PSY dating statistics diverge at a rate dependent on the mildly explosive parameter
α. By construction, our sign-based statistics are independent of the actual magnitude of the mildly
explosive bubble, yielding a fixed rate of divergence T 1/2 for all α ∈ (0, 1).

5Based on our later results in Lemma 1, it is not diffi cult to see that the order of divergence of our
sign-based statistics is unchanged before and after τ2, hence this change point cannot be identified by
directly applying the PWY/PSY dating strategy.
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sDF ∗(λ1, λ2), not unsurprisingly, can estimate the maximiser (τ 1, τ 2) of the limiting
function consistently.

Theorem 4 For model (1), under DGP 2 with δ1,T = c1T
−α, c1 > 0, α ∈ (0, 1) and

Assumptions A1-A4, with

(τ̃ 1, τ̃ 2) := arg max
λ1∈[0,1−π] λ2∈[λ1+π,1]

sDF ∗(λ1, λ2)

then, provided τ 2 − τ 1 ≥ π,
(τ̃ 1, τ̃ 2)

p→ (τ 1, τ 2)

for 0 < ε ≤ 1.

In essence, replacing ŝ2(λ1, λ2) with s̃2(λ1, λ2), which is a weighted average of ŝ2(0, λ2)
and ŝ2(0, λ1), creates a kink in the limiting function, making (τ 1, τ 2) a unique maximiser
of it, while raising s̃2(λ1, λ2) to the power ε relates to finite sample considerations.
Since Theorem 1 holds for all 0 < ε ≤ 1, it might be tempting simply to set ε = 1
for any practical application. However, unreported simulation evidence suggests the
finite sample properties of this choice can be very poor, with the estimator τ̃ 1 (τ̃ 2)
being badly biased upwards (downwards). Setting ε to a much smaller value, such as
ε = 0.01, was found to yield much less biased estimators. The results of Theorem 4
can be shown to continue to hold in the presence of any form of bubble collapse (as in
DGP 3 or DGP 4, or indeed an instantaneous collapse). They also hold under DGP 1,
i.e. for τ 2 = 1.
Note that the consistency result in Theorem 4 requires τ 2 − τ 1 ≥ π, so that the

length of the bubble regime is at least as long as the minimum window width for which
sDF ∗(λ1, λ2) is computed. To allow for bubbles of short length, for example a bubble
that emerges late in the sample period (under DGP 1), a relatively small value of π
may be appropriate for accurate dating. Note that the setting for π here does not need
to coincide with the setting for π in the testing procedure.
In principle, we could also use sDF ∗(λ1, λ2) in place of sDF (λ1, λ2) in our testing

setup. This would unify the testing and dating aspects of our procedure rather conve-
niently. Unfortunately, the finite sample size and power properties of sDF ∗(λ1, λ2) we
found to be somewhat inferior in comparison to those of sDF (λ1, λ2) and we therefore
cannot recommend such a strategy.

7 Asymmetric errors

Assumption A4 implies that the mean and median of zt are the same (zero). It is
possible that this assumption could fail to hold, for example Campbell et al. (1997,
Table 1.1) find (very) mild asymmetries in daily financial returns which is likely to
imply violation of Assumption A4. Suppose, then, that E(zt) = 0 but F (0) 6= 1/2. In
this case, under the null hypothesis, E{sign(zt)} 6= 0 and the invariance principle (2)
clearly breaks down. It is then obvious that some form of de-meaning of sign(zt) is
required to make progress. This could be carried out in a number of different ways, but
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a convenient method is to employ recursive de-meaning of sign(∆yt) before cumulating
to form Ct. Specifically, we replace sign(∆yt) in the construction of sDF (λ1, λ2) with

sign(∆yt)− (t− 1)−1
t∑

j=2

sign(∆yj) (7)

which is invariant to E[sign(zt)]. The advantage of recursive de-meaning is that (7)
only involves data up to time t, which is, of course, relevant for any kind of real-time
bubble monitoring exercise (full-sample de-meaning, for example, would not have this
property).6

Under a locally explosive H1 and Assumptions A1-A3, we can show (along the lines
of the proof of Theorem 2) that

T−1/2
brT c∑
t=2

{
sign(∆yt)− (t− 1)−1

t∑
j=2

sign(∆yj)

}
⇒ σsz

{
U s(r)−

∫ r

0

x−1U s(x)dx

}
=: σszŨ

s(r)

where σ2sz = V ar[sign(zt)] and U s(r) is a copy of the distribution of that given in (6)
(we duplicate the notation only to avoid repeating each expression). Then, denoting
the new statistic by s̄PSY , we find that

s̄PSY ⇒ sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

L̃s(λ1, λ2)

where

L̃s(λ1, λ2) :=
Ũ s(λ2)

2 − Ũ s(λ1)
2 − (λ2 − λ1)

2
√∫ λ2

λ1
Ũ s(r)2dr

.

Asymptotic and finite sample critical values for this test, and its sPWY counterpart,
denoted s̄PWY , are given in Table 6. The corresponding bootstrap statistics are based
on recursive de-meaning of sign(∆ybt ). The consistency results of Theorem 4 can also
be shown to hold in the case of recursive de-meaning.
With traditional left-tail unit root testing, it is well known that any form of de-

trending of the data to account for deterministic terms in the observed series reduces
the power of the test relative to the case where no de-trending is required. We would
have little reason to suggest the same will not happen in the current context of right-tail
testing. Since recursive de-meaning of sign(∆yt) is de facto equivalent to de-trending
of Ct, we should therefore expect to find s̄PSY and s̄PWY to have lower power than
sPSY and sPWY , respectively. We examine the extent to which this occurs both
asymptotically and in finite samples. In addition to the results for sPSY and sPWY ,

6Note that if a bubble is present from the beginning of the sample period, it is theoretically
possible (although unlikely in practice) that all the values of sign(∆yt) are equal to one, in which
case the recursively de-meaned series would be zero for all time periods. While this causes problems
for calculation of the test statistic, it is clear that such an occurrence should be taken as evidence of
a bubble.
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Table 3 also reports asymptotic local powers for s̄PSY and s̄PWY , along with results
for the corresponding union of rejections procedures ūPSY (union of s̄PSY and PSY )
and ūPWY (union of s̄PWY and PWY ). In Tables 3(a) and 3(c) we observe a loss in
power through using s̄PSY or s̄PWY compared to sPSY or sPWY , as anticipated,
with these being most apparent for smaller values of c1. Although some of the power
gains that s̄PSY and s̄PWY offered over PSY and PWY are removed, there are still
many cases where the sign-based approach outperforms the standard tests, sometimes
by a substantial margin. In Table 3(b) we observe the unexpected feature that, for some
DGP settings, s̄PSY and s̄PWY can have higher local asymptotic power than the non-
recursively demeaned variants sPSY and sPWY , respectively. Given that the latter
tests were already seen to outperform PSY and PWY in a majority of cases for DGP
2, it follows that s̄PSY and s̄PWY offer valuable power gains relative to the original
PSY and PWY tests also. Throughout Table 3, the union of rejections procedures
ūPSY and ūPWY behave in a similar way to the union procedures of section 4, with
power levels displayed that are close to the better of the two constituent tests that
comprise each union.
Tables 4 and 5 report finite sample size and power results for the recursively de-

meaned variants of the tests (and the corresponding unions), using bootstrap critical
values throughout as in section 5. Table 4 shows the sizes of s̄PSY and s̄PWY to be
close to the nominal level in finite samples, and the corresponding ūPSY and ūPWY
union sizes are similar to those for uPSY and uPWY . In Table 5, the finite sample
power results for s̄PSY and s̄PWY follow broadly similar patterns to the asymptotic
results, although for many settings the finite sample powers can be considerably lower
than their asymptotic counterparts. This is particularly noticeable in Table 5(b) where
the unexpected result that s̄PSY and s̄PWY had higher local asymptotic power than
sPSY and sPWY is now reversed in finite samples. While our finite sample results
are limited to T = 100, unreported simulations using larger finite sample sizes confirm
that the finite sample powers of the tests converge to the local asymptotic results in
Table 3. Table 5 also shows that, once again, each union of rejections procedure has
power close to the better of its constituent tests.

8 Extensions and discussions

8.1 Higher order dynamics

We have assumed thus far that εt is serially uncorrelated. More generally, we may
consider it to have an autoregressive representation of the form

εt =

p∑
i=1

ρiεt−i + σtzt

with ρi such that εt is stationary under homoskedasticity. In this case, in the spirit of
the recursive de-meaning described above, we fit the recursive OLS regressions
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∆yj = α̂(t) + φ̂(t)yj−1 +

p∑
i=1

ρ̂i(t)∆yj−i + ej, j = p+ 5, ..., t. (8)

We then construct sDF (λ1, λ2) using sign(∆yt −
∑p

i=1 ρ̂i(t)∆yt−i). The null limit
distribution of sPSY can be shown to remain the same as given in section 2.2. There
is no need to alter the bootstrap data generation scheme nor the form of sPSY b

m

because the wild bootstrap removes any weak dependence present in ∆yt. In practice,
p is unknown but could be determined using standard information criteria, for example
BIC.

8.2 More general deterministic terms

If the constant deterministic term µ in (1) is replaced by a process undergoing a finite
number, n say, of deterministic level shifts, the limit distributions of the sign-based
statistics are unchanged. This occurs because only n of the sign(∆yt) are affected,
so the effect is asymptotically negligible. Moreover, there is no restriction on the
magnitudes of the level shifts due to the sign transformation. The limit distributions
of PSY and PWY are also unchanged, but only provided the level shift magnitudes
are o(T 1/2). The practical consequence of this is that, in finite samples, the sizes and
powers of PSY and PWY will be rather more sensitive to large level shifts than those
of the sign-based tests.
Phillips et al. (2014) consider the possibility of a local-to-zero drift term. In the

context of our model, this translates to replacing µ with µ+βT−dt, where d is a positive
constant. It can be shown that the null limit distributions for the sign-based statistics
continue to hold provided d > 1/2, coinciding with the restriction that PSY and PWY
require for their tests to be asymptotically invariant to the local drift. To see this,
define

ΛT := T−1/2
brT c∑
t=1

sign(∆yt)− T−1/2
brT c∑
t=1

sign(zt).

It is straightforward to calculate that

E(ΛT ) = 2T−1/2
brT c∑
t=1

(
F (0)− F

(
−βT

−d

σt

))
= O(T

1
2
−d)

as F (0) − F
(
−βT−d

σt

)
is O(T−d) uniformly for all t. Also, V ar(ΛT ) = O(T−d) using

a similar argument. A simple application of Markov’s inequality then shows that
ΛT = op(1) when d > 1/2.

9 An empirical illustration

By way of a practical illustration of the use of our sign-based tests and dating methods,
we apply them to Bitcoin price data (measured in pounds sterling) to study the pos-
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sibility of explosive behaviour being present in Bitcoin prices from late 2017. Bitcoin
is a digital asset designed to work as a medium of exchange that uses cryptography (a
so-called “cryptocurrency”) and is considered a speculative asset among economists.
The data range we choose is for the period 1/9/2017 to 28/1/2018. Bitcoin is traded
24/7 globally so price observations are available on all days, giving 149 observations.
The data, which is plotted in Figure 1, is the daily closing price and was obtained from
the website https://finance.yahoo.com/quote/BTC-GBP. In what follows, testing and
dating are based on setting π = 0.1.
Table 7 shows the value of the statistics PSY , sPSY and s̄PSY , with p = 1 in

(8) (selected by BIC assuming a maximum value of p = 4) and one lagged difference
included in the OLS regressions underlying PSY (a small number of observations are
lost through accounting for serial correlation; for consistency we compute all tests over
the same effective sample size). The entries in round brackets are bootstrap p-values for
the tests based onM = 9999 bootstrap replications. The PSY test clearly fails to reject
the null hypothesis (measured at any conventional significance level), while both sPSY
and s̄PSY show strong rejections. The strength of rejection obtained from sPSY is
slightly higher than for s̄PSY , which might be expected in view of the simulation
results of section 7 above. Table 7 also reports results for the feasible union of rejections
procedures uPSY b and ūPSY b. The p-values associated with these procedures imply
rejection of the null in both cases, albeit at a slightly higher significance level than was
found for the sPSY and s̄PSY tests, as would be expected. It can also be seen that
the values of the uPSY b and ūPSY b statistics coincide with the sPSY and s̄PSY
statistics, consistent with the rejections coming from the sign-based tests rather than
the original test.
The additional entry for PSY in square brackets is the bootstrap p-value obtained

when we do not account for any heteroskedasticity, which we carry out by constructing
the increments of ybt using wt instead of ∆ytwt. This approach is then essentially the
same as using standard finite sample critical values obtained using NIID(0, 1) errors.
Interestingly, this leads to a complete overturn of the previous non-rejection by PSY .
That this occurs, however, we take as a potential indication of substantial levels of
heteroskedasticity being present in the data, and therefore an indication of the need
to correct for it before we are in a position to make size-controlled inference. These
contrasting findings are perhaps particularly pertinent given that changing volatility is
widely considered to be a trademark characteristic of Bitcoin price data. The plot of
absolute price changes shown in Figure 1 would seem to support such a view.
Having provided significant evidence for the presence of explosivity in the data

on the basis of sPSY and s̄PSY , we can proceed to date it (we do not attempt to
date using the PSY approach given that PSY failed to reject). Using the dating
statistic sDF ∗ (with ε = 0.01), the start date for the explosive regime is identified
as 13/11/2017. The Bitcoin price suffered a small crash from 8/11/2017, and was
undergoing a continuous 5-day decrease until 12/11/2017, after which it started a
rapid increase period until mid December 2018. As such, the sDF ∗ statistic seems to
be reasonably accurate in identifying 13/11/2017 as the start of the period of rapid
increase. The sDF ∗ statistic finds that 7/12/2017 is the end date of the explosive
regime. On 7/12/2017, the Bitcoin price reached a local maximum after continuous
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increasing of about 3 weeks from £ 4379, closing at £ 12882. Then it suffered a short
one-day crash, before it was pushed to its historical high on 22/12/2017. Our sDF ∗

therefore seems to be rather accurate in identifying this crash, placing the end time on
the crash day (so no dating delay is inherent). We also apply the same dating strategy
to the recursively de-meaned data, denoting this statistic as s̄DF ∗. We find that the
s̄DF ∗ statistic places the start date rather earlier than sDF ∗, at 4/10/2017. This
essentially treats the one-week crash starting from 8/11/2017 as a random shock and
also picks up the relatively gradual increase in the Bitcoin price from 10/2017 as an
explosive regime, which also seems reasonable to us. Notice that the end date identified
by s̄DF ∗ is identical to that from sDF ∗. As such, sDF ∗ suggests an explosive regime
that is concentrated around the period of most intensive upward movement in the
prices, while s̄DF ∗ is suggestive of a more gradually emerging explosive regime. Both
these scenarios seem plausible and we would not wish to take a stance in favour of one
or other without conducting deeper analysis that lies outside of the remit of this paper.

10 Conclusions

In this paper we have proposed a sign-based variant of the PSY test for explosive
autoregressive behaviour in financial time series. In contrast to the original test, this
test does not require bootstrap-type methods to control size in the presence of het-
eroskedastic innovations, thereby offering computational effi ciency gains when applied
in practice. Under a locally explosive bubble alternative, we also find that the sign-
based test has appealing asymptotic power properties, with the potential to deliver
substantially greater power than the original test for many volatility and bubble model
specifications. However, because the original test may still outperform the sign-based
test for some specifications, we also suggested a union of rejections procedure that com-
bines the sign-based and original tests and employs a joint wild bootstrap to control
size. This union is seen to succeed in capturing most of the power available from the
better performing of the two tests for a given alternative. Our finite sample simulations
indicate that our new procedures should work well in practice. We have also shown
how a slight variant of the sign-based test can be used to consistently date the start
and end points of a mildly explosive bubble, and how a recursively de-meaned variant
of the test can allow for asymmetry in the innovations. We applied our sign-based test-
ing and dating procedures to recent Bitcoin price data and uncovered robust evidence
for the existence of an explosive regime in this data, subsequently identifying what we
consider to be plausible start and end dates for this regime.
Finally, we consider some areas for future research. First, our assumptions consider

only deterministically time-varying volatility, and it would be interesting to extend our
work to ARCH-type and stochastic volatility dynamics, investigating conditions under
which our tests remain asymptotically valid. Secondly, we recognise that the DGP we
have chosen to analyse in this paper is not the only specification capable of generat-
ing bubble-type behaviour. Random coeffi cient autoregressive models (e.g. Blanchard
and Watson, 1982, Granger and Swanson, 1997) and certain types of noncausal model
(e.g. Gourieroux and Jasiak, 2018) represent plausible alternative specifications. An
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investigation of the performance of our sign-based tests in the context of such alter-
native models would be interesting. Finally, in principle the procedures developed in
this paper could be extended to the context of real-time detection and dating of pos-
sibly multiple bubbles. Additional issues arise when considering a real-time analysis,
for example the need to control size for tests applied at multiple sequential points in
time (see, e.g., Homm and Breitung, 2012), and a full development of such real-time
monitoring procedures would also be of value.
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Appendix A: Proofs of Theorems

Without loss of generality we can set µ = 0 in what follows.

Proof of Theorem 1

It follows from HLST that

T−1/2ybrT c ⇒


Wσ(r) r ≤ τ 1
V1(r) τ 1 < r ≤ τ 2
V2(r) τ 2 < r ≤ τ 3
V2(τ 3) +Wσ(r)−Wσ(τ 3) r > τ 3.

(A.1)

= U(r)

(whereWσ(r) corresponds to the variance-transformed Brownian motion process ω̄W η(r)
in the notation of that paper). Also, since ∆yt = εt +Op(T

−1/2) for all t, we find that
σ̂2(λ1, λ2) = (bλ2T c − bλ1T c)−1

∑bλ2T c
t=bλ1T c+1 ∆y2t + op(1)

p→ (λ2 − λ1)−1
∫ λ2
λ1
σ(r)2dr.

A little straightforward manipulation allows us to write DF (λ1, λ2) in the form

DF (λ1, λ2) =
T−1(ybλ2T c − ȳ)2 − T−1(ybλ1T c − ȳ)2 − T−1

∑bλ2T c
t=bλ1T c+1 ∆y2t

2
√
σ̂2(λ1, λ2)T−2

∑bλ2T c
t=bλ1T c+1(yt−1 − ȳ)2

.

Then, following the arguments of the proof of Theorem 1 in PSY, DF (λ1, λ2) can
be interpreted as a continuous functional of the partial sum process T−1/2ybrT c and
σ̂2(λ1, λ2), allowing application of the continuous mapping theorem to give

DF (λ1, λ2) ⇒
Ũ(λ2)

2 − Ũ(λ1)
2 −

∫ λ2
λ1
σ(r)2dr

2
√

(λ2 − λ1)−1
∫ λ2
λ1
σ(r)2dr

∫ λ2
λ1
Ũ(r)2dr

= Lc1,c2(λ1, λ2).

The stated limit for the PSY statistic is then obtained from a further continuous map-
ping argument following the proof of Theorem 1 in PSY, since the double sup operator
can be written as a continuous functional over the space of functions {DF (λ1, λ2),
(λ1, λ2) ∈ ([0, 1− π], [λ1 + π, 1])} with respect to the uniform norm. See also Shi et al.
(2018a) and Shi et al. (2018b) for similar arguments in deriving sup-type limit results.

Proof of Theorem 2

We will first show that

T−1/2CbrT c ⇒


W s(r) r ≤ τ 1
W s(r) + 2f(0)X1(r) τ 1 < r ≤ τ 2
W s(r) + 2f(0)X2(r) τ 2 < r ≤ τ 3
W s(r) + 2f(0)X2(τ 3) r > τ 3.

(A.2)

= U s(r)
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from which the main result follows easily. The result in (A.2) extends Theorem 1 of
Boldin (2013) to allow for time-varying volatility and a time-varying coeffi cient mean
level model. In what follows, we only demonstrate the result for the last regime where
r > τ 3; the results in the other regimes can be obtained in the same way.
First note that under H1,

T−1/2CbrT c = T−1/2
brT c∑
t=2

sign(εt) +

T−1/2CbrT c − T−1/2 brT c∑
t=2

sign(εt)

 .

We first examine the difference T−1/2CbrT c−T−1/2
∑brT c

t=2 sign(εt). Using the definition
sign(x) = −21(x 6 0) + 1, we have

T−1/2CbrT c − T−1/2
brT c∑
t=2

sign(εt) = 2T−1/2
brT c∑
t=2

(1(εt 6 0)− 1(yt − yt−1 6 0))

= 2T−1/2
brT c∑
t=2

(1(εt 6 0)− 1(δtyt−1 + εt 6 0))

= 2T−1/2
brT c∑
t=2

1(εt 6 0)− 2T−1/2
brT c∑
t=2

1(εt 6 −δtyt−1)

where δt = δ1,T1(bτ 1T c < t 6 bτ 2T c) − δ2,T1(bτ 2T c < t 6 bτ 3T c). Next, we make
decompositions of the above two sums of indicator functions around the corresponding
distribution function F (.) of zt:

2T−1/2
brT c∑
t=2

1(εt 6 0)− 2T−1/2
brT c∑
t=2

1(εt 6 −δtyt−1)

= 2T−1/2
brT c∑
t=2

(1(εt 6 0)− F (0))

−2T−1/2
brT c∑
t=2

(
1(εt 6 −δtyt−1)− F

(
−δt

yt−1
σt

))

+2T−1/2
brT c∑
t=2

(
F (0)− F

(
−δt

yt−1
σt

))
= A+B + C

where A-C are defined implicitly.
Looking at terms A and B terms together and denoting

Ht := (1(εt 6 0)− F (0))−
(
1(εt 6 −δtyt−1)− F

(
−δt

yt−1
σt

))
for t = 2, . . . , T , we have

A+B = 2T−1/2
brT c∑
t=2

Ht.
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Our aim is to evaluate the mean and variance of A+B. First notice that {Ht}Tt=2 is a
martingale difference sequence with respect to the natural filtration:

E(Ht|Ft−1) = E

(
(1(εt 6 0)− F (0))−

(
1(εt 6 −δtyt−1)− F

(
−δt

yt−1
σt

))
|Ft−1

)
= E

(
(1(zt 6 0)− F (0))−

(
1

(
zt 6 −δt

yt−1
σt

)
− F

(
−δt

yt−1
σt

))
|Ft−1

)
= 0.

This implies E(A+B) = 0. Next,

Var(Ht|Ft−1) = Var

(
1(zt 6 0)− 1

(
zt 6 −δt

yt−1
σt

)
|Ft−1

)
6 E

((
1(zt 6 0)− 1

(
zt 6 −δt

yt−1
σt

))2
|Ft−1

)

= E

((
1

(
−δt

yt−1
σt

< zt 6 0

)
1

(
−δt

yt−1
σt

6 0

)
−1
(

0 < zt 6 −δt
yt−1
σt

)
1

(
−δt

yt−1
σt

> 0

))2
|Ft−1

)

= E

((
1

(
−δt

yt−1
σt

< zt 6 0

)
1

(
−δt

yt−1
σt

6 0

)
+1

(
0 < zt 6 −δt

yt−1
σt

)
1

(
−δt

yt−1
σt

> 0

))
|Ft−1

)
(A.3)

where we have used the inequality Var(X|Ft−1) 6 E(X2|Ft−1) in the second step; in
the last step, the cross product term of the quadratic expansion

E

(
1

(
−δt

yt−1
σt

< zt 6 0

)
1

(
0 < zt 6 −δt

yt−1
σt

)
|Ft−1

)
= 0

as the two sets considered in the indicator functions are mutually exclusive. In the
previous derivation for Var(Ht|Ft−1), we have also used the result that E(1(A)2) =
E(1(A)) for any set A. We have

Var (A+B) = Var

2T−1/2
brT c∑
t=2

Ht

 = 4T−1E

brT c∑
t=2

Ht

2 .

Since {Ht} is a martingale difference sequence, by Burkholder’s inequality (e.g. Hall
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and Heyde (1980) Theorem 2.10), for a generic constant C > 0, it is satisfied that

4T−1E

brT c∑
t=2

Ht

2 6 CT−1E

brT c∑
t=2

H2
t


= CT−1E

brT c∑
t=2

E(H2
t |Ft−1)


= CT−1E

brT c∑
t=2

Var(Ht|Ft−1)


= CT−1E

brT c∑
t=2

E

(
1

(
−δt

yt−1
σt

< zt 6 0

)
1

(
−δt

yt−1
σt

6 0

)

+1

(
0 < zt 6 −δt

yt−1
σt

)
1

(
−δt

yt−1
σt

> 0

)
|Ft−1

))
= CT−1

brT c∑
t=2

E

(
1

(
−δt

yt−1
σt

< zt 6 0

)
1

(
−δt

yt−1
σt

6 0

)
+1

(
0 < zt 6 −δt

yt−1
σt

)
1

(
−δt

yt−1
σt

> 0

))
where we have substituted in the expression derived in (A.3). Since δtyt−1

p→ 0 in the
locally explosive regime, δt = 0 identically in the unit root regimes, and δtyt−1

p→ 0 in
the stationary regime, the set {−δtyt−1/σt < zt 6 0} converges to a null set and we
have

E

(
1

(
−δt

yt−1
σt

< zt 6 0

)
1

(
−δt

yt−1
σt

6 0

))
→ 0.

A similar argument also shows that

E

(
1

(
0 < zt 6 −δt

yt−1
σt

)
1

(
−δt

yt−1
σt

> 0

))
→ 0.

Thus we find that Var(A + B) → 0. This, together with the previous result that
E(A+B) = 0, implies A+B = op(1), using the Markov inequality.
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Now we look at term C. Expanding C according to 4 regimes, we have

C = −2T−1/2
brT c∑
t=2

(
F

(
−δt

yt−1
σt

)
− F (0)

)

= −2T−1/2
bτ1T c∑
t=2

(
F

(
−δt

yt−1
σt

)
− F (0)

)

−2T−1/2
bτ2T c∑

t=bτ1T c+1

(
F

(
−δt

yt−1
σt

)
− F (0)

)

−2T−1/2
bτ3T c∑

t=bτ2T c+1

(
F

(
−δt

yt−1
σt

)
− F (0)

)

−2T−1/2
brT c∑

t=bτ3T c+1

(
F

(
−δt

yt−1
σt

)
− F (0)

)
= C1 + C2 + C3 + C4

where C1-C4 are defined implicitly. First notice that δt = 0 in the two unit root
regimes, such that C1 = C4 = 0. Next we look at C2 and C3. For C2,

C2 = −2T−1/2
bτ2T c∑

t=bτ1T c+1

(
F

(
−δt

yt−1
σt

)
− F (0)

)

= 2T−1/2
bτ2T c∑

t=bτ1T c+1

f(0)δt
yt−1
σt

(
1 + op

(
−δt

yt−1
σt

))

= 2c1T
−1f(0)

bτ2T c∑
t=bτ1T c+1

T−1/2yt−1
σt

(1 + op(1)).

From (A.1), when τ 1 6 r < τ 2, T−1/2ybrT c ⇒ V1(r), so

C2⇒ 2f(0)c1

∫ τ2

τ1

V1(h)

σ(h)
dh

by the CMT. For C3,

C3 = −2T−1/2
bτ3T c∑

t=bτ2T c+1

(
F

(
−δt

yt−1
σt

)
− F (0)

)

= 2T−1/2
bτ3T c∑

t=bτ2T c+1

f(0)δt
yt−1
σt

(
1 + op

(
−δt

yt−1
σt

))

= −2c2T
−1f(0)

bτ3T c∑
t=bτ2T c+1

T−1/2yt−1
σt

(1 + op(1)).
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Also from (A.1), when τ 1 6 r < τ 2, T−1/2ybrT c ⇒ V2(r), so we have

C3⇒ −2f(0)c2

∫ τ3

τ2

V2(h)

σ(h)
dh

also by the CMT. Together then,

C ⇒ 2f(0)c1

∫ τ2

τ1

V1(h)

σ(h)
dh− 2f(0)c2

∫ τ3

τ2

V2(h)

σ(h)
dh.

Lastly we look at the convergence in distribution of the sum of the signs. We have

T−1/2
brT c∑
t=2

sign(εt)⇒ W s(r)

as a consequence of the imposed assumptions.
We have thus derived the weak limit of T−1/2CbrT c when r > τ 3. Its weak limit in

other regimes can be derived in the same manner.
Now we show that ŝ2(λ1, λ2)

p→ 1. By definition of the variance estimator ŝ2(λ1, λ2)
and the least squares estimator ρ̂(λ1, λ2), we make the following expansion

ŝ2(λ1, λ2) = (bλ2T c − bλ1T c − 2)−1
bλ2T c∑

t=bλ1T c+1

(∆Ct − ρ̂(λ1, λ2)Ct−1)
2

= (bλ2T c − bλ1T c − 2)−1

 bλ2T c∑
t=bλ1T c+1

(∆Ct)
2 −

(∑bλ2T c
t=bλ1T c+1 ∆CtCt−1

)2
∑bλ2T c

t=bλ1T c+1C
2
t−1

 .

Using (A.2) we have
∑bλ2T c

t=bλ1T c+1 ∆CtCt−1 = Op(T ) and
∑bλ2T c

t=bλ1T c+1C
2
t−1 = Op(T

2); we
thus have

(bλ2T c − bλ1T c − 2)−1

(∑bλ2T c
t=bλ1T c+1 ∆CtCt−1

)2
∑bλ2T c

t=bλ1T c+1C
2
t−1

= op(1).

Also notice that
bλ2T c∑

t=bλ1T c+1

(∆Ct)
2 =

bλ2T c∑
t=bλ1T c+1

(sign(∆ut))
2

where by definition that sign(x) = −21(x 6 0) + 1, (∆Ct)
2 = (sign(∆ut))

2 = 1
identically. Hence

ŝ2(λ1, λ2) = (bλ2T c − bλ1T c − 2)−1
bλ2T c∑

t=bλ1T c+1

(∆Ct)
2 + op(1)

p→ 1.

We are now in a position to derive the main result of the theorem, using similar
arguments to those in the proof of Theorem 1 (see also PSY, Shi et al., 2018a, and Shi
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et al., 2018b). We can write sDF (λ1, λ2) in the form

sDF (λ1, λ2) =
T−1C2bλ2T c − T

−1C2bλ1T c − T
−1∑bλ2T c

t=bλ1T c+1(∆Ct)
2

2
√
ŝ2(λ1, λ2)T−2

∑bλ2T c
t=bλ1T c+1C

2
t−1

⇒ U s(λ2)
2 − U s(λ1)

2 − (λ2 − λ1)

2
√∫ λ2

λ1
U s(r)2dr

= Lsc1,c2(λ1, λ2)

where the weak convergence follows from (A.2) and the CMT. The limit for sPSY
then follows from a further application of the CMT and the proof of the theorem is
complete.

Proof of Theorem 4

Define D(λ1, λ2) = T−1/2sDF ∗(λ1, λ2). Clearly arg maxλ1∈[0,1−π] λ2∈[λ1+π,1]D(λ1, λ2) =
arg maxλ1∈[0,1−π] λ2∈[λ1+π,1] sDF

∗(λ1, λ2) for any T . It will be shown that D(λ1, λ2) has
a non-explosive limit and its maximiser is (τ 1, τ 2).
Lemma 5 shows that

D(λ1, λ2)
p→ D(λ1, λ2)

uniformly in 0 < λ1 < λ2 < 1, where D(λ1, λ2) is defined in the lemma. It is also
straightforward to verify that

(τ 1, τ 2) = arg max
λ1∈[0,1−π] λ2∈[λ1+π,1]

D(λ1, λ2)

which is the unique maximiser of the D(λ1, λ2) function in the considered domain.
That is, the coordinate (τ 1, τ 2) defined by the true bubble start and end time consists
of a unique maximiser of the function D(λ1, λ2) in the domain [0, 1 − π] × [λ1 + π, 1].
Applying the Argmax Theorem (e.g. Theorem 5.7 of Van der Vaart (1998)), we thus
have the result that the maximiser (τ̂ 1, τ̂ 2) of the dating statistic D(λ1, λ2) converges
in probability to the maximiser (τ 1, τ 2) of its probability limit D(λ1, λ2), i.e.

(τ̂ 1, τ̂ 2)
p→ (τ 1, τ 2).

Appendix B: Lemmas

Lemmas in this section are for the proof of Theorem 4 relating to consistency of the
sign-based dating strategy, hence the model we consider here is DGP 2 with the bubble
magnitude set to be δ1,T = c1T

−α, α ∈ (0, 1). Notice that in DGP 2, there is no mean-
reverting regime so essentially δ2,T = 0. In this section, we also assume the bubble is
upwards, implying that in large samples the signs of the increments in the explosive
regime are predominantly +1. However, this assumption is not necessary; in the case
of a downwards bubble, the signs of the increments in the explosive regime will be
predominantly −1, and the deterministic functions derived in Lemma 2 will be the
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negative of the results presented, while the results of the other lemmas and the main
results of Theorem 4 are unchanged.

Lemma 1

(a) When r 6 τ 1,

T−1/2ubrT c ⇒
∫ r

0

σ(h)dW (h).

(b) When τ 1 < r 6 τ 2,

T−1/2(1 + δ1,T )−(brT c−bτ1T c)ubrT c ⇒
∫ τ1

0

σ(h)dW (h).

(c) When r > τ 2,

T−1/2(1 + δ1,T )−(bτ2T c−bτ1T c)ubrT c ⇒
∫ τ1

0

σ(h)dW (h).

Proof of Lemma 1

Part (a) follows directly from the functional central limit theorem.
For (b), by repeated backward substitution for ubrT c up to ubτ1T c, we have

T−1/2(1 + δ1,T )−(brT c−bτ1T c)ubrT c

= T−1/2ubτ1T c + T−1/2(1 + δ1,T )−(brT c−bτ1T c)(εbrT c + . . .+ (1 + δ1,T )brT c−bτ1T c−1εbτ1T c+1).

Denote A := εbrT c + . . .+ (1 + δ1,T )brT c−bτ1T c−1εbτ1T c+1 =
∑brT c

i=bτ1T c+1(1 + δ1,T )brT c−iεi.
Notice that E(A) = 0 and

Var(A) =

brT c∑
i=bτ1T c+1

(1 + δ1,T )2(brT c−i)σ2i

6 C

brT c∑
i=bτ1T c+1

(1 + δ1,T )2(brT c−i)

= C
(1 + δ1,T )2(brT c−bτ1T c−1) − 1

(1 + δ1,T )2 − 1

= C
(1 + δ1,T )2(brT c−bτ1T c−1)

δ1,T
(1 + o(1))

= CTα(1 + δ1,T )2(brT c−bτ1T c−1)(1 + o(1))

where we have used the uniform boundedness of the variance function. Applying
Markov’s inequality we have A = Op(T

α/2(1 + δ1,T )(brT c−bτ1T c−1)). Thus

T−1/2(1 + δ1,T )−(brT c−bτ1T c)A = Op(T
(α−1)/2) = op(1).
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Also, notice that T−1/2ubτ1T c ⇒
∫ τ1
0
σ(h)dW (h) as τ 1 is in the unit root regime. In

total, we have when τ 1 < r 6 τ 2, T−1/2(1 + δ1,T )−(brT c−bτ1T c)ubrT c ⇒
∫ τ1
0
σ(h)dW (h).

For (c), by repeated backward substitution for ubrT c up to ubτ2T c, we have

ubrT c = ubτ2T c + (εbrT c + εbrT c−1 + . . .+ εbτ2T c+1).

Note that for the first term, τ 2 is in the mildly explosive regime so

T−1/2(1 + δ1,T )−(bτ2T c−bτ1T c)ubτ2T c ⇒
∫ τ1

0

σ(h)dW (h).

Applying the functional central limit theorem for the second term, we have

T−1/2(εbrT c + εbrT c−1 + . . .+ εbτ2T c+1)⇒
∫ 1

τ2

σ(h)dW (h).

Clearly, the first term dominates and we obtain

T−1/2(1 + δ1,T )−(brT c−bτ1T c)ubrT c ⇒
∫ τ1

0

σ(h)dW (h).

Lemma 2

(a) When r 6 τ 1,
T−1/2CbτT c ⇒ W s(r).

(b) When τ 1 < r 6 τ 2, uniformly in r,

T−1CbrT c − (r − τ 1) = op(1).

(c) When r > τ 2, uniformly in r,

T−1CbrT c − (τ 2 − τ 1) = op(1).

Proof of Lemma 2

Part (a) relates to a unit root regime, and the claimed weak convergence is known from
the proof of Theorem 2.
For (b), by definition

CbrT c =

bτ1T c∑
i=2

sign(εi) +

brT c∑
i=bτ1T c+1

sign
(
c1T

−αui−1 + εi
)
.
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The first term satisfies T−1/2
∑bτ1T c

i=2 sign(εi) ⇒ W s(τ 1), while for the second term,
notice that

1

T

brT c∑
i=bτ1T c+1

sign
(
c1T

−αui−1 + εi
)

=
1

T

brT c∑
i=bτ1T c+1

(
1− 2× 1

(
c1T

−αui−1 + εi 6 0
))

= (r − τ 1)− 2
1

T

brT c∑
i=bτ1T c+1

1
(
c1T

−αui−1 + εi 6 0
)

= (r − τ 1)− 2
1

T

 br∗T c∑
i=bτ1T c+1

1
(
c1T

−αui−1 + εi 6 0
)

+

brT c∑
i=br∗T c+1

1
(
c1T

−αui−1 + εi 6 0
)

where r∗ = τ 1 + a∗T−κ, and a∗, κ > 0 are constants. Here we decompose the sum of
indicators into two parts. The first part is a sum in a shrinking neighbourhood after
time bτ 1T c (with length of order T−κ). The first part will have at most br∗T c−bτ 1T c =
a∗T 1−κ terms of 1s, thus will be at most a∗T 1−κ, which is clearly of a smaller order
than T , uniformly in r. The remainder of the decomposition is the sum of all the terms
after time br∗T c. The same strategy used in proving Lemma 1(b) implies that for any
i > br∗T c+ 1, T−αui−1 = T 1/2−α(1 + δ1,T )a

∗T 1−κ . Choosing 0 < κ < 1, it follows easily
that T−αui−1 → +∞ as T → ∞ (given an upwards bubble without loss of generality,
as discussed in the beginning of Appendix B). Thus the second sum will be identically
zero in the limit, uniformly in r. Hence, uniformly in r,

1

T

brT c∑
i=bτ1T c+1

sign
(
c1T

−αui−1 + εi
)
− (r − τ 1) = op(1)

and the result follows trivially.
The result for (c) follows in the same way as for (b), since here

T−1CbrT c = T−1
bτ1T c∑
i=2

sign(εi)+T
−1

bτ2T c∑
i=bτ1T c+1

sign
(
c1T

−αui−1 + εi
)
+T−1

brT c∑
i=bτ2T c+1

sign(εi)

and notice that T−1/2
∑brT c

i=bτ2T c+1 sign(εi) ⇒ W s(r) − W s(τ 2), thus the final term is
asymptotically negligible, uniformly in r.

Lemma 3

(a) When r 6 τ 1,

1

T 2

brT c∑
t=2

C2t−1 ⇒
∫ r

0

(W s(r))2dr,

1

T

brT c∑
t=2

∆CtCt−1 ⇒
∫ r

0

W s(r)dW s(r).
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(b) When τ 1 < r 6 τ 2, uniformly in r,

T−3
brT c∑
t=2

C2t−1
p→ (r − τ 1)3/3,

T−2
brT c∑
t=2

∆CtCt−1
p→ (r − τ 1)2/2.

(c) When r > τ 2,uniformly in r,

T−3
brT c∑
t=2

C2t−1
p→ (τ 2 − τ 1)3/3 + (τ 2 − τ 1)2(r − τ 2),

T−2
brT c∑
t=2

∆CtCt−1
p→ (τ 2 − τ 1)2/2.

Proof of Lemma 3

Part (a) relates to a unit root regime, and the results are known from the proof of
Theorem 2.
For the first claimed result in (b), first notice that

T−3
brT c∑
t=2

C2t−1 = T−3
bτ1T c∑
t=2

C2t−1 + T−3
brT c∑

t=bτ1T c+1

C2t−1.

From the result of part (a), we have T−2
∑brT c

t=2 C
2
t−1 ⇒

∫ r
0

(W s(r))2dr when r 6 τ 1. It
thus follows easily T−3

∑bτ1T c
t=2 C2t−1 = op(1). The order also holds uniformly in r, since

this term clearly does not depend on r. For the second term, notice that

sup
τ1<r6τ2

∣∣∣∣∣∣T−3
brT c∑

t=bτ1T c+1

C2t−1 − (r − τ 1)3/3

∣∣∣∣∣∣
6 sup

τ1<r6τ2
T−3

∣∣∣∣∣∣
brT c∑

t=bτ1T c+1

C2t−1 −
brT c∑

t=bτ1T c+1

(t− 1− bτ 1T c)2
∣∣∣∣∣∣

+ sup
τ1<r6τ2

∣∣∣∣∣∣T−3
brT c∑

t=bτ1T c+1

(t− 1− bτ 1T c)2 − (r − τ 1)3/3

∣∣∣∣∣∣ . (A.4)
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Using the result of Lemma 2(b), the first term of (A.4) can be bounded as follows

sup
τ1<r6τ2

T−3

∣∣∣∣∣∣
brT c∑

t=bτ1T c+1

C2t−1 −
brT c∑

t=bτ1T c+1

(t− bτ 1T c)2
∣∣∣∣∣∣

6 sup
τ1<r6τ2

(
sup

bτ1T c+16t6brT c

∣∣∣∣∣T−2C2t−1 −
(
t− 1− bτ 1T c

T

)2∣∣∣∣∣
)T−1 brT c∑

t=bτ1T c+1

1


= op(1).

In the second term of (A.4), notice that T−3
∑brT c

t=bτ1T c+1(t − 1 − bτ 1T c)2 converges
to (r − τ 1)

3/3 as a deterministic sequence, for any τ 1 < r 6 τ 2. This pointwise
convergence is also uniform in τ 1 < r 6 τ 2, by noticing that the limiting function is
uniformly continuous. Thus in total we have

sup
τ1<r6τ2

∣∣∣∣∣∣T−3
brT c∑

t=bτ1T c+1

C2t−1 − (r − τ 1)3/3

∣∣∣∣∣∣ = op(1)

which further implies that supτ1<r6τ2

∣∣∣T−3∑brT ct=2 C
2
t−1 − (r − τ 1)3/3

∣∣∣ = op(1).

Next we show the second claimed result of part (b). First,

T−2
brT c∑
t=2

∆CtCt−1 = T−2
bτ1T c∑
t=2

∆CtCt−1 + T−2
brT c∑

t=bτ1T c+1

∆CtCt−1.

Again using the result of part (a), T−2
∑bτ1T c

t=2 ∆CtCt−1 = op(1) uniformly in r. For the
second term,

sup
τ1<r6τ2

∣∣∣∣∣∣T−2
brT c∑

t=bτ1T c+1

∆CtCt−1 − (τ 2 − τ 1)2/2

∣∣∣∣∣∣
6 sup

τ1<r6τ2
T−2

brT c∑
t=bτ1T c+1

|∆CtCt−1 − (t− 1− bτ 1T c)|

+ sup
τ1<r6τ2

∣∣∣∣∣∣T−2
brT c∑

t=bτ1T c+1

(t− 1− bτ 1T c)− (τ 2 − τ 1)2/2

∣∣∣∣∣∣
= sup

τ1<r6τ2
T−2

 br∗T c∑
t=bτ1T c+1

+

brT c∑
t=br∗T c+1

 |∆CtCt−1 − (t− 1− bτ 1T c)|

+ sup
τ1<r6τ2

∣∣∣∣∣∣T−2
brT c∑

t=bτ1T c+1

(t− 1− bτ 1T c)− (τ 2 − τ 1)2/2

∣∣∣∣∣∣
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where r∗ = τ 1 + a∗T−κ is chosen as in the proof of Lemma 2. In the decomposed
summation in the first term above, first consider the

∑br∗T c
t=bτ1T c+1 part. As argued

before, when t 6 br∗T c, ∆Ct is not always 1, even when T is large. But since the
sum of the terms has an order of at most T 1−κ, the contribution of the

∑br∗T c
t=bτ1T c+1 part

(when normalised by T−2) is op(1), uniformly in r. For the
∑brT c

i=br∗T c+1 part, notice that
when t > br∗T c, ∆Ct is identically 1 when T is large, and this part (when normalised)
can be bounded uniformly in r using Lemma 2(b), as follows

sup
τ1<r6τ2

T−2
brT c∑

t=br∗T c+1

|∆CtCt−1 − (t− 1− bτ 1T c)|

6 sup
τ1<r6τ2

(
sup

bτ1T c+16t6brT c

∣∣∣∣T−1Ct−1 − (t− 1− bτ 1T c)
T

∣∣∣∣
)T−1 brT c∑

t=br∗T c+1

1


= op(1).

Then using the same argument as for the first claim of part (b),∣∣∣∣∣∣T−2
brT c∑

t=bτ1T c+1

(t− 1− bτ 1T c)− (τ 2 − τ 1)2/2

∣∣∣∣∣∣ = o(1)

uniformly in r as a deterministic sequence. We have thus shown the second claimed
result of part (b).
For (c),

T−3
brT c∑
t=2

C2t−1 = T−3
bτ2T c∑
t=2

C2t−1 + T−3
brT c∑

t=bτ2T c+1

C2t−1.

The first term above has a limit (τ 2 − τ 1)3/3, uniformly in r using the result of part
(b). Using the same argument in proving (b), and the result of Lemma 2(c), the second
term above can be shown to have a limit (τ 2 − τ 1)2(r − τ 2), uniformly in r. In total,
we thus have

sup
r>τ2

∣∣∣∣∣∣T−3
brT c∑
t=2

C2t−1 − (τ 2 − τ 1)3/3 + (τ 2 − τ 1)2(r − τ 2)

∣∣∣∣∣∣ = op(1).

Finally,

T−2
brT c∑
t=2

∆CtCt−1

= T−2
bτ2T c∑
t=2

∆CtCt−1 + T−2
brT c∑

t=bτ2T c+1

∆CtCt−1
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where the first term has a limit (τ 2 − τ 1)2/2 uniformly in r by the result of part (b).
For the second term, notice that

sup
r>τ2

∣∣∣∣∣∣T−2
brT c∑

t=bτ2T c+1

∆CtCt−1 − T−1(τ 2 − τ 1)
brT c∑

t=bτ2T c+1

∆Ct

∣∣∣∣∣∣
6 sup

r>τ2

T−1
brT c∑

t=bτ2T c+1

|∆Ct|
∣∣T−1Ct−1 − (τ 2 − τ 1)

∣∣
6 sup

r>τ2

(
sup

bτ2T c+16t6brT c

∣∣T−1Ct−1 − (τ 2 − τ 1)
∣∣)T−1 brT c∑

t=bτ2T c+1

|∆Ct|


= op(1)

where we have used the results of Lemma 2(c) and the fact that T−1
∑brT c

t=bτ2T c+1 |∆Ct| =
Op(1), uniformly in r. In total, we have thus shown that

sup
r>τ2

∣∣∣∣∣∣T−2
brT c∑

t=bτ2T c+1

∆CtCt−1 − (τ 2 − τ 1)2/2

∣∣∣∣∣∣ = op(1).

Lemma 4

For the sub-sample variance estimator

ŝ2(0, r) = (brT c − 1)−1
brT c∑
t=2

(∆Ct − ρ̂(0, r)Ct−1)
2,

(a) When r 6 τ 1, uniformly in r, ŝ2(0, r)
p→ 1.

(b) When τ 1 < r 6 τ 2, uniformly in r,

ŝ2(0, r)
p→ 1− 3(r − τ 1)

4r
.

(c) When r > τ 2,uniformly in r,

ŝ2(0, r)
p→ 1− (τ 2 − τ 1)2

4(τ 2 − τ 1)r/3 + 4(r − τ 2)r
.

Proof of Lemma 4

As in the proof of Theorem 2, we have the following expansion:

ŝ2(0, r) = (brT c − 1)−1
brT c∑
t=2

(∆Ct)
2 − (brT c − 1)−1

(∑brT c
t=2 ∆CtCt−1

)2
∑brT c

t=2 C
2
t−1

. (A.5)
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First notice that in the first term of (A.5), uniformly for all 0 < r < 1,

(∆Ct)
2 = (sign(∆ut))

2.

By our definition of the sign function, (∆Ct)
2 = 1 identically and

(brT c − 1)−1
brT c∑
t=2

(∆Ct)
2 p→ 1.

So the difference in parts (a), (b) and (c) only lies in the second term of (A.5).
For part (a), from the proof of Theorem 2 it is clear that

(brT c − 1)−1

(∑brT c
t=2 ∆CtCt−1

)2
∑brT c

t=2 C
2
t−1

= op(1)

uniformly in r, using the weak convergence results.
For (b), first consider generic functions fT (x), f(x), gT (x), g(x) satisfying supx |fT (x)−

f(x)| = op(1) and supx |gT (x) − g(x)| = op(1). For functions defined as hT (x) :=
fT (x)gT (x) and h(x) := f(x)g(x),

sup
x
|hT (x)− h(x)| = sup

x
|fT (x)gT (x)− f(x)g(x)|

6 sup
x
|fT (x)gT (x)− fT (x)g(x) + fT (x)g(x)− f(x)g(x)|

6 sup
x
|fT (x)| |gT (x)− g(x)|+ sup

x
|g(x)| |fT (x)− f(x)|

6 sup
x
|fT (x)| sup

x
|gT (x)− g(x)|+ sup

x
|g(x)| sup

x
|fT (x)− f(x)|.

As long as supx |fT (x)| and supx |g(x)| are bounded (in probability), we have supx |hT (x)−
h(x)| = op(1). A similar argument could be applied to functions defined as the divi-
sion of uniformly converging functions (provided that the involved operations are well
defined). In our context, since all the convergence results we consider are over a
bounded interval of r, the boundedness requirement is easily satisfied. Now, applying
the uniform convergence result of Lemma 3(b), and the obvious uniform convergence
of T (brT c − 1)−1 to 1/r over the considered domain of r, we have

(brT c − 1)−1

(∑brT c
t=2 ∆CtCt−1

)2
∑brT c

t=2 C
2
t−1

= T (brT c − 1)−1

(
T−2

∑brT c
t=2 ∆CtCt−1

)2
T−3

∑brT c
t=2 C

2
t−1

p→ 3(r − τ 1)
4r

uniformly in r.
For (c), using the results of Lemma 3(c) and the argument in proving part (b), we

have

(brT c − 1)−1

(∑brT c
t=2 ∆CtCt−1

)2
∑brT c

t=2 C
2
t−1

= T (brT c − 1)−1

(
T−2

∑brT c
t=2 ∆CtCt−1

)2
T−3

∑brT c
t=2 C

2
t−1

p→ (τ 2 − τ 1)2
4(τ 2 − τ 1)r/3 + 4(r − τ 2)r
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uniformly in r.
The claimed results of the lemma then follow easily.

Lemma 5

Under the mildly explosive alternative, uniformly for 0 < r < s < 1,

D(r, s)
p→ D(r, s)

where

D(r, s) =
D1(r, s)√

(D3(r, s))εD2(r, s)
with

D1(r, s) :=



0 π < r < s 6 τ 1
(s− τ 1)2/2 π < r 6 τ 1 < s 6 τ 2
(τ 2 − τ 1)2/2 π < r 6 τ 1 < τ 2 < s < 1
((s− τ 1)2 − (r − τ 1)2)/2 τ 1 < r < s 6 τ 2
((τ 2 − τ 1)2 − (r − τ 1)2)/2 τ 1 < r 6 τ 2 < s < 1
0 τ 2 < r < s < 1

,

D2(r, s) :=



0 π < r < s 6 τ 1
(s− τ 1)3/3 π < r 6 τ 1 < s 6 τ 2
(τ 2 − τ 1)3/3 + (τ 2 − τ 1)2(s− τ 2) π < r 6 τ 1 < τ 2 < s < 1
((s− τ 1)3 − (r − τ 1)3)/3 τ 1 < r < s 6 τ 2
(τ 2 − τ 1)3/3 + (τ 2 − τ 1)2(s− τ 2)− (r − τ 1)3/3 τ 1 < r 6 τ 2 < s < 1
(τ 2 − τ 1)2(s− r) τ 2 < r < s < 1

,

D3(r, s) :=



1 π < r < s 6 τ 1
1− 3(s−τ1)

4(s−r) π < r 6 τ 1 < s 6 τ 2

1− (τ2−τ1)2
(4(τ2−τ1)/3+4(s−τ2))(s−r) π < r 6 τ 1 < τ 2 < s < 1

1/4 τ 1 < r < s 6 τ 2
1− (τ2−τ1)2

(4(τ2−τ1)/3+4(s−τ2))(s−r) + 3(r−τ1)
4(s−r) τ 1 < r 6 τ 2 < s < 1

1− (τ2−τ1)2
s−r

(
1

4(τ2−τ1)/3+4(s−τ2) −
1

4(τ2−τ1)/3+4(r−τ2)

)
τ 2 < r < s < 1

.

Proof of Lemma 5

The proof is straightforward using the results of Lemmas 3 and 4. To avoid repetition,
we derive the limit of D(r, s) when τ 1 < r 6 τ 2 < s < 1 as an example; the other cases
can be derived following the same strategy.
First consider generic functions fT (x), f(x) satisfying supx |fT (x)− f(x)| = op(1).

Functions defined as gT (x, y) := fT (x) − hT (y) and g(x, y) := f(x) − h(y) also satisfy
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supx,y |gT (x, y)− g(x, y)| = op(1) by simply noting the inequality

sup
x,y
|gT (x, y)− g(x, y)| = sup

x,y
|fT (x)− hT (y)− f(x) + h(y)|

6 sup
x,y
|fT (x)− f(x)|+ sup

x,y
|hT (y)− h(y)|

= sup
x
|fT (x)− f(x)|+ sup

y
|hT (y)− h(y)|.

That is, the uniform convergence property is preserved when multivariate functions are
defined using the difference of uniformly convergent univariate functions evaluated at
two points, as above.
Then

T−2
bsT c∑

t=brT c+1

∆CtCt−1 = T−2
bsT c∑
t=2

∆CtCt−1 − T−2
brT c∑
t=2

∆CtCt−1

p→ (τ 2 − τ 1)2/2− (r − τ 1)2/2

uniformly in τ 1 < r 6 τ 2 < s < 1, where we have used the fact that τ 1 < r 6 τ 2 and
τ 2 < s < 1, together with the results of Lemma 3(b) and 3(c). Similarly

T−3
bsT c∑

t=brT c+1

C2t−1 = T−3
bsT c∑
t=2

C2t−1 − T−3
brT c∑
t=2

C2t−1

p→ (τ 2 − τ 1)3/3 + (τ 2 − τ 1)2(s− τ 2)− (r − τ 1)3/3

uniformly in τ 1 < r 6 τ 2 < s < 1, where we again use the results of Lemma 3(b) and
3(c).
For the adjusted variance estimator s̃2(r, s), by definition

s̃2(r, s) =
bsT cŝ2(0, s)− brT cŝ2(0, r)

bsT c − brT c − 1

p→
s
(

1− (τ2−τ1)2
4(τ2−τ1)s/3+4(s−τ2)s

)
− r

(
1− 3(r−τ1)

4r

)
s− r

= 1− (τ 2 − τ 1)2
(4(τ 2 − τ 1)/3 + 4(s− τ 2))(s− r)

+
3(r − τ 1)
4(s− r)

uniformly in τ 1 < r 6 τ 2 < s < 1, where we have used the results of Lemma 4(b)
and 4(c), together with the fact that uniform convergence is preserved under defined
function multiplication/division, as discussed in the proof of Lemma 4. Thus when
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τ 1 < r 6 τ 2 < s < 1,

D(r, s) = T−1/2
∑bsT c

t=brT c+1 ∆CtCt−1√
(s̃2(r, s))ε

∑bsT c
t=brT c+1C

2
t−1

=
T−2

∑bsT c
t=brT c+1 ∆CtCt−1√

(s̃2(r, s))εT−3
∑bsT c

t=brT c+1C
2
t−1

p→ D1(r, s)√
(D3(r, s))εD2(r, s)

uniformly in τ 1 < r 6 τ 2 < s < 1, as in the claimed result.
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Table 1. Asymptotic and finite sample ξ-level critical values of sign-based tests.

sPSY sPWY

ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01

T = 100 4.381 5.578 13.056 2.470 2.859 3.656
T = 200 3.469 3.901 4.957 2.405 2.735 3.434
T = 400 3.213 3.547 4.231 2.430 2.776 3.408
T =∞ 2.933 3.180 3.655 2.410 2.734 3.248

s̄PSY s̄PWY

ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01

T = 100 3.898 4.558 9.566 2.478 2.804 3.461
T = 200 3.377 3.787 4.880 2.467 2.818 3.508
T = 400 3.201 3.551 4.091 2.407 2.734 3.466
T =∞ 2.969 3.211 3.624 2.349 2.664 3.112

T.1



Table 2. Asymptotic size of nominal 0.05-level tests: σ(s) = 1(0 ≤ s ≤ τσ1) + σ11(τσ1 < s ≤ τσ2) + 1(τσ2 < s ≤ 1).

τσ1 σ1 PSY PWY

Panel (a). τσ2 = 1

0.4 1 0.050 0.050
1/6 0.049 0.030
1/3 0.043 0.030
3 0.380 0.447
6 0.628 0.717

0.8 1 0.050 0.050
1/6 0.045 0.047
1/3 0.042 0.047
3 0.360 0.292
6 0.643 0.591

Panel (b). τσ2 = 0.7

0.1 1 0.050 0.050
1/6 0.658 0.203
1/3 0.367 0.133
3 0.245 0.421
6 0.438 0.621

0.5 1 0.050 0.050
1/6 0.538 0.045
1/3 0.302 0.044
3 0.339 0.344
6 0.609 0.618

T.2



Table 3(a). Asymptotic local powers of nominal 0.05-level tests: DGP 1, σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ 1).

τ1 σ1 c1 PSY sPSY uPSY s̄PSY ūPSY PSY0 PWY sPWY uPWY s̄PWY ūPWY PWY0

0.4 1 2 0.252 0.300 0.293 0.082 0.228 0.351 0.299 0.264 0.310 0.069 0.270 0.350
4 0.782 0.761 0.777 0.649 0.777 0.804 0.802 0.723 0.794 0.590 0.796 0.789
6 0.945 0.935 0.945 0.919 0.945 0.949 0.949 0.919 0.947 0.891 0.948 0.939
8 0.984 0.983 0.982 0.975 0.982 0.984 0.983 0.975 0.983 0.969 0.983 0.981

1/6 2 0.703 0.769 0.749 0.628 0.690 0.810 0.189 0.737 0.710 0.609 0.565 0.389
4 0.947 0.948 0.949 0.933 0.947 0.955 0.827 0.939 0.933 0.921 0.910 0.821
6 0.983 0.983 0.984 0.981 0.984 0.984 0.952 0.980 0.979 0.975 0.972 0.947
8 0.995 0.994 0.995 0.993 0.995 0.995 0.986 0.993 0.992 0.990 0.989 0.984

1/3 2 0.513 0.592 0.571 0.364 0.489 0.650 0.212 0.551 0.507 0.322 0.294 0.388
4 0.900 0.904 0.904 0.863 0.898 0.921 0.822 0.884 0.875 0.843 0.838 0.813
6 0.973 0.968 0.971 0.964 0.973 0.974 0.957 0.965 0.964 0.964 0.963 0.951
8 0.990 0.988 0.989 0.986 0.990 0.991 0.983 0.986 0.985 0.984 0.984 0.981

3 2 0.098 0.181 0.158 0.067 0.089 0.197 0.130 0.154 0.155 0.070 0.109 0.200
4 0.504 0.597 0.559 0.453 0.498 0.584 0.544 0.536 0.549 0.380 0.521 0.590
6 0.851 0.870 0.865 0.841 0.855 0.880 0.868 0.839 0.857 0.800 0.860 0.880
8 0.958 0.964 0.961 0.958 0.959 0.962 0.962 0.952 0.961 0.944 0.962 0.962

6 2 0.060 0.165 0.134 0.075 0.068 0.093 0.069 0.139 0.126 0.070 0.075 0.091
4 0.304 0.563 0.520 0.412 0.387 0.446 0.329 0.508 0.478 0.349 0.366 0.449
6 0.751 0.853 0.842 0.811 0.798 0.800 0.769 0.814 0.806 0.759 0.776 0.800
8 0.921 0.944 0.940 0.940 0.939 0.932 0.925 0.928 0.928 0.922 0.931 0.934

0.8 1 2 0.088 0.106 0.104 0.053 0.083 0.125 0.094 0.076 0.088 0.050 0.079 0.105
4 0.299 0.281 0.294 0.153 0.277 0.353 0.283 0.202 0.278 0.087 0.272 0.283
6 0.534 0.495 0.522 0.367 0.519 0.561 0.518 0.384 0.501 0.241 0.506 0.477
8 0.713 0.671 0.708 0.581 0.706 0.720 0.683 0.557 0.671 0.455 0.675 0.640

1/6 2 0.169 0.555 0.520 0.418 0.399 0.650 0.052 0.438 0.407 0.301 0.264 0.077
4 0.643 0.802 0.791 0.739 0.749 0.845 0.240 0.731 0.722 0.654 0.625 0.265
6 0.857 0.893 0.894 0.873 0.881 0.915 0.513 0.857 0.849 0.818 0.804 0.490
8 0.928 0.937 0.940 0.925 0.934 0.958 0.715 0.913 0.907 0.897 0.888 0.673

1/3 2 0.109 0.323 0.287 0.168 0.161 0.402 0.052 0.236 0.209 0.102 0.086 0.083
4 0.468 0.641 0.615 0.520 0.545 0.710 0.242 0.519 0.493 0.401 0.373 0.270
6 0.738 0.791 0.791 0.732 0.769 0.834 0.513 0.723 0.709 0.647 0.628 0.493
8 0.870 0.879 0.881 0.845 0.872 0.902 0.708 0.827 0.819 0.788 0.777 0.667

3 2 0.091 0.070 0.080 0.051 0.076 0.112 0.118 0.056 0.099 0.051 0.101 0.124
4 0.186 0.117 0.163 0.063 0.160 0.228 0.242 0.079 0.202 0.055 0.206 0.251
6 0.335 0.233 0.312 0.131 0.306 0.372 0.406 0.149 0.355 0.073 0.361 0.397
8 0.499 0.388 0.474 0.266 0.477 0.523 0.547 0.274 0.522 0.154 0.527 0.538

6 2 0.067 0.061 0.067 0.051 0.062 0.074 0.078 0.054 0.068 0.051 0.069 0.077
4 0.105 0.095 0.096 0.065 0.087 0.146 0.146 0.068 0.110 0.056 0.109 0.160
6 0.194 0.172 0.175 0.102 0.165 0.247 0.242 0.099 0.206 0.067 0.206 0.256
8 0.319 0.285 0.299 0.188 0.287 0.374 0.367 0.177 0.329 0.111 0.330 0.383
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Table 3(b). Asymptotic local powers of nominal 0.05-level tests: DGP 2, τ2 = 0.7,
σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ τ2) + 1(τ2 < s ≤ 1).

τ1 σ1 c1 PSY sPSY uPSY s̄PSY ūPSY PSY0 PWY sPWY uPWY s̄PWY ūPWY PWY0

0.1 1 2 0.149 0.236 0.215 0.340 0.373 0.264 0.187 0.204 0.231 0.192 0.270 0.313
4 0.651 0.665 0.674 0.638 0.740 0.710 0.695 0.627 0.685 0.550 0.717 0.719
6 0.920 0.913 0.924 0.890 0.929 0.928 0.928 0.894 0.925 0.863 0.930 0.923
8 0.980 0.979 0.982 0.981 0.986 0.980 0.979 0.976 0.980 0.972 0.982 0.978

1/6 2 0.024 0.635 0.590 0.641 0.609 0.525 0.035 0.603 0.578 0.548 0.520 0.369
4 0.699 0.921 0.910 0.895 0.886 0.891 0.694 0.896 0.896 0.871 0.863 0.826
6 0.945 0.981 0.977 0.974 0.973 0.981 0.938 0.975 0.974 0.970 0.969 0.958
8 0.988 0.994 0.993 0.993 0.992 0.993 0.986 0.991 0.991 0.990 0.990 0.989

1/3 2 0.045 0.435 0.375 0.504 0.486 0.413 0.054 0.394 0.362 0.359 0.348 0.373
4 0.673 0.847 0.826 0.810 0.800 0.843 0.718 0.816 0.808 0.773 0.781 0.819
6 0.922 0.955 0.949 0.950 0.943 0.956 0.939 0.940 0.944 0.935 0.943 0.946
8 0.985 0.990 0.990 0.987 0.989 0.991 0.986 0.984 0.986 0.982 0.986 0.986

3 2 0.065 0.197 0.149 0.262 0.251 0.138 0.065 0.169 0.141 0.133 0.135 0.132
4 0.398 0.584 0.538 0.542 0.555 0.548 0.403 0.539 0.508 0.464 0.491 0.534
6 0.812 0.869 0.850 0.855 0.855 0.849 0.812 0.833 0.835 0.814 0.833 0.839
8 0.955 0.967 0.962 0.965 0.967 0.960 0.956 0.955 0.958 0.950 0.960 0.957

6 2 0.051 0.191 0.131 0.247 0.221 0.073 0.052 0.161 0.131 0.127 0.115 0.073
4 0.222 0.590 0.527 0.533 0.480 0.438 0.228 0.530 0.496 0.450 0.404 0.437
6 0.745 0.866 0.847 0.859 0.834 0.806 0.745 0.831 0.818 0.814 0.799 0.803
8 0.922 0.960 0.955 0.955 0.948 0.940 0.923 0.940 0.937 0.942 0.940 0.939

0.5 1 2 0.086 0.091 0.091 0.098 0.114 0.112 0.098 0.069 0.092 0.060 0.088 0.117
4 0.247 0.235 0.250 0.205 0.300 0.304 0.272 0.179 0.262 0.098 0.260 0.287
6 0.492 0.431 0.484 0.408 0.534 0.523 0.509 0.357 0.488 0.225 0.498 0.486
8 0.674 0.625 0.677 0.596 0.706 0.703 0.693 0.536 0.678 0.443 0.688 0.653

1/6 2 0.032 0.498 0.445 0.453 0.397 0.535 0.056 0.414 0.379 0.283 0.242 0.102
4 0.079 0.779 0.749 0.756 0.728 0.820 0.219 0.705 0.688 0.647 0.616 0.313
6 0.486 0.890 0.875 0.883 0.864 0.915 0.542 0.849 0.841 0.817 0.793 0.528
8 0.770 0.942 0.930 0.931 0.921 0.954 0.731 0.913 0.906 0.898 0.889 0.705

1/3 2 0.043 0.255 0.196 0.229 0.198 0.316 0.060 0.196 0.176 0.105 0.095 0.102
4 0.104 0.573 0.531 0.544 0.498 0.649 0.231 0.493 0.472 0.377 0.356 0.311
6 0.438 0.768 0.738 0.748 0.723 0.825 0.537 0.692 0.683 0.636 0.624 0.532
8 0.724 0.876 0.862 0.862 0.842 0.899 0.725 0.827 0.822 0.783 0.784 0.701

3 2 0.076 0.061 0.080 0.064 0.082 0.089 0.086 0.053 0.081 0.052 0.081 0.093
4 0.132 0.112 0.131 0.107 0.149 0.171 0.154 0.080 0.135 0.062 0.138 0.173
6 0.238 0.207 0.234 0.185 0.267 0.294 0.288 0.147 0.252 0.091 0.263 0.306
8 0.396 0.343 0.396 0.290 0.430 0.446 0.448 0.268 0.407 0.169 0.418 0.458

6 2 0.059 0.058 0.060 0.060 0.064 0.073 0.069 0.052 0.060 0.051 0.059 0.076
4 0.084 0.092 0.085 0.086 0.090 0.110 0.103 0.068 0.081 0.058 0.081 0.121
6 0.131 0.164 0.143 0.141 0.147 0.185 0.162 0.111 0.134 0.078 0.127 0.195
8 0.224 0.264 0.235 0.236 0.242 0.302 0.267 0.190 0.231 0.125 0.225 0.311
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Table 3(c). Asymptotic local powers of nominal 0.05-level tests: DGP 4, τ2 = 0.7, τ3 = 0.8,
σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ τ3) + 1(τ3 < s ≤ 1).

τ1 σ1 c1 PSY sPSY uPSY s̄PSY ūPSY PSY0 PWY sPWY uPWY s̄PWY ūPWY PWY0

0.1 1 2 0.160 0.225 0.208 0.090 0.153 0.249 0.176 0.210 0.227 0.055 0.160 0.294
4 0.659 0.645 0.658 0.461 0.642 0.695 0.681 0.628 0.675 0.383 0.664 0.695
6 0.919 0.906 0.915 0.856 0.912 0.923 0.924 0.890 0.921 0.829 0.920 0.916
8 0.980 0.975 0.980 0.969 0.980 0.980 0.979 0.974 0.979 0.962 0.979 0.978

1/6 2 0.035 0.604 0.552 0.309 0.241 0.501 0.021 0.598 0.563 0.219 0.171 0.302
4 0.698 0.906 0.890 0.848 0.829 0.884 0.654 0.895 0.889 0.830 0.817 0.791
6 0.940 0.978 0.972 0.966 0.963 0.973 0.927 0.972 0.971 0.962 0.959 0.944
8 0.986 0.993 0.991 0.990 0.989 0.992 0.980 0.990 0.990 0.988 0.988 0.984

1/3 2 0.060 0.405 0.344 0.165 0.121 0.382 0.028 0.395 0.346 0.072 0.058 0.323
4 0.675 0.824 0.806 0.715 0.699 0.822 0.697 0.811 0.795 0.683 0.691 0.783
6 0.926 0.947 0.943 0.934 0.927 0.953 0.932 0.938 0.939 0.923 0.929 0.936
8 0.983 0.989 0.988 0.984 0.984 0.990 0.983 0.985 0.983 0.978 0.981 0.982

3 2 0.065 0.180 0.140 0.074 0.075 0.140 0.066 0.171 0.143 0.059 0.076 0.133
4 0.400 0.564 0.518 0.378 0.414 0.548 0.403 0.537 0.508 0.311 0.394 0.534
6 0.814 0.856 0.839 0.802 0.819 0.849 0.813 0.833 0.835 0.769 0.813 0.839
8 0.956 0.964 0.960 0.951 0.957 0.960 0.956 0.954 0.957 0.942 0.955 0.957

6 2 0.051 0.175 0.117 0.070 0.064 0.073 0.052 0.163 0.134 0.060 0.064 0.073
4 0.222 0.563 0.501 0.373 0.316 0.439 0.229 0.531 0.498 0.309 0.283 0.437
6 0.745 0.850 0.832 0.809 0.781 0.806 0.745 0.828 0.816 0.768 0.765 0.803
8 0.922 0.955 0.950 0.943 0.937 0.940 0.923 0.939 0.936 0.930 0.934 0.939

0.5 1 2 0.085 0.089 0.090 0.055 0.082 0.101 0.085 0.072 0.087 0.051 0.075 0.099
4 0.250 0.229 0.249 0.115 0.236 0.280 0.241 0.184 0.235 0.074 0.221 0.258
6 0.492 0.420 0.476 0.307 0.467 0.503 0.482 0.358 0.471 0.190 0.469 0.460
8 0.675 0.618 0.665 0.526 0.663 0.685 0.669 0.537 0.657 0.401 0.657 0.625

1/6 2 0.058 0.485 0.444 0.342 0.290 0.512 0.050 0.417 0.380 0.231 0.200 0.069
4 0.290 0.766 0.745 0.703 0.677 0.795 0.169 0.706 0.686 0.617 0.584 0.245
6 0.574 0.882 0.872 0.859 0.843 0.898 0.478 0.848 0.840 0.801 0.780 0.468
8 0.765 0.937 0.926 0.916 0.908 0.942 0.683 0.912 0.906 0.890 0.883 0.665

1/3 2 0.060 0.250 0.211 0.122 0.104 0.289 0.051 0.200 0.175 0.075 0.067 0.070
4 0.235 0.559 0.531 0.452 0.416 0.616 0.184 0.494 0.466 0.328 0.299 0.247
6 0.518 0.755 0.735 0.700 0.677 0.803 0.475 0.694 0.675 0.606 0.586 0.476
8 0.729 0.865 0.852 0.833 0.818 0.883 0.682 0.826 0.814 0.767 0.754 0.662

3 2 0.076 0.063 0.075 0.053 0.074 0.087 0.080 0.055 0.080 0.049 0.077 0.094
4 0.132 0.110 0.129 0.070 0.121 0.166 0.147 0.081 0.134 0.055 0.133 0.173
6 0.238 0.201 0.228 0.125 0.225 0.290 0.277 0.147 0.248 0.079 0.248 0.304
8 0.398 0.335 0.386 0.223 0.386 0.439 0.434 0.268 0.402 0.149 0.404 0.454

6 2 0.059 0.058 0.059 0.053 0.059 0.073 0.070 0.053 0.060 0.048 0.059 0.074
4 0.085 0.091 0.082 0.066 0.078 0.110 0.103 0.069 0.084 0.053 0.081 0.117
6 0.132 0.159 0.138 0.099 0.122 0.187 0.162 0.113 0.136 0.069 0.125 0.191
8 0.224 0.255 0.230 0.187 0.209 0.301 0.268 0.193 0.232 0.113 0.222 0.307
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Table 4. Finite sample empirical size of nominal 0.05-level tests: T = 100,
σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ τ2) + 1(τ2 < s ≤ 1).

τ1 σ1 PSY sPSY uPSY s̄PSY ūPSY PWY sPWY uPWY s̄PWY ūPWY

Panel (a). τ2 = 1

0.4 1 0.007 0.059 0.042 0.047 0.030 0.028 0.054 0.039 0.047 0.036
1/6 0.006 0.059 0.043 0.047 0.029 0.026 0.054 0.035 0.047 0.035
1/3 0.006 0.059 0.043 0.047 0.030 0.026 0.054 0.035 0.047 0.035
3 0.026 0.059 0.046 0.047 0.036 0.066 0.054 0.059 0.047 0.060
6 0.045 0.059 0.054 0.047 0.043 0.073 0.054 0.066 0.047 0.068

0.8 1 0.007 0.059 0.042 0.047 0.030 0.028 0.054 0.039 0.047 0.036
1/6 0.009 0.059 0.043 0.047 0.029 0.026 0.054 0.036 0.047 0.034
1/3 0.009 0.059 0.043 0.047 0.029 0.026 0.054 0.036 0.047 0.034
3 0.036 0.059 0.049 0.047 0.037 0.066 0.054 0.069 0.047 0.070
6 0.060 0.059 0.057 0.047 0.049 0.078 0.054 0.076 0.047 0.074

Panel (b). τ2 = 0.7

0.1 1 0.007 0.059 0.042 0.047 0.030 0.028 0.054 0.039 0.047 0.036
1/6 0.051 0.059 0.052 0.047 0.045 0.056 0.054 0.057 0.047 0.057
1/3 0.030 0.059 0.045 0.047 0.036 0.058 0.054 0.062 0.047 0.059
3 0.018 0.059 0.045 0.047 0.032 0.047 0.054 0.041 0.047 0.045
6 0.032 0.059 0.044 0.047 0.035 0.046 0.054 0.042 0.047 0.042

0.5 1 0.007 0.059 0.042 0.047 0.030 0.028 0.054 0.039 0.047 0.036
1/6 0.032 0.059 0.045 0.047 0.036 0.025 0.054 0.037 0.047 0.035
1/3 0.021 0.059 0.042 0.047 0.030 0.026 0.054 0.039 0.047 0.035
3 0.029 0.059 0.045 0.047 0.036 0.056 0.054 0.057 0.047 0.056
6 0.043 0.059 0.051 0.047 0.038 0.077 0.054 0.067 0.047 0.068
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Table 5(a). Finite sample powers of nominal 0.05-level tests: T = 100, DGP 1,
σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ 1).

τ1 σ1 c1 PSY sPSY uPSY s̄PSY ūPSY PWY sPWY uPWY s̄PWY ūPWY

0.4 1 2 0.055 0.233 0.172 0.137 0.124 0.207 0.233 0.220 0.052 0.178
4 0.644 0.704 0.683 0.648 0.656 0.766 0.683 0.750 0.406 0.748
6 0.922 0.918 0.920 0.903 0.916 0.940 0.899 0.936 0.719 0.937
8 0.981 0.980 0.983 0.977 0.982 0.988 0.964 0.986 0.863 0.986

1/6 2 0.501 0.724 0.693 0.675 0.665 0.157 0.720 0.672 0.464 0.387
4 0.910 0.935 0.926 0.924 0.925 0.801 0.922 0.911 0.833 0.855
6 0.974 0.981 0.979 0.978 0.978 0.943 0.974 0.968 0.909 0.952
8 0.994 0.994 0.994 0.993 0.994 0.981 0.991 0.988 0.942 0.988

1/3 2 0.228 0.539 0.476 0.433 0.410 0.170 0.538 0.465 0.183 0.183
4 0.833 0.880 0.864 0.857 0.857 0.809 0.862 0.846 0.706 0.810
6 0.964 0.968 0.966 0.964 0.963 0.950 0.960 0.959 0.870 0.950
8 0.992 0.992 0.992 0.990 0.992 0.988 0.985 0.990 0.920 0.988

3 2 0.072 0.148 0.111 0.102 0.093 0.171 0.138 0.151 0.059 0.134
4 0.458 0.532 0.497 0.447 0.463 0.571 0.497 0.544 0.228 0.533
6 0.831 0.837 0.836 0.804 0.828 0.867 0.791 0.857 0.571 0.857
8 0.954 0.953 0.954 0.941 0.953 0.960 0.921 0.958 0.766 0.958

6 2 0.075 0.139 0.110 0.100 0.096 0.132 0.124 0.131 0.063 0.114
4 0.338 0.488 0.438 0.411 0.404 0.438 0.451 0.453 0.226 0.399
6 0.754 0.799 0.788 0.758 0.773 0.794 0.755 0.785 0.545 0.781
8 0.926 0.931 0.930 0.915 0.927 0.936 0.897 0.932 0.728 0.935

0.8 1 2 0.015 0.095 0.069 0.059 0.043 0.060 0.078 0.070 0.052 0.062
4 0.097 0.227 0.181 0.137 0.132 0.209 0.146 0.196 0.064 0.191
6 0.327 0.412 0.385 0.294 0.335 0.439 0.263 0.415 0.094 0.417
8 0.555 0.574 0.566 0.440 0.542 0.623 0.362 0.606 0.124 0.609

1/6 2 0.074 0.495 0.448 0.365 0.340 0.029 0.337 0.252 0.111 0.068
4 0.463 0.756 0.728 0.618 0.646 0.183 0.547 0.449 0.200 0.225
6 0.758 0.858 0.845 0.718 0.818 0.457 0.630 0.587 0.231 0.484
8 0.875 0.909 0.900 0.759 0.892 0.661 0.675 0.716 0.258 0.673

1/3 2 0.024 0.261 0.205 0.155 0.129 0.032 0.172 0.121 0.066 0.042
4 0.232 0.566 0.528 0.436 0.429 0.185 0.389 0.313 0.129 0.184
6 0.582 0.737 0.711 0.595 0.650 0.459 0.516 0.507 0.185 0.457
8 0.760 0.829 0.821 0.688 0.797 0.659 0.595 0.680 0.220 0.658

3 2 0.061 0.071 0.062 0.052 0.052 0.124 0.059 0.107 0.049 0.110
4 0.121 0.106 0.109 0.070 0.097 0.217 0.079 0.193 0.051 0.195
6 0.230 0.171 0.197 0.106 0.191 0.351 0.117 0.317 0.059 0.318
8 0.393 0.270 0.339 0.189 0.336 0.493 0.168 0.467 0.076 0.469

6 2 0.081 0.066 0.070 0.050 0.060 0.121 0.056 0.107 0.049 0.102
4 0.122 0.086 0.091 0.061 0.092 0.178 0.067 0.152 0.050 0.158
6 0.186 0.125 0.150 0.087 0.141 0.263 0.087 0.224 0.053 0.219
8 0.292 0.189 0.231 0.135 0.222 0.389 0.121 0.333 0.064 0.335
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Table 5(b). Finite sample powers of nominal 0.05-level tests: T = 100, DGP 2, τ2 = 0.7,
σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ τ2) + 1(τ2 < s ≤ 1).

τ1 σ1 c1 PSY sPSY uPSY s̄PSY ūPSY PWY sPWY uPWY s̄PWY ūPWY

0.1 1 2 0.015 0.168 0.125 0.092 0.076 0.110 0.200 0.160 0.045 0.084
4 0.429 0.583 0.532 0.489 0.495 0.610 0.596 0.607 0.154 0.579
6 0.831 0.863 0.849 0.827 0.839 0.887 0.851 0.879 0.458 0.878
8 0.945 0.951 0.951 0.943 0.948 0.967 0.945 0.962 0.657 0.963

1/6 2 0.153 0.540 0.483 0.413 0.398 0.051 0.576 0.520 0.083 0.067
4 0.788 0.875 0.856 0.847 0.844 0.717 0.869 0.857 0.487 0.713
6 0.951 0.968 0.966 0.960 0.964 0.929 0.962 0.959 0.698 0.928
8 0.986 0.988 0.987 0.987 0.987 0.978 0.984 0.984 0.767 0.978

1/3 2 0.069 0.322 0.268 0.191 0.174 0.070 0.365 0.313 0.048 0.064
4 0.678 0.768 0.749 0.720 0.725 0.722 0.780 0.765 0.298 0.689
6 0.909 0.929 0.924 0.917 0.919 0.927 0.924 0.926 0.606 0.918
8 0.978 0.978 0.979 0.973 0.975 0.980 0.974 0.978 0.735 0.978

3 2 0.028 0.144 0.104 0.096 0.083 0.081 0.168 0.125 0.054 0.065
4 0.282 0.501 0.442 0.397 0.391 0.414 0.519 0.477 0.157 0.367
6 0.750 0.819 0.802 0.777 0.786 0.803 0.799 0.805 0.436 0.781
8 0.923 0.932 0.927 0.916 0.924 0.939 0.918 0.934 0.633 0.933

6 2 0.037 0.139 0.102 0.097 0.087 0.057 0.162 0.114 0.056 0.054
4 0.211 0.489 0.425 0.392 0.378 0.283 0.506 0.433 0.164 0.248
6 0.710 0.804 0.787 0.761 0.762 0.745 0.786 0.778 0.446 0.726
8 0.909 0.931 0.925 0.916 0.920 0.915 0.919 0.919 0.649 0.909

0.5 1 2 0.011 0.089 0.060 0.057 0.042 0.059 0.083 0.065 0.045 0.050
4 0.056 0.193 0.155 0.115 0.107 0.183 0.168 0.178 0.051 0.155
6 0.237 0.363 0.322 0.250 0.273 0.411 0.302 0.393 0.083 0.378
8 0.493 0.555 0.537 0.415 0.495 0.626 0.441 0.603 0.139 0.603

1/6 2 0.071 0.439 0.396 0.316 0.296 0.032 0.368 0.290 0.102 0.059
4 0.385 0.740 0.710 0.619 0.633 0.161 0.648 0.564 0.230 0.204
6 0.704 0.841 0.830 0.743 0.800 0.463 0.754 0.706 0.290 0.478
8 0.844 0.899 0.894 0.806 0.879 0.665 0.810 0.793 0.320 0.681

1/3 2 0.032 0.218 0.178 0.127 0.113 0.033 0.191 0.134 0.051 0.036
4 0.178 0.526 0.483 0.403 0.390 0.160 0.439 0.358 0.134 0.158
6 0.512 0.718 0.697 0.601 0.632 0.462 0.627 0.579 0.212 0.450
8 0.724 0.813 0.797 0.705 0.774 0.654 0.710 0.710 0.266 0.651

3 2 0.045 0.071 0.058 0.052 0.045 0.106 0.067 0.087 0.047 0.088
4 0.089 0.100 0.089 0.071 0.079 0.186 0.087 0.155 0.051 0.156
6 0.175 0.163 0.159 0.111 0.144 0.304 0.136 0.262 0.058 0.260
8 0.316 0.278 0.288 0.194 0.270 0.440 0.214 0.392 0.078 0.392

6 2 0.068 0.067 0.060 0.053 0.051 0.105 0.065 0.085 0.049 0.086
4 0.100 0.090 0.081 0.068 0.072 0.156 0.075 0.125 0.051 0.126
6 0.149 0.130 0.129 0.101 0.120 0.230 0.110 0.189 0.061 0.192
8 0.242 0.206 0.214 0.160 0.208 0.335 0.158 0.289 0.080 0.290
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Table 6. Finite sample empirical size and powers of nominal 0.05-level tests: T = 100, DGP 1,
σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ 1).

µ = 0 µ = 10 µ = 20 µ = 50

τ1 σ1 c1 PSY0 PWY0 PSY0 PWY0 PSY0 PWY0 PSY0 PWY0

0.4 1 0 0.101 0.053 0.109 0.044 0.115 0.047 0.128 0.049
2 0.367 0.311 0.334 0.217 0.294 0.172 0.239 0.161
4 0.800 0.773 0.781 0.701 0.739 0.581 0.577 0.373
6 0.945 0.937 0.940 0.904 0.923 0.847 0.836 0.676
8 0.990 0.985 0.984 0.974 0.977 0.954 0.942 0.858

1/6 0 0.118 0.055 0.124 0.051 0.135 0.053 0.145 0.054
2 0.823 0.382 0.685 0.276 0.532 0.227 0.416 0.220
4 0.955 0.804 0.888 0.707 0.803 0.588 0.610 0.400
6 0.988 0.936 0.958 0.894 0.923 0.827 0.824 0.639
8 0.996 0.979 0.983 0.963 0.971 0.934 0.929 0.837

1/3 0 0.113 0.055 0.123 0.053 0.134 0.055 0.147 0.056
2 0.676 0.377 0.588 0.267 0.456 0.221 0.351 0.216
4 0.913 0.810 0.864 0.710 0.786 0.593 0.591 0.396
6 0.979 0.947 0.958 0.900 0.926 0.836 0.820 0.645
8 0.996 0.986 0.987 0.967 0.974 0.937 0.929 0.837

3 0 0.088 0.070 0.081 0.032 0.073 0.021 0.070 0.014
2 0.231 0.227 0.191 0.148 0.172 0.108 0.141 0.072
4 0.625 0.613 0.611 0.577 0.596 0.521 0.529 0.361
6 0.881 0.874 0.877 0.861 0.866 0.835 0.833 0.723
8 0.964 0.959 0.963 0.956 0.960 0.947 0.949 0.903

6 0 0.086 0.077 0.044 0.024 0.033 0.009 0.033 0.004
2 0.180 0.179 0.126 0.106 0.111 0.079 0.091 0.044
4 0.534 0.521 0.509 0.490 0.494 0.469 0.464 0.383
6 0.825 0.825 0.823 0.815 0.818 0.802 0.801 0.739
8 0.947 0.946 0.946 0.942 0.944 0.935 0.933 0.906

0.8 1 0 0.101 0.053 0.109 0.044 0.115 0.047 0.128 0.049
2 0.174 0.098 0.164 0.073 0.152 0.068 0.152 0.067
4 0.352 0.244 0.319 0.162 0.267 0.126 0.232 0.115
6 0.549 0.438 0.508 0.314 0.424 0.214 0.316 0.182
8 0.708 0.601 0.653 0.471 0.555 0.320 0.384 0.254

1/6 0 0.102 0.051 0.113 0.044 0.126 0.047 0.132 0.049
2 0.635 0.083 0.506 0.064 0.367 0.064 0.341 0.069
4 0.841 0.247 0.666 0.162 0.499 0.134 0.428 0.125
6 0.916 0.467 0.761 0.336 0.608 0.223 0.469 0.201
8 0.951 0.640 0.818 0.503 0.673 0.341 0.481 0.273

1/3 0 0.102 0.051 0.114 0.045 0.125 0.047 0.134 0.049
2 0.411 0.085 0.355 0.065 0.269 0.067 0.251 0.069
4 0.695 0.248 0.581 0.163 0.436 0.131 0.367 0.122
6 0.826 0.465 0.708 0.331 0.564 0.221 0.427 0.194
8 0.895 0.637 0.792 0.502 0.648 0.335 0.461 0.273

3 0 0.099 0.081 0.096 0.044 0.086 0.029 0.081 0.022
2 0.139 0.132 0.125 0.079 0.100 0.047 0.090 0.032
4 0.216 0.223 0.179 0.145 0.130 0.087 0.108 0.055
6 0.325 0.356 0.278 0.246 0.208 0.163 0.149 0.104
8 0.472 0.500 0.412 0.389 0.337 0.260 0.231 0.161

6 0 0.091 0.086 0.070 0.037 0.042 0.012 0.034 0.005
2 0.128 0.128 0.095 0.065 0.054 0.026 0.040 0.008
4 0.184 0.183 0.141 0.117 0.086 0.059 0.050 0.018
6 0.268 0.284 0.205 0.193 0.133 0.112 0.077 0.044
8 0.383 0.402 0.320 0.319 0.231 0.209 0.123 0.091
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Table 7. Application to Bitcoin data: test values, bootstrap p-values, bubble start and end dates.

PSY sPSY s̄PSY uPSY b ūPSY b

3.203 5.515 4.758 5.515 4.758
(0.180) (0.019) (0.025) (0.033) (0.050)
[0.007]

start: 13/11/2017
end: 7/12/2017

start: 4/10/2017
end: 7/12/2017
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Figure 1. Bitcoin data: explosive regime start and end dates.
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