Title

Open versus arthroscopic repair of 1B ulnar-sided triangular fibrocartilage complex (TFCC) tears: a systematic review

Authors and affiliations

- V.I. Robba (first author)¹
- A.P.G. Fowler (second author)²
- A. Karantana (corresponding author)³
- D. Grindlay⁴
- T. Lindau (senior author)⁵
 - 1. GP Vocational Training Scheme, Nottingham University Hospital, City Campus, Nottingham, NG5 1PB.
 - 2. Upper Limb Unit, Wrightington Hospital, Wigan, WN6 9EP.
 - 3. Centre for Evidence Based Hand Surgery, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH.
 - 4. Centre for Evidence Based Hand Surgery, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH
 - 5. Pulvertaft Hand Unit, Derby Hospitals NHS Foundation Trust, Derby, DE22 3NE.

Corresponding author contact details:

alexia.karantana@nottingham.ac.uk

0044 (0) 1158231115

Centre for Evidence Based Hand Surgery, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

HAND

Open versus arthroscopic repair of 1B ulnar-sided triangular fibrocartilage complex (TFCC) tears: a systematic review

	HAND
Manuscript ID	HAND-18-0115.R1
Manuscript Type:	Review Articles
Keywords:	TFCC, IB tear, DRUJ instability, Arthroscopic, Open, Repair, Systematic Review
Abstract:	Background Peripheral 1B tears of the Triangular Fibrocartilage Complex (TFCC) can result in distal radio-ulnar joint (DRUJ) instability. Peripheral tears are amenable to both open and arthroscopic surgical repair. In the context of associated DRUJ instability; combined evidence supports successful outcomes for peripheral tear repair. Methods The aim of this systematic review (SR) was to compare the surgical treatment of 1B TFCC tears via arthroscopic versus open methods of repair. The primary outcome measure was restored DRUJ stability. The secondary outcome measures included patient-reported outcomes and clinical outcome measures. An electronic database search of Ovid Embase PubMed and the Cochrane Central Register of Controlled Trials (CENTRAL) was performed to cover a 20 year period. Two authors independently screened records for eligibility and extracted data. Results Only three studies met the strict inclusion criteria highlighting the poor evidence base for TFCC IB repairs. A "secondary analysis" group was developed with modified inclusion criteria which included a further seven studies for analysis. Pooled data from the primary and secondary analysis groups demonstrated that post-operative DRUJ stability was achieved following open repair in approximately 84.4% (76/90) of cases and following arthroscopic repair in approximately 86% (129/150). Conclusions This SR demonstrates a current lack of the high quality evidence required to draw firm conclusions on the merits of arthroscopic versus open repair of IB TFCC tears. On the basis of the limited available comparative literature, there is no evidence to suggest superiority of one technique over the other. (Level 3 evidence)

SCHOLARONE[™] Manuscripts

to per period

1	Title
2	Open versus arthroscopic repair of 1B ulnar-sided triangular fibrocartilage complex (TFCC) tears: a
3	systematic review
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
30 31	
71	

32 Abstract

33 Background

34 Peripheral 1B tears of the Triangular Fibrocartilage Complex (TFCC) can result in distal radio-ulnar

- 35 joint (DRUJ) instability. In the context of associated DRUJ instability; combined evidence supports
- 36 successful outcomes for peripheral tear repair.

37 Methods

38 The aim of this systematic review (SR) was to compare the surgical treatment of 1B TFCC tears via

39 arthroscopic versus open methods of repair. The primary outcome measure was restored DRUJ

40 stability. The secondary outcome measures included patient-reported outcomes and clinical

41 outcome measures. An electronic database search of Ovid Embase, PubMed and the Cochrane

42 Central Register of Controlled Trials (CENTRAL) was performed to cover a 20 year period. Two

43 authors independently screened records for eligibility and extracted data.

44 Results

Only three studies met the strict inclusion criteria highlighting the poor evidence base for TFCC IB repairs. Hence, a "secondary analysis" group was developed with modified inclusion criteria which included a further seven studies for analysis. Pooled data from the primary and secondary analysis groups demonstrated that post-operative DRUJ stability was achieved following open repair in 84% (76/90) of cases and in 86% (129/150) following arthroscopic repair.

50 Conclusions

This SR demonstrates a current lack of the high quality evidence required to draw firm conclusions on the merits of arthroscopic versus open repair of IB TFCC tears. There is no scientific evidence to suggest superiority of one technique over the other, albeit some surgeons and authors may express a strong personal view.

55 (Level 3 evidence)

56	INTRODUCTION
57	Triangular Fibro-Cartilage Complex (TFCC) tears are_a common cause of ulnar-sided wrist pain [1,
58	32]. They were originally described by Palmer [30] and categorised into two main types. Type 1
59	lesions are acute traumatic tears; sub-divided from 1A to 1D and usually involve mechanisms of
60	rotational stress with axial load-bearing from falling on an outstretched hand [34]. Traumatic Type
61	1 injuries occur more commonly at the periphery. Type 2 lesions are degenerative and central in
62	location with increasing secondary changes [36].
63	Palmer 1A is a central perforation tear to the TFCC disc. 1B, 1C and 1D tears are classed as
64	"peripheral" tears (Figure I). 1C tears lead to ulno-carpal instability, whereas 1B and 1D tears
65	lead to instability of the Distal Radio-Ulnar Joint (DRUJ). Palmer 1B tears involve an avulsion of the
66	ulnar foveal attachment of the TFCC, whereas Palmer 1D tears, which are rare [14], involve an
67	avulsion of the radial attachment. In Palmer 1B tears, injury to the distal limb does not itself lead
68	to DRUJ instability; however disruption to the proximal limb which inserts into the fovea will cause
69	instability [3, 40].
70	[Insert here: Figure I.]
71	Peripheral tears are amenable to surgical repair [1, 28] because the peripheral TFCC [8] is
72	vascular, as opposed to the central membranous portion [1].
73	In DRUJ instability, the evidence supports successful outcomes for peripheral repair/reattachment
74	[3, 5, 13, 38]. However, the key question of whether arthroscopic techniques are superior to open
75	repair remains unclear [2, 22]. A further controversy pertaining to the treatment of symptomatic
76	peripheral 1B tears is whether surgical repair is necessary in the context of a stable DRUJ. Several
77	studies support favourable outcomes in this setting [33, 42, 47, 48], supported by early papers
78	suturing the detached surface to the peripheral capsule rather than to the fovea [17, 42].
79	However, arthroscopic debridement without repair had comparable results to repair in this context

80 [11].

- 81 The main advantages of arthroscopic repair are superior visualisation of the TFCC and proposed
- 82 improved wrist function by avoiding further injury to surrounding soft tissue structures [9]. In
- 83 general, the arthroscopic techniques employed are either described as "inside-out" or "outside-in"

- 84 depending upon how the re-attachment is performed [12]. The perceived limitation of arthroscopic
- 85 repair of 1B tears is the inability to anatomically restore the foveal attachment [37, 42].
- 86 The aim of this systematic review (SR) is to compare the surgical treatment of 1B TFCC tears via
- 87 arthroscopic versus open methods of repair.
- 88
- 89

MATERIALS AND METHODS

90 Literature search

- 91 An electronic database search of Ovid Embase, PubMed and the Cochrane Central Register of
- 92 Controlled Trials (CENTRAL) was performed in April 2017. Studies published between the 1st
- January 1997 and the 31st December 2016 were included, covering 20 years of research. The
- 94 search terms were developed with the help of an information analyst (D.G) to include the key
- 95 concepts of TFCC, DRUJ instability and ulnar avulsion (Supplementary material 1).
- 96 Additional articles were sourced by manually checking reference lists of articles identified via the
- 97 search. Studies other than in English or Spanish were excluded. The review protocol is registered
- 98 on the international prospective register of systematic reviews (PROSPERO). ID:
- 99 CRD42017033327 available via
- 100 <u>http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017033327</u>. Preferred
- 101 Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed
- 102 [24]. The selection process is demonstrated in the study PRISMA flowchart (Figure II).
- 103

104 Inclusion and exclusion criteria

- 105 The inclusion and exclusion criteria used to assess the full-text articles for eligibility are
- 106 summarised below:
- 107 Inclusion criteria:
- Studies of patients suffering 1B TFCC tears treated via arthroscopic or open surgical repair
- 109 Age 18 to 65 years
- Reporting the pre-operative and post-operative DRUJ stability status

Page 6 of 57

HAND

111	•	Reporting at least one patient-reported outcome measure or clinical outcome measure
112	•	Minimum follow-up 12 months
113	•	Randomised controlled trials, cohort studies, case-control studies, case series
114		
115	Exclusio	on criteria:
116	•	Central TFCC tears
117	•	Peripheral tears other than type 1B
118	•	Associated injuries
119	•	Studies including surgical procedures in addition to repair of the TFCC
120	•	Studies published prior to 01/01/1997 or after 31/12/2016
121	•	Abstract only publications
122	•	Case reports, editorials, letters, cadaveric studies and review articles
123	•	Full text study reports other than in English or Spanish
124		
125		
126	Outcor	ne measures
127	The priv	mary outcome measure was restored stability of the DRUJ at a minimum post-operative
128		up period of 12 months. The secondary outcome measures included patient-reported
129		es and clinical outcome measures. The patient-reported outcomes were the Modified Mayo
130		core (MMWS), the Disabilities of the Arm, Shoulder, and Hand (DASH), the Patient Rated
131		valuation (PRWE) score and the Visual Analogue Score (VAS). Clinical measures reviewed
132		ip strength, range of movement (ROM) and treatment complications.
	-	
133	Data m	nanagement and quality assessment
134	Two au	thors (VR, AF) independently screened records for eligibility and extracted data. Quality
135	assessr	nent of studies was performed using the Joanna Briggs Institute critical appraisal tool
136	checklis	st for case series studies [25] (supplementary tables II & III). Disagreements were
137	reviewe	ed by the senior authors (TL, AK).

138

139	
140	RESULTS
141	The results of the search and selection process are presented in a PRISMA flowchart [24] (Fig. II).
142	[Insert here: Figure II.]
143	
144	Three studies fully met all the strict pre-defined inclusion criteria for this review [7, 18, 20]. There
145	were no comparative studies (RCTs, cohorts or case series). The three included studies were case
146	series exclusively of arthroscopic results. These studies were entered into the "primary analysis
147	group" (Table I).
148	[Insert here: Table I. Primary analysis group (demographic details, follow up and outcome
149	measures)]
150	We further identified five studies [5, 19, 46, 47, 48], which would have met the inclusion criteria
151	bar the strict age range applied and/or reporting of certain follow-up parameters. Most
152	importantly, these five studies report the DRUJ stability status (primary outcome). We therefore
153	also present a separate post-hoc "secondary analysis group" of studies fulfilling the modified
154	inclusion criteria below:
155	
156	
157	
158	Modified inclusion criteria:
159	• Studies with a mixed age population (age range <18 or >65), if the mean age of
160	participants was within the 18 to 65 range.
161	• Studies where the minimum follow-up for some patients was less than 12 months,
162	provided that the mean study follow-up was at least 12 months.
163	

164 Two further studies were also entered into the "secondary analysis group" (Table II) [22, 29].

165 Nakamura et al, [29] did not report PROM or clinical measurement outcomes; however, it was

- 166 included because it met the modified inclusion criteria and included both arthroscopic and open
- techniques. Luchetti et al, [22] was also included, despite having patients with an associated injury
- 168 or additional interventional procedures, because it is the only published study where the design
- 169 was such that a direct comparison of arthroscopic versus open 1B repairs was reported.

170

171 [Insert here: Table II. Secondary analysis group (demographic details, follow up and outcome
172 measures]

173

- 174 A common reason for study exclusion in the primary analysis was that different TFCC tear sub-
- types were often grouped together in the analysis, [2, 10, 15, 31, 35, 38, 41]. Several studies
- 176 were excluded due to ambiguity regarding which of their subjects had associated injuries or
- 177 concurrent procedures [23, 26, 27, 39, 43, 44, 45]. However, for one study [29], we were able to

eren

178 | contact the senior author to clarify their methodology and include the study -in the "secondary

analysis group" (Table II).

1	00	
н	XU	

181 **Results in the primary analysis group**

182 These three studies only included arthroscopic repairs [7, 18, 20].

183 The 27 subjects included in Kim et al. [20] (n=15) and Iwasaki et al. [18] (n=12) had an 184 unstable DRUJ pre-operatively. In all 27 cases, DRUJ instability was restored at follow up 185 (Table I). In terms of secondary outcome measures, both studies showed an improvement 186 in DASH scores and grip strength post-operatively, however a statistically significant 187 difference for these outcomes was only reported in the smaller study (n=12; Iwasaki et al. 188 [18]). The latter also showed a statistically significant improvement post-operatively in VAS 189 scores, from 72.1 to 10 (p<0.0001). Kim et al. [20] demonstrated a significant 190 improvement in MAYO score from 64 to 84 (p=0.007), and overall, both studies reported an 191 "excellent" or "good" result in 24/27 cases and a "fair" or "poor" result in 3/27 cases for the 192 arthroscopic procedure (Table I). 193 The third study in the "primary analysis group" (Bayoumy et al. [7]; (n=37)) included 194 patients with ulnar-sided wrist pain, which worsened on grasping or ulnar deviation, but

195 without instability of the DRUJ pre-operatively. This suggests a distal 1B peripheral tear, not

a destabilising proximal 1B tear [3, 40]. Hence, the primary outcome measure of regained

197 stability could not be assessed, however the study showed statistically significant

198 improvements in the secondary outcome measurements; DASH, grip strength, VAS and

199 MAYO scores post-operatively (Table I).

200 Results in the secondary analysis group

Of the seven studies entered into the "secondary analysis group" (Table II), two studies included non-randomised comparisons of arthroscopic and open treatment of 1B TFCC tears (Nakamura et al. [29] (n=90) and Luchetti et al. [22] (n=49)). By combining data from these studies, open repair techniques restored DRUJ stability in 76/90 patients (84%) and arthroscopic repair in 41/49 cases (84%). The secondary outcome measures of interest were reported only by Luchetti et al. [22] with statistically significant improvements in DASH (p<0.001), VAS during activity (p<0.001) and PRWE (p<0.001).

The remaining five studies in the "secondary analysis group" (Table II) were case series of arthroscopic only repair of 1B tears [5, 19, 46, 47, 48]. Three studies included 74 patients who presented with DRUJ instability pre-operatively (Woo et al. [46] (12/12), Atzei et al. [5]

- 211 (48/48) and Jegal et al. [19] (14/19). In total, when combined with arthroscopic repairs in
- the above cohorts (Nakamura et al. [29] and Luchetti et al. [22]), 102/123 (83%) regained
- 213 DRUJ stability. In terms of secondary outcome measures, these authors reported an
- improvement (Table II). All patients presented by Wysocki et al. [47] (n=29) and Yao and
- Lee. [48] (n=12), had a stable DRUJ pre-operatively; which is similar to Bayoumi et al. [7]
- 216 (n=37) in the "primary analysis group" suggesting a distal 1B tear. There was limited data
- 217 available on secondary outcome scores for these studies.

218 Open versus arthroscopic treatment in relation to resolving DRUJ instability.

- 219 By pooling data from the primary and secondary analyses groups (Table III) the SR suggests
- that post-operative stability can be expected following open repair in 84% (76/90) of cases
- and following arthroscopic repair in 86% (129/150) of cases; i.e. comparable results.
- 222 [Insert here: Table III. Combined assessment of cases with DRUJ instability pre-
- 223 operatively for both primary and secondary analysis groups, comparing open and
- arthroscopic treatment.]
- 225

226 Complications

- 227 Documented complication rates were low and all complications were reported to resolve. The
- 228 two studies which assessed both arthroscopic and open techniques reported no complications
- 229 at all [22, 29] (Table II).
- 230

DISCUSSION

N.C.

- 231 The aim of this SR was to assess the merits of arthroscopic repair versus open repair for
- 232 peripheral 1B tears in the context of DRUJ instability. This SR demonstrates that the current
- 233 evidence for surgical management of peripheral 1B TFCC tears consists primarily of low level
- 234 studies (retrospective case series). Our overall evidence-based conclusion is that both
- techniques give similar good outcomes.

236 The study's predefined inclusion and exclusion criteria reflect what we felt should be the ideal 237 study population, aiming to eliminate confounding factors such as concomitant injuries and 238 other surgical procedures. An age range between 18 to 65 years covers the working age 239 population and excludes patients with skeletally immature wrists and older patients where 240 the presence of osteoporosis and co-existing arthritic changes is more likely [6]. Also, a 241 minimum follow up period of 12 months was deemed important to ensure outcomes for each 242 subject were assessed at a reasonable time post-operatively allowing maximum recovery. 243 Another important strength is that we only included studies that clearly defined whether the 244 TFCC tear had caused instability to the DRUJ, It is essential to know the "stability status" of 245 the DRUJ as instability entails a 1B peripheral tear to the proximal part of the TFCC making a 246 reattachment to the fovea of the ulnar head necessary [4], as opposed to a stable joint 247 where the distal part is torn and the need for repair remains questionable [11]. 248 In accordance with these strict pre-defined inclusion criteria, only three case series of 249 arthroscopic repair techniques were reported in our "primary analysis group" making any 250 comparison redundant. As described in the methods, we further identified seven studies 251 which marginally missed the inclusion criteria; our "secondary analysis group". Most 252 importantly, these seven studies did report the DRUJ stability status (primary outcome). We 253 felt that not considering these "suboptimal" studies altogether, despite their limitations, 254 would consist of underreporting the existing literature. 255 The secondary analysis group allowed comparison of arthroscopic and open repair of Type 1B 256 peripheral TFCC tears, showing no gross differences in outcomes and complications; the 257 majority of cases regained post-operative stability, irrespective of technique. The 258 complication risk may be weakly in favour of open procedures as they had no reported 259 complications, as opposed to a number of minor transient complications after arthroscopic 260 procedures (Tables I and II). Interestingly, arthroscopic repair of TFCC tears in patients with 261 a stable DRUJ [7, 47, 48] resulted in statistically significant improvements in DASH and VAS 262 scores suggesting that all Type 1B peripheral tears may merit a repair, at least regarding 263 pain relief and overall function. However these results must be interpreted with great 264 caution, due to the biases introduced by any non-randomised comparison (primarily selection 265 bias) and the poor methodological quality of the studies.

https://mc.manuscriptcentral.com/hand

266 The main limitation of this study was the lack of good guality comparative studies of open 267 repair to arthroscopic procedures. Many TFCC lesions reported in the literature are 268 associated with distal radius fractures. These fractures have an impact on wrist function per 269 se, whether or not they require operative fixation [16]. We identified several weaknesses of 270 the included studies, which limit the reliability of their results (Supplementary tables II & 271 III): the methodology, in particular the inclusion criteria, was not always clear; the majority 272 did not clarify whether consecutive inclusion of participants occurred, which may have led to 273 selection biasFurthermore, a variety of differing techniques of assessing DRUJ stability were 274 described across studies: each study implemented one or more clinical tests combined with, 275 in some studies, an arthroscopic assessment of instability features. Although accepted as 276 current practice, this lack of a clear and standardised assessment of stability status is a 277 major limitation in pooling results. Furthermore, an array of different repair techniques was 278 described by the authors under "umbrella terms" of open or arthroscopic repair.

279

CONCLUSION

This SR demonstrates current lack of the high quality evidence required to draw firm conclusions on the merits of arthroscopic versus open repair of IB TFCC tears_with DRUJ instability preoperatively. This is due to the design and methodological flaws of existing studies, but also the fact that type IB tears are a difficult condition to research in isolation, as they often present with associated injuries that may require concurrent surgical procedures.

The available evidence suggests that both open and arthroscopic methods of repair adequately address DRUJ instability in the majority of cases (over 80%), with similar rates of persisting instability. Secondary outcome measures were also seen to improve for both techniques. In cases with no pre-operative DRUJ instability, where the need for repair is controversial [11], secondary outcome scores also improved post-operatively. It is brutally obvious, based on this SR that we have to improve our evidence-based

292 knowledge by setting up prospective, preferably randomised studies, where there is no bias

293 from the researchers/surgeons in the study design. It is well known that keen "wrist

arthroscopists" are mostly in favour of an arthroscopically assisted approach as opposed to

295 "anatomists" who with excellent dissection will favour an open approach. There are obvious

- 296 advantages and disadvantages with both techniques, but it is reassuring that the current
- 297 literature supports the surgeon to use any of the two options as outcome and complications
- 298 will be very similar.
- 299
- 300

301

- 302 Conflict of Interest Statement: The authors confirm that they have no conflicts of interest
 303 to declare.
- 304 Statement of Human and Animal Rights: The above work is a systematic review of
- 305 literature and we did not carry out experiments on human or animal subjects.
- 306 **Statement of Informed Consent:** We confirm there to be no identifying information about
- 307 participants in the article.
- 308 **Funding Statement:** The authors received no financial support for the research, authorship,

Eler R

- 309 and/or publication of this article.
- 310
- 311
- 312 <u>References</u>
- Ahn AK, Chang D. and Plate AM. Triangular fibrocartilage complex tears. Jt Dis.
 2006;64(3): 114-119.
- Anderson ML, Larson AN, Moran SL, Cooney WP, Amrami KK, Berger RA. Clinical
 comparison of arthroscopic versus open repair of triangular fibrocartilage complex
 tears. J Hand Surg [AM]. 2008;33 (5): 675-82.
- Atzei A. New trends in arthroscopic management of type 1-B TFCC injuries with DRUJ
 instability. J Hand Surg [Eur]. 2009;34(5): 582-591.

320 321	4.	Atzei A. and Luchetti R. Foveal TFCC tear classification and treatment. Hand Clin. 2011;27(3): 263-272.
322	5.	Atzei A., Luchetti R. and Braidotti F. Arthroscopic foveal repair of the triangular
323		fibrocartilage complex. J Wrist Surg. 2015;4(01): 22-30.
324	6.	Banks LN and Lindau TR. Epidemiology of osteoarthritis of the hand and wrist. OA
325		Musculoskeletal Medicine. 2013;1(3): 23.
326	7.	Bayoumy M, Elkady HA, Said HG, El-Sayed A, Saleh WR. Short-term evaluation of
327		arthroscopic outside-in repair of Type 1B TFCC tear with vertical mattress suture. Int
328		J Multidiscip Res Dev. 2015;7: 679-683.
329	8.	Bednar MS, Arnoczky SP and Weiland AJ. The microvasculature of the triangular
330		fibrocartilage complex: its clinical significance. J Hand Surg [Am]. 1991;16(6): 1101-
331		1105.
332	9.	Bednar JM and Osterman AL. The role of arthroscopy in the treatment of traumatic
333		triangular fibrocartilage injuries. Hand Clin. 1994;10: 605-14.
334	10.	Buterbaugh GA, Brown TR, Horn PC. Ulnar-sided wrist pain in athletes. Clin Sports
335		Med. 1998;17(3): 567-83
336	11.	Cardenas-Montemayor E, Hartl JF, Wolf MB, Leclère FM, Dreyhaupt J, Hahn P and
337		Unglaub F. Subjective and objective results of arthroscopic debridement of ulnar-
338		sided TFCC (Palmer type 1B) lesions with stable distal radio-ulnar joint. Arch Orthop
339		Trauma Surg. 2013;133(2): 287-293.
340	12.	Cober SR and Trumble TE. Arthroscopic repair of triangular fibrocartilage injuries.
341		Orthop Clin North Am. 2001;32: 279–294.
342	13.	Corso SJ, Savoie FH, Geissler WB, Whipple TL, Jiminez W and Jenkins N. Arthroscopic
343		repair of peripheral avulsions of the triangular fibrocartilage complex of the wrist: a
344		multicenter study. Arthroscopy. 1997;13(1): 78-84.
345	14.	Dalal S, and Murali SR. The distal radio-ulnar joint. Orthop Trauma. 2012;26 (1):
346		44-52.

347	15. Estrella EP, Hung LK, Ho PC, Tse WL. Arthroscopic repair of triangular fibrocartilage
348	complex tears. Arthroscopy. 2007;23 (7): 729-37
349	16. Gliatis JD, Plessas SJ and Davis TRC. Outcome of distal radial fractures in young
350	adults. J Hand Surg [Br]. 2000;25B: 6: 535-543.
351	17. Haugstvedt JR and Husby T. Results of repair of peripheral tears in the triangular
352	fibrocartilage complex using an arthroscopic suture technique. Scand J Plast Reconstr
353	Surg Hand Surg. 1999;33(4): 439-47.
354	18. Iwasaki N, Nishida K, Motomiya M, Funakoshi T, Minami A. Arthroscopic-assisted
355	repair of avulsed triangular fibrocartilage complex to the fovea of the ulnar head: a
356	2- to 4-year follow-up study. Arthroscopy. 2011;10: 1371-8.
357	19. Jegal M, Heo K, Kim JP. Arthroscopic trans-osseous suture of peripheral triangular
358	fibrocartilage complex tear. J Hand Surg Asian-Pac. 2016;21; 300-306
359	20. Kim B, Yoon HK, Nho Jh, Park KH, Park SY, Yoon JH, Song HS. Arthroscopically
360	assisted reconstruction of triangular fibrocartilage complex foveal avulsion in the
361	ulnar variance-positive patient. Arthroscopy. 2013;29: 1762-8
362	21. Lindau T. Arthroscopic Evaluation of Associated Soft Tissue Injuries in Distal Radius
363	Fractures. Hand Clin. 2017;33(4): 651-658.
364	22. Luchetti R, Atzei A, Cozzolino R, Fairplay T and Badur N. Comparison between open
365	and arthroscopic-assisted foveal triangular fibrocartilage complex repair for post-
366	traumatic distal radio-ulnar joint instability. J Hand Surg [Eur]. 2014;39(8): 845-
367	855.
368	23. McAdams TR, Swan J, Yao J. Arthroscopic treatment of triangular fibrocartilage wrist
369	injuries in the athlete. Am J Sports Med. 2009;37 (2): 291-7
370	24. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic
371	reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339:b2535
372	25. Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and
373	risk. In: Aromataris E, Munn Z (Editors). Joanna Briggs Institute Reviewer's Manual.

https://mc.manuscriptcentral.com/hand

374		The Joanna Briggs Institute. 2017. Available from
375		https://reviewersmanual.joannabriggs.org
276	26	Maritana II. Maashari T. Maraa T. Miada I. Olada K. Vashilana II. Osaa aasia ƙ
376	26.	Moritomo H, Masatomi T, Murase T, Miyake J, Okada K, Yoshikawa H. Open repair of
377		foveal avulsion of the triangular fibrocartilage complex and comparison by types of
378		injury mechanism. J Hand Surg [Am]. 2010;35 (12): 1955-63
379	27.	Moritomo H. Open repair of the triangular fibrocartilage complex from palmar aspect.
380		J Wrist Surg. 2015;4(1): 2-8
204	~~	
381	28.	Nagle DJ. Triangular fibrocartilage complex tears in the athlete. Clin Sports Med.
382		2001;20(1), 155-166.
383	29.	Nakamura T, Sato K, Okazaki M, Toyama Y, Ikegami H. Repair of Foveal Detachment
384		of the Triangular Fibrocartilage Complex: Open and Arthroscopic Transosseous
385		Techniques. Hand Clin. 2011;27: 281-90.
200	20	
386	30.	Palmer AK. Triangular fibrocartilage complex lesions: a classification. J Hand Surg
387		[Am]. 1989;14A: 594–606.
388	31.	Park MJ, Jagadish A, Yao J. The rate of triangular fibrocartilage injuries requiring
389		surgical intervention. Orthopedics. 2010;3(11): 806
390	32.	Read J. Ulnar-sided wrist pain is not the only cause of TFCC injury: a clinical
391	<u> </u>	perspective on other diagnoses in the sport setting. Br J Sports Med. 2013;47(17):
392		1061-1062.
392		1001-1002.
393	33.	Reiter A, Wolf MB, Schmid U, Frigge A, Dreyhaupt J, Hahn P and Unglaub F.
394		Arthroscopic repair of Palmer 1B triangular fibrocartilage complex tears. Arthroscopy.
395		2008;24(11): 1244-1250.
206	24	Dettic AC Athletic injuries of the unist and hand part is traumatic injuries of the
396	34.	Rettig AC. Athletic injuries of the wrist and hand part i: traumatic injuries of the
397		wrist. Am J Sports Med. 2003; 31(6): 1038-1048.
398	35.	Ruch DS and Papadonikolakis A. Arthroscopically assisted repair of peripheral
399		triangular fibrocartilage complex tears; factors affecting outcome. Arthroscopy.
400		2005;21(9): 1126-30

https://mc.manuscriptcentral.com/hand

401	36. Sachar K. Ulnar-sided wrist pain: evaluation and treatment of triangular
402	fibrocartilage complex tears, ulnocarpal impaction syndrome, and lunotriquetral
403	ligament tears. J Hand Surg [Am]. 2008;33(9): 1669-1679.
404	37. Sagerman SD and Short W. Arthroscopic repair of radial-sided triangular
405	fibrocartilage complex tears. Arthroscopy. 1996;12: 339-342
406	38. Shih JT, Lee HM and Tan CM Early isolated triangular fibrocartilage complex tears:
407	management by arthroscopic repair. J Trauma. 2002;53(5): 922-927.
408	39. Shinohara T, Tatebe M, Okui N, Yamamoto M, Kurimoto S, Hirata H. Arthroscopically
409	assisted repair of triangular fibrocartilage complex foveal tears. J Hand Surg [Am].
410	2013;38(2): 271-7
411	40. Skalski MR, White EA, Patel DB, Schein AJ, RiveraMelo H and Matcuk GR. The
412	Traumatized TFCC: An Illustrated Review of the Anatomy and Injury Patterns of the
413	Triangular Fibrocartilage Complex. Curr Probl Diagn Radiol. 2016;45(1): 39-50.
414	41. Tang CY, Fung B, Rebecca C, Lung CP. Another light in the dark: review of a new
714	
415	method for the arthroscopic repair of triangular fibrocartilage complex. J Hand Surg
	method for the arthroscopic repair of triangular fibrocartilage complex. J Hand Surg [Am]. 2012;37 (6): 1263-8
415	
415 416	[Am]. 2012;37 (6): 1263-8
415 416 417	[Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular
415 416 417 418	 [Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular fibrocartilage complex. Arthroscopy. 1996;12(5): 588-597.
415 416 417 418 419	 [Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular fibrocartilage complex. Arthroscopy. 1996;12(5): 588-597. 43. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage:
415 416 417 418 419 420	 [Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular fibrocartilage complex. Arthroscopy. 1996;12(5): 588-597. 43. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage: management by early arthroscopic repair. J Hand Surg [Am]. 1997;22 (1): 57-65
415 416 417 418 419 420 421	 [Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular fibrocartilage complex. Arthroscopy. 1996;12(5): 588-597. 43. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage: management by early arthroscopic repair. J Hand Surg [Am]. 1997;22 (1): 57-65 44. Wolf MB, Kroeber MW, Reiter A, et al Ulnar shortening after TFCC suture repair of
415 416 417 418 419 420 421 422	 [Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular fibrocartilage complex. Arthroscopy. 1996;12(5): 588-597. 43. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage: management by early arthroscopic repair. J Hand Surg [Am]. 1997;22 (1): 57-65 44. Wolf MB, Kroeber MW, Reiter A, et al Ulnar shortening after TFCC suture repair of Palmar type 1B lesions. Arch Orthop Trauma Surg. 2010;130(3): 301-6
415 416 417 418 419 420 421 422 423	 [Am]. 2012;37 (6): 1263-8 42. Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular fibrocartilage complex. Arthroscopy. 1996;12(5): 588-597. 43. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage: management by early arthroscopic repair. J Hand Surg [Am]. 1997;22 (1): 57-65 44. Wolf MB, Kroeber MW, Reiter A, et al Ulnar shortening after TFCC suture repair of Palmar type 1B lesions. Arch Orthop Trauma Surg. 2010;130(3): 301-6 45. Wolf MB, Haas A, Dragu A, Leclere FM, Dreyhaupt J, Hahn P, Unglaub F. Arthroscopic

427	46. Woo SJ, Jegal M, Park MJ. Arthroscopic-assisted repair of triangular fibrocartilage
428	complex foveal avulsion in distal radioulnar joint injury. Indian J Orthop. 2016;50
429	(3): 263-268.
430	47. Wysocki RW, Richard MJ, Crowe MM, Leversedge FJ and Ruch DS. Arthroscopic
431	treatment of peripheral triangular fibrocartilage complex tears with the deep fibers
432	intact. J Hand Surg [Eur]. 2012;37(3): 509-516.
433	48. Yao J and Lee AT. All-arthroscopic repair of Palmer 1B triangular fibrocartilage
434	complex tears using the FasT-Fix device. J Hand Surg [Am]. 2011;36(5): 836-842.
435	
436	
437	
438	
439	Figure I. Peripheral TFCC tear (reproduced with permission from Elsevier, from Lindau T.
440	Arthroscopic Evaluation of Associated Soft Tissue Injuries in Distal Radius Fractures. Hand
441	Clinics. 2017;33(4):651-658 [23]
442	Figure II. PRISMA flowchart
443	
444	
445	
446	
447	
448	
449	
450	
451	

452

1	Title
2	Open versus arthroscopic repair of 1B ulnar-sided triangular fibrocartilage complex (TFCC) tears: a
3	systematic review
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 18	
18	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 Abstract

33 Background

34 Peripheral 1B tears of the Triangular Fibrocartilage Complex (TFCC) can result in distal radio-ulnar

35 joint (DRUJ) instability. Peripheral tears are amenable to both open and arthroscopic surgical

36 **repair.** In the context of associated DRUJ instability; combined evidence supports successful

37 outcomes for peripheral tear repair.

38 Methods

39 The aim of this systematic review (SR) was to compare the surgical treatment of 1B TFCC tears via 40 arthroscopic versus open methods of repair. The primary outcome measure was restored DRUJ

- 41 stability. The secondary outcome measures included patient-reported outcomes and clinical
- 42 outcome measures. An electronic database search of Ovid Embase, PubMed and the Cochrane
- 43 Central Register of Controlled Trials (CENTRAL) was performed to cover a 20 year period. Two
- 44 authors independently screened records for eligibility and extracted data.

45 Results

Only three studies met the strict inclusion criteria highlighting the poor evidence base for TFCC IB
repairs. <u>Hence a A</u> "secondary analysis" group was developed with modified inclusion criteria
which included a further seven studies for analysis. Pooled data from the primary and secondary
analysis groups demonstrated that post-operative DRUJ stability was achieved following open
repair in <u>approximately</u> 84.4% (76/90) of cases and <u>in 86%(129/150)</u> following arthroscopic repair
in <u>approximately 86% (129/150)</u>.

52 Conclusions

- 53 This SR demonstrates a current lack of the high quality evidence required to draw firm conclusions
- 54 on the merits of arthroscopic versus open repair of IB TFCC tears. On the basis of the limited
- 55 available comparative literature, Tthere is no evidence to suggest superiority of one technique over
- 56 the other, albeit some surgeons and authors may express a strong personal view.
- 57 (Level 3 evidence)

58	INTRODUCTION
59	The Triangular Fibrocartilage Complex (TFCC) has an important role in load-bearing of the wrist,
60	cushioning the ulnar carpal bones and facilitating rotation via the distal radio-ulnar joint (DRUJ)
61	[1]. The main portion of the TFCC is the triangular fibrocartilage disc proper (TFC), commencing
62	from the palmar and dorsal distal sigmoid notch to create a proximal and distal limb at insertion into
63	the distal ulna [3]. The proximal limb inserts into the fovea and the distal limb inserts into the ulnar
64	capsule with continuity into the distal styloid. These limbs are integrated parts of the dorsal and
65	volar radioulnar ligaments (RULs). The TFC and RULs are the main components stabilising the DRUJ
66	[43].
67	Triangular fibrocartilage complex (TFCC) tears are a common causes of ulnar-sided wrist pain [1,
68	325]. They were originally described by Palmer [303] and categorised into two main types (Types
69	1 and 2). Type 1 lesions are acute traumatic tears; sub-divided from 1A to 1D and usually involve
70	mechanisms of rotational stress with axial load-bearing from falling on an outstretched hand
71	[347]. Traumatic Type 1 injuries occur more commonly at the periphery. Type 2 lesions are
72	degenerative and central in location with increasing secondary changes [3 69]. Type 2 lesions,
73	sub-classified from 2A to 2E, occur from various degrees of ulnocarpal abutment/impaction [16].
74	Palmer 1A is a central perforation tear to the TFCC disc. 1B, 1C and 1D tears are classed as
75	"peripheral" tears (Figure I). 1C tears lead to ulno-carpal instability, whereas 1B and 1D tears
76	lead to instability of the distal radioulnar joint (DRUJ). Palmer 1B tears involve an avulsion of the
77	ulnar foveal attachment of the TFCC, whereas Palmer 1D tears, which are rare less common [14],
78	involve an avulsion of the radial attachment. In Palmer 1B tears, injury to the distal limb does not
79	itself lead to DRUJ instability; however disruption to the proximal limb which inserts into the fovea
80	will cause instability [3, 4 <u>0</u> 3].
81	[Insert here: Figure I.]
82	Peripheral tears are amenable to surgical repair [1, 2831] because the peripheral 10-40% of the
83	TFCC [8] is vascular, as opposed to the central <u>membranous</u> portion of the TFCC which is
84	avascular [1].

85	In DRUJ instability, the evidence supports successful outcomes for peripheral repair/reattachment
86	$[3, 5, 13, \frac{3841}{2}]$. However, the key question of whether arthroscopic techniques are superior to
87	open repair remains unclear [2, 2^{24}]. A further controversy pertaining to the treatment of
88	symptomatic peripheral 1B tears is whether surgical repair is necessary in the context of a stable
89	DRUJ. Several studies support favourable outcomes in this setting $[336, 425, 4750, 4851]$,
90	supported by early papers suturing the detached surface to the peripheral capsule rather than to
91	the fovea $[1\frac{78}{5}, 4\frac{25}{5}]$. However, arthroscopic debridement without repair had comparable results
92	to repair in this context [11].
93	The main advantages of arthroscopic repair are superior visualisation of the TFCC and proposed
94	improved wrist function by avoiding further injury to surrounding soft tissue structures [9]. In
94 95	improved wrist function by avoiding further injury to surrounding soft tissue structures [9]. In general, the arthroscopic techniques employed are either described as "inside-out" or "outside-in"
-	
95	general, the arthroscopic techniques employed are either described as "inside-out" or "outside-in"
95 96	general, the arthroscopic techniques employed are either described as "inside-out" or "outside-in" depending upon how the re-attachment is performed [12]. The perceived limitation of arthroscopic

100

101

MATERIALS AND METHODS

102 Literature search

- 103 An electronic database search of Ovid Embase, PubMed and the Cochrane Central Register of
- 104 Controlled Trials (CENTRAL) was performed in April 2017. Studies published between the 1st
- 105 January 1997 and the 31st December 2016 were included, covering 20 years of research. The
- search terms were developed with the help of an information analyst (D.G) to include the key
- 107 concepts of TFCC, DRUJ instability and ulnar avulsion (Supplementary material 1).
- 108 Additional articles were sourced by manually checking reference lists of articles identified via the
- 109 search. Studies other than in English or Spanish were excluded. The review protocol is registered
- 110 on the international prospective register of systematic reviews (PROSPERO). ID:
- 111 CRD42017033327 available via
- 112 <u>http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017033327</u>. Preferred

113	Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed		
114	$[2\frac{46}{2}]$. The selection process is demonstrated in the study PRISMA flowchart (Figure II).		
115			
116	Inclusion and exclusion criteria		
117	The inclusion and exclusion criteria used to assess the full-text articles for eligibility are		
118	summarised below:		
119	Inclusion criteria:		
120	• Studies of patients suffering 1B TFCC tears treated via arthroscopic or open surgical repair		
121	Age 18 to 65 years		
122	Reporting the pre-operative and post-operative DRUJ stability status		
123	Reporting at least one patient-reported outcome measure or clinical outcome measure		
124	Minimum follow-up 12 months		
125	Randomised controlled trials, cohort studies, case-control studies, case series		
126			
127	Exclusion criteria:		
128	Central TFCC tears		
129	Peripheral tears other than type 1B		
130	Associated injuries		
131	Studies including surgical procedures in addition to repair of the TFCC		
132	Studies published prior to 01/01/1997 or after 31/12/2016		
133	Abstract only publications		
134	Case reports, editorials, letters, cadaveric studies and review articles		
135	• Full text study reports other than in English or Spanish		
136			
137			
138	Outcome measures		
139	The primary outcome measure was restored stability of the DRUJ at a minimum post-operative		
140	follow-up period of 12 months. The secondary outcome measures included patient-reported		

141	outcomes and clinical outcome measures. The patient-reported outcomes were the Modified Mayo
142	Wrist Score (MMWS), the Disabilities of the Arm, Shoulder, and Hand (DASH), the Patient Rated
143	Wrist Evaluation (PRWE) score and the Visual Analogue Score (VAS). Clinical measures reviewed
144	were grip strength, range of movement (ROM) and treatment complications.
145	Data management and quality assessment
146	Two authors (VR, AF) independently screened records for eligibility and extracted data. Quality
147	assessment of studies was performed using the Joanna Briggs Institute critical appraisal tool
148	checklist for case series studies [257] (supplementary tables II & III). Disagreements were
149	reviewed by the senior authors (TL, AK).
150	Quality assessment of studies was performed using the Joanna Briggs Institute critical appraisal
151	tool checklist for case series studies [27]. This was conducted independently by two authors (VR,
152	AF). In case of disagreement this was resolved by consensus and discussion with the senior author
153	(TL).
154	
155	RESULTS
156	The results of the search and selection process are presented in a PRISMA flowchart $\left[\frac{2426}{26}\right]$ (Fig.
157	и).
158	[Insert here: Figure II.]
159	
160	Three studies fully met all the strict pre-defined inclusion criteria for this review [7, 189, 202].
161	There were no comparative studies (RCTs, cohorts or case series). The three included studies were
TOT	mere were no comparative studies (NCTS, conorts of Case series). The three included studies were

162 case series exclusively of arthroscopic results and therefore do not allow any comparisons. These

163 studies were entered into the "primary analysis group" (Table I).

164 [Insert here: Table I. Primary analysis group (demographic details, follow up and outcome165 measures)]

We further identified five studies [5, <u>1920</u>, 4<u>69</u>, <u>4750</u>, <u>4851</u>] which would have met the inclusion
criteria bar the strict age range applied and/or reporting of certain follow-up parameters. Most

https://mc.manuscriptcentral.com/hand

168	importantly, these five studies-do report the DRUJ stability status (primary outcome). We		
169	therefore also present a separate post-hoc "secondary analysis group" of studies fulfilling the		
170	modified inclusion criteria below:		
171			
172			
173			
175			
174	Modified inclusion criteria:		
175	• Studies with a mixed age population (age range <18 or >65), if the mean age of		
176	participants was within the 18 to 65 range.		
177	• Studies where the minimum follow-up for some patients was less than 12 months,		
178	provided that the mean study follow-up was at least 12 months.		
179			
180	Two further studies were also entered into the "secondary analysis group" (Table II) $[224, 2932]$.		
181	Nakamura et al, [2932] did not report PROM or clinical measurement outcomes; however, it was		
182	included because it met the modified inclusion criteria and included both arthroscopic and open		
183	techniques. Luchetti et al, [224] was also included, despite having patients with an associated		
184	injury or additional interventional procedures, because it is the only published study where the		
185	design was such that a direct comparison of arthroscopic versus open 1B repairs was reported.		
196			
186			
187	[Insert here: Table II. Secondary analysis group (demographic details, follow up and outcome		
188	measures]		
189			
105			
190	A common reason for study exclusion in the primary analysis was that different TFCC tear sub-		
191	types were often grouped together in the analysis, with no differentiation of outcome scores		

192 between tear types [2, 10, 15, 3<u>1</u>4, 3<u>5</u>8, <u>38</u>41, <u>41</u>44]. Several studies were excluded due to

ambiguity regarding which of their subjects had associated injuries or concurrent procedures [2<u>3</u>5,

194	2 <u>6</u> 8, 2 <u>7</u> 9, <u>39</u> 42, 4 <u>3</u> 6, 4 <u>4</u> 7, 4 <u>5</u> 8].	However, for one study [2932],	we were able to contact the
-----	--	--------------------------------	-----------------------------

- 195 senior author to confirm that the subjects underwent no concurrent surgical procedures, and also
- 196 that they were all skeletally mature, which also allowed this study to be included to clarify their
- 197 <u>methodology and include the study</u>-in the "secondary analysis group" (Table II).

.98	
199	Results in the pPrimary analysis group
200	The <u>se</u> three studies entered into the primary analysis group only included arthroscopic
201	repairs [7, 1 <mark>89</mark> , 2 <mark>02</mark>].
202	The $\frac{27}{2}$ subjects included in Kim et al. [2 $\frac{20}{2}$] (n=15) and Iwasaki et al. [1 $\frac{89}{2}$] (n=12) had an
203	unstable DRUJ pre-operatively. In all 27 cases, DRUJ instability was restored at follow up
204	(Table I). In terms of secondary outcome measures, both studies showed an improvement
205	in DASH scores and grip strength post-operatively, however a statistically significant
206	difference for these outcomes was only reported in the smaller study ($n=12$; Iwasaki et al.
207	[189]). The latter also showed a statistically significant improvement post-operatively in VAS
208	scores, from 72.1 to 10 (p<0.0001). Kim et al. [202] demonstrated a significant
209	improvement in MAYO score from 64 to 84 (p=0.007),and Iwasaki et al. [19] also returned
210	a high MAYO score of 92.5 but had no pre-operative score for comparison, yet likely to be
211	significant given the score of 92.5. <u>o</u>O verall, both studies reported an "excellent" or "good"
212	result in 24/27 cases and a "fair" or "poor" result in 3/27 cases for the arthroscopic
213	procedure (Table I).
214	The third study in the "primary analysis group" (Bayoumy et al. [7]; (n=37)) included
215	patients with ulnar-sided wrist pain, which worsened on grasping or ulnar deviation, but
216	without instability of the DRUJ pre-operatively. This suggests a distal 1B peripheral tear, not
217	a destabilising proximal 1B tear [3, 403]. Hence, the primary outcome measure of regained
218	stability could not be assessed, however the study showed statistically significant
219	improvements in the secondary outcome measurements; DASH, grip strength, VAS and
220	MAYO scores post-operatively (Table I).
221	Results in the sSecondary analysis group
222	Of the seven studies entered into the "secondary analysis group" (Table II), two studies
223	included non-randomised comparisons of arthroscopic and open treatment of 1B TFCC tears
~~ .	

these studies, open repair techniques restored DRUJ stability in 76/90 patients (84.4%) and

(Nakamura et al. [329] (n=90) and Luchetti et al. [224] (n=49)). By combining data from

226 arthroscopic repair in 41/49 cases (843.7%). The secondary outcome measures of interest

224

227	were reported only by Luchetti et al. $[2^{24}]$ with statistically significant improvements in
228	DASH (p <0.001), VAS during activity (p <0.001) and PRWE (p <0.001).

229 The remaining five studies in the "secondary analysis group" (Table II) were case series of 230 arthroscopic only repair of 1B tears [5, <u>1920</u>, 4<u>69</u>, <u>47</u>50, <u>5481</u>]. Three studies included 74 231 patients who presented with DRUJ instability pre-operatively (Woo et al. [469] (12/12), Atzei 232 et al. [5] (48/48) and Jegal et al. $[\underline{19}20]$ (14/19). In total, when combined with arthroscopic 233 repairs in the above cohorts (Nakamura et al. [2932] and Luchetti et al. [224]), 102/123 234 (832.9%) regained DRUJ stability. In terms of secondary outcome measures, these authors 235 reported an improvement (Table II). All patients presented by Wysocki et al. [4750] (n=29) 236 and Yao and Lee. [4851] (n=12), had a stable DRUJ pre-operatively; which is similar to 237 Bayoumi et al. [7] (n=37) in the "primary analysis group" suggesting a distal 1B tear. There 238 was limited data available on secondary outcome scores for these studies. 239 Open versus arthroscopic treatment in relation to resolving DRUJ instability.

- 240 This SR was unable to directly compare arthroscopic and open procedures within the
- 241 **<u>"primary analysis group" with very strict inclusion criteria. However, B</u>by pooling data from**
- the primary and secondary analyses groups (Table III) the SR suggests that post-operative
- 243 stability can be expected following open repair in approximately 84.4% (76/90) of cases and
- following arthroscopic repair in approximately 86% (129/150) of cases; i.e. comparable
- 245 results.
- 246 [Insert here: Table III. Combined assessment of cases with DRUJ instability pre-
- 247 operatively for both primary and secondary analysis groups, comparing open and
- 248 arthroscopic treatment.]
- 249

250 Complications

- 251 Documented complication rates were low and all complications were reported to resolve.
- 252 These included extensor carpi ulnaris (ECU) tendonitis, extensor digiti minimi (EDM) extensor
- 253 lag, neurapraxia of the dorsal sensory branch of the ulnar nerve, mild irritation at the repair
- 254 site due to the suture knot and flexor carpi radialis (FCR) tendonitis. The two studies which
- assessed both arthroscopic and open techniques reported no complications at all [224, 2932]
- 256 (Table II).

257 **Quality assessment**

258	The term "quality" refers to the degree to which a study employs measures to minimize bias
259	and error in its design, conduct and analysis [21]. We used the Joanna Briggs Institute
260	critical appraisal tool checklist, which revealed several areas of poor methodology within our
261	included papers (Supplementary tables II & III). As an example; Kim et al. [22] excluded
262	patients with a previous history of surgery (including ulnar shortening osteotomy). In spite of
263	this the authors included a secondary ulnar shortening osteotomy within their dataset [22].
264	There were no level I or II studies found by this SR, only one level III study [24] and the
265	remaining studies were "level IV" evidence.

HAND

266

DISCUSSION

The aim of this SR was to assess the merits of arthroscopic repair versus open repair for peripheral 1B tears in the context of DRUJ instability. This SR demonstrates that the current evidence for surgical management of peripheral 1B TFCC tears consists primarily of low level studies (retrospective case series). Our overall<u>evidence-based</u> conclusion is that both techniques give similar good outcomes.

272 The study's predefined inclusion and exclusion criteria reflect what we felt should be the ideal 273 study population, aiming to eliminate confounding factors such as concomitant injuries and 274 other surgical procedures. An age range between 18 to 65 years covers the working age 275 population and excludes patients with skeletally immature wrists and older patients where 276 the presence of co-existing osteoporosis arthritic changes is more likely [6]. Also, a minimum 277 follow up period of 12 months was deemed important to ensure outcomes for each subject 278 were assessed at a reasonable time post-operatively allowing maximum recovery-from the 279 procedure and not just based on data driven opportunistic follow up typical of many 280 retrospective studies. Another important strength is that we only included studies that clearly 281 defined whether the TFCC tear had caused instability to the DRUJ, in order to reliably 282 compare outcomes for open and arthroscopic interventions. It is essential to know the 283 "stability status" of the DRUJ as instability entails a 1B peripheral tear to the proximal part of 284 the TFCC making a reattachment to the fovea of the ulnar head necessary [4], as opposed to 285 a stable joint where the distal part is torn and the need for repair remains questionable [11].

286	This is paramount in assessing the patient and planning the non-surgical or surgical	
287	management.	
288	In accordance with these strict pre-defined inclusion criteria, only three case series of	
289	arthroscopic repair techniques were reported in our "primary analysis group" making any	
290	comparison redundant. As described in the methods, we further identified seven studies	
291	which marginally missed the inclusion criteria; our "secondary analysis group". Most	
292	importantly, these seven studies did report the DRUJ stability status (primary outcome). We	
292	felt that not considering these "suboptimal" studies altogether, despite their limitations,	
294	would consist of underreporting of the existing literature.	
295	We therefore presented an additional "secondary group" of included studies. This did allow	
296	The secondary analysis group allowed a a descriptive comparison of arthroscopic and open	
297	repair of Type 1B peripheral TFCC tears, showing no gross differences in outcomes and	
298	complications; the majority of cases regained post-operative stability, irrespective of	
299	technique. The complication risk may be weakly in favour of open procedures as they had no	
300	reported complications, as opposed to a number of minor transient complications after	
301	arthroscopic procedures (Tables I and II). Interestingly, arthroscopic repair of TFCC tears in	
302	patients with a stable DRUJ [7, 4750 , 4851] resulted in statistically significant improvements	
303	in DASH and VAS scores suggesting that all Type 1B peripheral tears may merit a repair <u>at</u>	
304	least regarding pain relief and overall function. However these results must be interpreted	
305	with great caution, due to the biases introduced by any non-randomised comparison	
306	(primarily selection bias) and the poor methodological quality of the studies.	
307	The interpretation of any conclusions should also be made in the greater context of a	
308	comparison against non-surgical treatments, whether therapy, injections or no intervention	
309	at all. The pertinent question here is "what is the natural history of type IB tears?" and if, in	
310	the long term, patients with 1B TFCC tears (whether causing instability or not) improve	
311	regardless of intervention. Mrkonjic et al. [30] reported type 1B peripheral tears sustained	
312	in association with a distal radius fracture caused DRUJ instability, but most did not require	
313	repair.	
214	The main limitation of this study was the last of and surlity assessmenting at the of any	
314	The main limitation of this study was the lack of good quality comparative studies of open	
315	repair to arthroscopic procedures. This reflects the limited quality of existing studies and	

https://mc.manuscriptcentral.com/hand

316 their heterogenicity. In particular, mMany TFCC lesions reported in the literature are 317 associated with distal radius fractures. These fractures have an impact on wrist function per 318 se, whether or not they require operative fixation [167]. We identified several weaknesses 319 of the included studies, which limit the reliability of their results (Supplementary tables II & 320 III): the methodology, in particular the inclusion criteria, was not always clear; the majority 321 did not clarify whether consecutive inclusion of participants occurred, which may have led to 322 selection bias. Kim et al. [22] excluded patients with a previous history of surgery (including 323 ulnar shortening osteotomy). In spite of this the authors included a secondary ulnar 324 shortening osteotomy in their dataset [22]. Furthermore, a variety of differing techniques of 325 assessing DRUJ stability were described across studies: each study implemented one or more 326 clinical tests combined with, in some studies, an arthroscopic assessment of instability 327 features. Although accepted as current practice, Fthis lack of a clear and standardised 328 assessment of stability status is a major limitation in pooling results. Furthermore, an array 329 of different repair techniques was described by the authors under "umbrella terms" of open 330 or arthroscopic repair.

331

CONCLUSION

332 This SR demonstrates current lack of the high quality evidence required to draw firm 333 conclusions on the merits of arthroscopic versus open repair of IB TFCC tears with DRUJ 334 instability preoperatively. This is due to the design and methodological flaws of existing 335 studies, but also the fact that type IB tears are a difficult condition to research in isolation, 336 as they often present with associated injuries that may require concurrent surgical 337 procedures. Furthermore, as demonstrated in our SR, 1B TFCC lesions may be proximal 338 causing instability or distal only causing pain. 339 The available evidence suggests that both open and arthroscopic methods of repair 340 adequately address DRUJ instability in the majority of cases (over 80%), with similar rates of 341 persisting instability. Secondary outcome measures were also seen to improve for both 342 techniques. In cases with no pre-operative DRUJ instability, where the need for repair is 343 controversial [11], secondary outcome scores also improved post-operatively. Surgical 344 complications were only observed in cases treated arthroscopically, though all complications 345 resolved over time.

346	It is brutally obvious, based on this SR that we have to improve our evidence-based
347	knowledge by setting up prospective, preferably randomised studies, where there is no bias
348	from the researchers/surgeons in the study design. It is well known that keen "wrist
349	arthroscopists" are mostly in favour of an arthroscopically assisted approach as opposed to
350	"anatomists" who with excellent dissection will favour an open approach. There are obvious
351	advantages and disadvantages with both techniques, but it is reassuring that the current
352	literature supports the surgeon to use any of the two options as outcome and complications
353	will be very similar.
354	
355	A key remaining point of controversy is that the natural history of TFCC tears is still unclear,
356	which poses the question of whether symptoms of pain and/or DRUJ instability would
357	improve over time, without surgical intervention [30].
358	We would recommend further structured research in this area to allow stronger conclusions.
359	To improve the quality of future research, an assessment of pre and post surgical DRUJ
360	stability should always be included in reports and a standardised agreed method of assessing
361	and documenting DRUJ instability is required. Patient reported outcome measures at set-
362	time points (including baseline) should be reported. Prospectively recording procedures and
363	standardised outcomes in a centralised database would facilitate this and inform future
364	management of patients with these injuries.
365	
366	Conflict of Interest Statement: The authors confirm that they have no conflicts of interest
367	to declare.
260	
368	Statement of Human and Animal Rights: The above work is a systematic review of
369	literature and we did not carry out experiments on human or animal subjects.
370	Statement of Informed Consent: We confirm there to be no identifying information about
371	participants in the article.
372	Funding Statement: The authors received no financial support for the research, authorship,
373	and/or publication of this article.

https://mc.manuscriptcentral.com/hand

374		
375		
376	Refere	ences
377	1.	Ahn AK, Chang D. and Plate AM. Triangular fibrocartilage complex tears. Joint
378		Diseases. 2006;64(3): 114-119.
379	2.	Anderson ML, Larson AN, Moran SL, Cooney WP, Amrami KK, Berger RA. Clinical
380		comparison of arthroscopic versus open repair of triangular fibrocartilage complex
381		tears. J Hand Surg [AM]. 2008;33 (5): 675-82.
382	3	Atzei A. New trends in arthroscopic management of type 1-B TFCC injuries with DRUJ
383	5.	instability. Journal of Hand Surgery (European Volume). 2009;34(5): 582-591.
505		instability: southal of hand Surgery (European Volume). 2005,54(5): 502 551.
384	4.	Atzei A. and Luchetti R. Foveal TFCC tear classification and treatment. Hand clinics.
385		2011;27(3): 263-272.
386	5.	Atzei A., Luchetti R. and Braidotti F. Arthroscopic foveal repair of the triangular
387		fibrocartilage complex. Journal of wrist surgery. 2015;4(01): 22-30.
388	6.	Banks LN and Lindau TR. Epidemiology of osteoarthritis of the hand and wrist. OA
389		Musculoskeletal Medicine. 2013;1(3): 23.
390	7.	Bayoumy M, Elkady HA, Said HG, El-Sayed A, Saleh WR. Short-term evaluation of
391		arthroscopic outside-in repair of Type 1B TFCC tear with vertical mattress suture.
392		International journal of multidisciplinary research and development. 2015;7: 679-
393		683.
394	8.	Bednar MS, Arnoczky SP and Weiland AJ. The microvasculature of the triangular
395		fibrocartilage complex: its clinical significance. The Journal of hand surgery.
396		1991;16(6): 1101-1105.
550		
397	9.	Bednar JM and Osterman AL. The role of arthroscopy in the treatment of traumatic
398		triangular fibrocartilage injuries. Hand Clin. 1994;10: 605-14.

399	10. Buterbaugh GA, Brown TR, Horn PC. Ulnar-sided wrist pain in athletes. Clin Sports
400	Med. 1998;17(3): 567-83
401	11. Cardenas-Montemayor E, Hartl JF, Wolf MB, Leclère FM, Dreyhaupt J, Hahn P and
402	Unglaub F. Subjective and objective results of arthroscopic debridement of ulnar-
403	sided TFCC (Palmer type 1B) lesions with stable distal radio-ulnar joint. Archives of
404	orthopaedic and trauma surgery. 2013;133(2): 287-293.
405	12. Cober SR and Trumble TE. Arthroscopic repair of triangular fibrocartilage injuries.
406	Orthop Clin North Am. 2001;32: 279–294.
407	13. Corso SJ, Savoie FH, Geissler WB, Whipple TL, Jiminez W and Jenkins N. Arthroscopic
408	repair of peripheral avulsions of the triangular fibrocartilage complex of the wrist: a
409	multicenter study.Arthroscopy: The Journal of Arthroscopic & Related
410	Surgery. 1997;13(1): 78-84.
411	14. Dalal S, and Murali SR. The distal radio-ulnar joint. Orthopaedics and Trauma.
412	2012;26 (1): 44-52.
413	15. Estrella EP, Hung LK, Ho PC, Tse WL. Arthroscopic repair of triangular fibrocartilage
414	complex tears. Arthroscopy. 2007;23 (7): 729-37
415	16. Friedman SL and Palmer AK. The ulnar impaction syndrome. Hand clinics. 1991;7(2);
416	295-310.
417	<u>17.16.</u> Gliatis JD, Plessas SJ and Davis TRC. Outcome of distal radial fractures in
418	young adults. Journal of Hand Surgery. 2000;25B: 6: 535-543.
419	<u>18.17.</u> Haugstvedt JR and Husby T. Results of repair of peripheral tears in the
420	triangular fibrocartilage complex using an arthroscopic suture technique. Scand J
421	Plast Reconstr Surg Hand Surg. 1999;33(4): 439-47.
422	<u>19-18.</u> Iwasaki N, Nishida K, Motomiya M, Funakoshi T, Minami A. Arthroscopic-
423	assisted repair of avulsed triangular fibrocartilage complex to the fovea of the ulnar
424	head: a 2- to 4-year follow-up study. Arthroscopy. 2011;10: 1371-8.

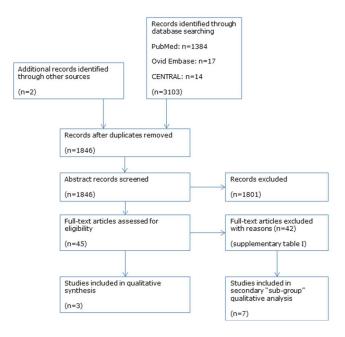
425	20.19. Jegal M, Heo K, Kim JP. Arthroscopic trans-osseous suture of peripheral
426	triangular fibrocartilage complex tear. J Hand Surg Asian-Pac. 2016;21; 300-306
427	21 Khan KC Khan KC (ad) Kuna D (ad) Klainan 1 (ad) 9 Anton C (ad)
427	21Khan, KS, Khan, KS (ed.), Kunz, R (ed.), Kleijnen, J (ed.) & Antes, G (ed.)
428	Systematic Reviews to Support Evidence-based Medicine: how to review and apply
429	findings of healthcare research. Royal Society of Medicine Press; London: 2003.
430	<u>22.20.</u> Kim B, Yoon HK, Nho Jh, Park KH, Park SY, Yoon JH, Song HS.
431	Arthroscopically assisted reconstruction of triangular fibrocartilage complex foveal
432	avulsion in the ulnar variance-positive patient. Arthroscopy. 2013;29: 1762-8
433	23.21. Lindau T. Arthroscopic Evaluation of Associated Soft Tissue Injuries in Distal
434	Radius Fractures. Hand Clinics. 2017;33(4): 651-658.
435	24-22. Luchetti R, Atzei A, Cozzolino R, Fairplay T and Badur N. Comparison
436	between open and arthroscopic-assisted foveal triangular fibrocartilage complex
437	repair for post-traumatic distal radio-ulnar joint instability. Journal of Hand Surgery
438	(European Volume), 2014;39(8): 845-855.
439	25.23. McAdams TR, Swan J, Yao J. Arthroscopic treatment of triangular
440	fibrocartilage wrist injuries in the athlete. Am J Sports Med. 2009;37 (2): 291-7
441	26.24. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
442	systematic reviews and meta-analyses: the PRISMA statement BMJ. 2009;
443	339:b2535
444	27.25. Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of
445	etiology and risk. In: Aromataris E, Munn Z (Editors). Joanna Briggs Institute
446	Reviewer's Manual. The Joanna Briggs Institute. 2017. Available from
447	https://reviewersmanual.joannabriggs.org
448	28. 26. Moritomo H, Masatomi T, Murase T, Miyake J, Okada K, Yoshikawa H. Open
449	repair of foveal avulsion of the triangular fibrocartilage complex and comparison by
450	types of injury mechanism. J Hand Surg Am. 2010;35 (12): 1955-63

451	29.27. Moritomo H. Open repair of the triangular fibrocartilage complex from palmar
452	aspect. J Wrist Surg. 2015;4(1): 2-8
453	30. Mrkonjic A, Geijer M, Lindau T and Tägil M. The natural course of traumatic triangular
454	fibrocartilage complex tears in distal radial fractures: a 13–15 year follow up of
455	arthroscopically diagnosed but untreated injuries. The Journal of hand
456	surgery, 2012;37(8): 1555-1560.
457	31.28. Nagle DJ. Triangular fibrocartilage complex tears in the athlete. Clinics in
458	sports medicine, 2001;20(1), 155-166.
459	<u>32,29.</u> Nakamura T, Sato K, Okazaki M, Toyama Y, Ikegami H. Repair of Foveal
460	Detachment of the Triangular Fibrocartilage Complex: Open and Arthroscopic
461	Transosseous Techniques. Hand clinics. 2011;27: 281-90.
462	33. 30. Palmer AK. Triangular fibrocartilage complex lesions: a classification. J Hand
463	Surg; 1989;14A: 594–606.
464	34.31Park MJ, Jagadish A, Yao J. The rate of triangular fibrocartilage injuries
465	requiring surgical intervention. Orthopedics. 2010;3(11): 806
466	35. 32. Read J. Ulnar-sided wrist pain is not the only cause of TFCC injury: a clinical
467	perspective on other diagnoses in the sport setting. British journal of sports
468	medicine. 2013;47(17): 1061-1062.
469	36.<u>33.</u> Reiter A, Wolf MB, Schmid U, Frigge A, Dreyhaupt J, Hahn P and Unglaub F.
470	Arthroscopic repair of Palmer 1B triangular fibrocartilage complex tears. Arthroscopy:
471	The Journal of Arthroscopic & Related Surgery. 2008;24(11): 1244-1250.
472	Rettig AC. Athletic injuries of the wrist and hand part i: traumatic injuries of
473	the wrist. The American journal of sports medicine, 2003; 31(6): 1038-1048.
474	38.35. Ruch DS and Papadonikolakis A. Arthroscopically assisted repair of peripheral
475	triangular fibrocartilage complex tears; factors affecting outcome. Arthroscopy.
476	2005;21(9): 1126-30

477	<u>39.36.</u> Sachar K. Ulnar-sided wrist pain: evaluation and treatment of triangular
478	fibrocartilage complex tears, ulnocarpal impaction syndrome, and lunotriquetral
479	ligament tears. The Journal of hand surgery. 2008;33(9): 1669-1679.
480	40.37. Sagerman SD and Short W. Arthroscopic repair of radial-sided triangular
481	fibrocartilage complex tears. Arthroscopy. 1996;12: 339-342
482	41.38. Shih JT, Lee HM and Tan CM Early isolated triangular fibrocartilage complex
483	tears: management by arthroscopic repair. Journal of Trauma and Acute Care
484	Surgery. 2002;53(5): 922-927.
485	42.39. Shinohara T, Tatebe M, Okui N, Yamamoto M, Kurimoto S, Hirata H.
486	Arthroscopically assisted repair of triangular fibrocartilage complex foveal tears. J
487	Hand Surg Am. 2013;38(2): 271-7
488	43.40. Skalski MR, White EA, Patel DB, Schein AJ, RiveraMelo H and Matcuk GR. The
489	Traumatized TFCC: An Illustrated Review of the Anatomy and Injury Patterns of the
490	Triangular Fibrocartilage Complex. Current problems in diagnostic radiology.
491	2016;45(1): 39-50.
492	44. <u>41.</u> Tang CY, Fung B, Rebecca C, Lung CP. Another light in the dark: review of a
493	new method for the arthroscopic repair of triangular fibrocartilage complex. J Hand
494	Surg Am. 2012;37 (6): 1263-8
495	45. <u>42.</u> Trumble TE, Gilbert M and Vedder N. Arthroscopic repair of the triangular
496	fibrocartilage complex. Arthroscopy: The Journal of Arthroscopic & Related
497	Surgery. 1996;12(5): 588-597.
498	46.43. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular
499	fibrocartilage: management by early arthroscopic repair. J Hand Surg Am. 1997;22
500	
500	(1): 57-65
501	(1): 57-65 47. <u>44.</u> Wolf MB, Kroeber MW, Reiter A, et al Ulnar shortening after TFCC suture

Page 39 of 57

503	48.45. Wolf MB, Haas A, Dragu A, Leclere FM, Dreyhaupt J, Hahn P, Unglaub F.
504	Arthroscopic repair of ulnar-sided triangular fibrocartilage complex (Palmar Type 1B)
505	tears: a comparison between short-and midterm results. J Hand Surg Am. 2012;37
506	(11): 2325-30
507	49.46. Woo SJ, Jegal M, Park MJ. Arthroscopic-assisted repair of triangular
508	fibrocartilage complex foveal avulsion in distal radioulnar joint injury. Indian J
509	Orthop. 2016;50 (3): 263-268.
510	50.47. Wysocki RW, Richard MJ, Crowe MM, Leversedge FJ and Ruch DS.
511	Arthroscopic treatment of peripheral triangular fibrocartilage complex tears with the
512	deep fibers intact. The Journal of hand surgery. 2012;37(3): 509-516.
513	51.48. Yao J and Lee AT. All-arthroscopic repair of Palmer 1B triangular
514	fibrocartilage complex tears using the FasT-Fix device. The Journal of hand
515	surgery. 2011;36(5): 836-842.
516	
517	
518	
519	
520	Figure I. Peripheral TFCC tear (reproduced with permission from Elsevier, from Lindau T.
521	Arthroscopic Evaluation of Associated Soft Tissue Injuries in Distal Radius Fractures. Hand
522	Clinics. 2017;33(4):651-658 [23]
523	Figure II. PRISMA flowchart
524	
525	
526	
527	


for per period

Page 40 of 57

Peripheral TFCC tear (reproduced with permission from Elsevier, from Lindau T. Arthroscopic Evaluation of Associated Soft Tissue Injuries in Distal Radius Fractures. Hand Clinics. 2017;33(4):651-658 [23]

23x18mm (600 x 600 DPI)

PRISMA flowchart

254x190mm (96 x 96 DPI)

	Open			
	<u>N/A</u>	Kim et al,	Iwasaki et al,	*Bayoumy et al
		2013 [22]	2011 [19]	2015 [7]
		(n=15)	(n=12)	(n=37)
Mean age (range)		30.5 (19-54)	31 (20-50)	23.3 (18-34)
Mean follow up (months)		29	30	24
Unstable Pre-op (%)		100% (15/15)	100% (12/12)	0% (0/37)
Unstable Post-op (%)		0% (0/15)	0% (0/12)	N/A
% remaining unstable		0%	0%	N/A
DASH: Pre-op	N	28.4	59.5	29.9
DASH: Post-op		16.6 (p=0.06)	7.7 (p<0.0001)	10.2 (p<0.05)
VAS: Pre-op			72.1	7.6
VAS: Post-op		-	10 (p<0.0001)	2.9 (p<0.05)
MAYO: Pre-op		64	Unknown	62.1
MAYO: Post-op		84 (p=0.007)	92.5	91.2 (p<0.05)
MAYO post-op results:		Ľ	•	
-Excellent & Good		n=12	n=12	-
-Fair & Poor		n=3	n=0	-
Grip strength (% of contralatera)			
-Pre-op		79.3%	92.7%	82.5%
-Post-op		82.9% (p=0.086)	106.3% (p=0.003)	89%
Complications				
-ECU tendonitis		n=1	n=2	-
-DSBUN neurapraxia		-	-	n=1
-EDM extensor lag		-	-	n=1

Table I. Primary analysis group (demographic details, follow up and outcome measures)

*1B tears with a stable DRUJ

DSBUN= Dorsal sensory branch ulna nerve

Table II. Secondary analysis group (demographic details, follow up and outcome measures)

	Open Arthroscopic								
	Nakamura et al	Luchetti et al	Nakamura et al	Luchetti et al	Woo et al	Jegal et al	Atzei et al	*Wysocki et	*Yao & Lee
	2011 [32]	2014 [24]	2011 [32]	2014 [24]	2016 [49]	2016 [20]	2015 [5]	<i>al</i> [50]	<i>2011</i> [51]
	(n=66)	(n=24)	(n=24)	(n=25)	(n=12)	(n=19)	(n=48)	2012 (n=29)	(n=12)
								4 Lost to F/U	
Mean follow up (months)	36	31	42	31	19	31	33	31	17.5
Minimum follow up	24	6	12	6	14	18	6	16	11
Mean age (range)	31 (16-68)**	32 (13-49)	27 (16-53)**	33 (13-69)	24.7 (17-34)	37 (16-60)	34 (17-54)	30 (13-61)	42 (19-69)
Additional injury/surgery	0	9 DR#	0	16 DR#	0	0	0	0	0
		5 wafers							
Unstable Pre-op (%)	100% (66/66)	100% (24/24)	100% (24/24)	100% (25/25)	100% (12/12)	74% (14/19)	100% (48/48)	0% (0/29)	0% (0/12)
Unstable Post-op (%)	15% (10/66)	17% (4/24)	29% (7/24)	4% (1/25)	58% (7/12)	11% (2/19)	8% (4/48)	0% (0/25)	0% (0/12)
% remaining unstable	15% (10/66)	17% (4/24)	29% (7/24)	4% (1/25)	58% (7/12)	14% (2/14)	8% (4/48)	0% (0/25)	0% (0/12)
DASH: Pre-op	-	58	-	39	48.4	44	42	38	-
DASH: Post-op	-	36 (p<0.001)	-	18	24.6 (p=0.005)	11	15	9 (p=0.003)	11 (Quick D)
VAS (Rest): Pre-op	-	2	-	2	5.3 ***	-	3	5.4 ***	-
VAS (Rest): Post-op	-	1 (NS)	-	1 (NS)	1.7 (p=0.003)	-	1	0.9 (p<0.001)	-
VAS (Active): Pre-op	-	7	-	7	-	-	8	-	-
VAS (Active): Post-op	-	4 (p<0.001)	-	3 (p<0.001)	-	-	3	-	-

MAYO: Pre-op	-	-	-	-	-	-	48	-	-
MAYO: Post-op	-	-	-	-	-	-	87	-	-
-Excellent & Good	-	-	-	-	-	n=17	n=40	-	-
-Fair & Poor	-	-	-	-	-	n=2	n=6	-	-
Grip strength									
(% of contralateral/Kg)									
-Pre-op	-	20 Kg	-	22Kg	54.9%	71%	92.7%	-	-
-Post-op	-	22 Kg (NS)		24Kg (NS)	72.8%	89%	103.6%	35Kg	64%
							(p<0.05)		
PRWE: Pre-op	-	69	-	54	58.7	53	-	-	-
PRWE: Post-op	-	42 (p<0.001)		23 (p<0.001)	30.2 (p=0.007)	19	-	-	19
Complications									
-DSBUN neurapraxia	-	-	-	-	-	-	n=5	n=2	-
-Suture knot irritation	-	-	-	-0	-	n=9	-	-	-
-ECU tendonitis	-	-	-		-	-	-	n=1	-
-FCR tendonitis	-	-	-	-	-	-	-	n=1	-

NS = not significant

DR# = distal radius fracture

DUSBN= Dorsal sensory branch ulna nerve

*1B tears with a stable DRUJ

** Cases aged <18y were skeletally mature (confirmed with author)

*** Unclear whether VAS score was done at rest or active – therefore assumed to be at rest.

Telien

For peer Review

3

Table III. Combined assessment of cases with DRUJ instability pre-operatively for both primary and secondary analysis groups, comparing open and arthroscopic treatment.

Pre-op (all Unstable)	Post-op STABLE	Post-op UNSTABLE	
Open (n=90)	76 (84.4%)	14 (15.6%)	
Arthroscopic (n=150)	129 (86%)	21 (14%)	

Supplementary material 1. Database Search strategies

PubMed (search date 24/04/2017):

"triangular fibrocartilage"[MeSH Terms] OR "triangular fibrocartilage" OR "triangular cartilage" OR "triangular fibrocartilaginous" OR TFCC OR (("distal radioulnar joint" OR "distal radioulnar joints" OR DRUJ) AND (instability OR unstable)) OR "ulnar avulsion" OR "ulnar avulsions"

Ovid Embase (search date 25/04/2017):

- 1 triangular fibrocartilage/
- 2 "triangular fibrocartilage".mp.
- 3 "triangular cartilage".mp.
- 4 "triangular fibrocartilaginous".mp.
- 5 TFCC.mp.

6 (radioulnar joint/ or "distal radioulnar joint".mp. or "distal radioulnar joints".mp. or DRUJ.mp.) and (instability or stability or unstable or stable).mp.

7 "ulnar avulsion".mp.

8 "ulnar avulsions".mp.

9 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8

Cochrane Central Register of Controlled Trials (CENTRAL) (search date 25/04/2017):

[mh "triangular fibrocartilage"] OR "triangular fibrocartilage" OR "triangular cartilage" OR "triangular fibrocartilaginous" OR TFCC OR (("distal radioulnar joint" OR "distal radioulnar joints" OR DRUJ) AND (instability OR stability OR unstable OR stable)) OR "ulnar avulsion" OR "ulnar avulsions"

Supplementary table I. References for full text articles excluded, with key reasons for exclusion.

Full text article excluded	Key reason for exclusion
Abe et al, [1]	No DRUJ stability status documented
Anderson et al, [2]	No differentiation between peripheral types
Andersson et al, [3]	Associated injuries
Atzei et al, [4]	No DRUJ stability status documented post-op
Atzei, [5]	Overlap with 2008 paper and included reconstruction with PL
Badia and Khanchandani, [6]	No DRUJ stability status documented
Baehser-Griffith et al, [7]	No DRUJ stability status documented
Buterbaugh et al, [8]	No DRUJ stability status documented No differentiation between peripheral tear type Associated injuries
Chou and Lee, [9]	Only four isolated 1B tears included - sample size considered to be too small for inclusion by senior author (TL)
Chou et al, [10]	Associated injuries and procedures
Corso et al, [11]	Associated injuries
Dailey and Palmer, [12]	No primary data available
Degreef et al, [13]	No Pre-op DRUJ stability documented Previous treatments unknown Age range: 16-56 Follow up: 7-36m
De Smet et al, [14]	No DRUJ stability status documented
Estrella et al, [15]	No differentiation between tear types
Hess et al, [16]	Reconstruction with tendon graft
Kovachevich and Elhassan, [17]	No primary data available
Luchetti et al, [18]	Associated injuries
McAdams et al, [19]	Associated ECU tendinosis in 1 DRUJ instability in 4 - unclear which patients they were

Millants et al, [20]	No DRUJ stability status documented
Miwa et al, [21]	Pre-op DRUJ status unclear Age range 14-55
Moritomo et al, [22]	4 subjects had simultaneous USO
Moritomo, [23]	3 subjects had LT 11 subjects had simultaneous USO
Nakamura et al, [24]	Limited patient information (Age, outcome scores, mean follow up)
Nakamura et al, [25]	Ambiguity regarding whether positive UV had corrective osteotomy first
Papapetropoulos et al, [26]	No DRUJ stability status documented
Park et al, [27]	No differentiation of outcomes for tear types. No post op DRUJ stability status (stable pre-op)
Reiter et al, [28]	Mean follow up of 11 months
Ruch & Papadonikolakis, [29]	No DRUJ stability status Associated injuries No differentiation between tear types
Shih et al, [30]	No differentiation between tear types.
Shinohara et al, [31]	Unclear which patient had distal radius fracture
Soreide et al, [32]	No DRUJ stability status documented
Tang et al, [33]	Mean follow up 8.2 months
Tang et al, [34]	Mean follow up 8 months. No differentiation between tear types
Trumble et al, [35]	Four patients were included with distal radius fractures
Wolf et al, [36]	5 subjects had USO post TFCC repair
Wolf et al, [37]	5 subjects had USO before mid-term results (overlap with Wolf et al, 2010)
Woo et al, [38]	Age range 17-34
Yao, [39]	No DRUJ stability status documented
Yao and Lee, [40]	No DRUJ stability status documented

- 1. Abe Y, Moriya A, Tominaga Y, Yoshida K. Dorsal Tear of Triangular Fibrocartilage Complex: Clinical Features and Treatment. J Wrist Surg. 2016;5(1): 42-6
- Anderson ML, Larson AN, Moran SL, Cooney WP, Amrami KK, Berger RA. Clinical comparison of arthroscopic versus open repair of triangular fibrocartilage complex tears. J Hand Surg [AM]. 2008;33 (5): 675-82.
- 3. Andersson JK, Axelsson P, Stromberg J, Karlsson J, Friden J. Patients with triangular fibrocartilage complex injuries and distal radioulnar joint instability have reduced rotational torque in the forearm. J Hand Surg Eur Vol. 2016;41(7): 732-8
- Atzei A, Rizzo A, Luchetti R, Fairplay T. Arthroscopic foveal repair of triangular fibrocartilage complex peripheral lesion with distal radioulnar joint instability. Tech Hand Up Extrem Surg. 2008;12(4): 226-35
- 5. Atzei A. New trends in arthroscopic management of type 1-B TFCC injuries with DRUJ instability. Journal of Hand Surgery (European Volume). 2009;34(5): 582-591.
- Badia A and Khanchandani P. Suture welding for arthroscopic repair of peripheral triangular fibrocartilage complex tears. Tech Hand up Extrem Surg. 2007;11(1): 45-50
- 7. Baehser-Griffith P, Bednar JM, Osterman AL, Culp R. Arthroscopic repairs of triangular fibrocartilage complex tears. AORN J. 1997;66(1): 101-2
- Buterbaugh GA, Brown TR, Horn PC. Ulnar-sided wrist pain in athletes. Clin Sports Med. 1998;17(3): 567-83
- 9. Chou CH and Lee TS. Peripheral tears of triangular fibrocartilage complex: results of primary repair. Int Orthop. 2001;25(6): 392-5.
- 10. Chou KH, Sarris IK, Sotereanos DG. Suture anchor repair of ulnar-sided triangular fibrocartilage complex tears. J Hand Surg Br. 2003;28(6): 546-50
- Corso SJ, Savoie FH, Geissler WB, Whipple TL, Jiminez W and Jenkins N. Arthroscopic repair of peripheral avulsions of the triangular fibrocartilage complex of the wrist: a multicenter study. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1997;13(1): 78-84.
- 12. Dailey SW and Palmer AK. The role of arthroscopy in the evaluation and treatment of triangular fibrocartilage complex injuries in athletes. Hand Clin. 2000;16(3): 461-76
- Degreef I, Welters H, Millants P, Van Ransbeeck H, De Smet L. Disability and function after arthroscopic repair of ulnar avulsions of the triangular fibrocartilage complex of the wrist. Acta Orthop Belg. 2005;71(3): 289-93

- 14. De Smet L. Van De Meulebroucke B. Van Ransbeeck H, Zachee B, Fabry G. Arthroscopic suturing of ulnar avulsions (Type 1-B) of the triangular fibrocartilage complex of the wrist. Hand Surg. 1998;3(1): 35-39
- 15. Estrella EP, Hung LK, Ho PC, Tse WL. Arthroscopic repair of triangular fibrocartilage complex tears. Arthroscopy. 2007;23 (7): 729-37
- Hess F, Sutter R, Nagy L, Schweizer A. Stability and clinical outcome after reconstruction of complete triangular fibrocartilage disruption. J Wrist Surg. 2016;5 (2): 124-130
- 17. Kovachevich R and Elhassan BT. Arthroscopic and open repair of the TFCC. Hand Clin. 2010;26 (4):485-94
- Luchetti R, Atzei A, Cozzolino R, Fairplay T and Badur N. Comparison between open and arthroscopic-assisted foveal triangular fibrocartilage complex repair for posttraumatic distal radio-ulnar joint instability. Journal of Hand Surgery (European Volume), 2014;39(8): 845-855.
- 19. McAdams TR, Swan J, Yao J. Arthroscopic treatment of triangular fibrocartilage wrist injuries in the athlete. Am J Sports Med. 2009;37 (2): 291-7
- Millants P, De Smet L, Van Ransbeeck H. Outcome study of arthroscopic suturing of ulnar avulsions of the triangular fibrocartilage complex of the wrist. Chir Main. 2002;21(5): 298-300
- 21. Miwa H, Hashizume H, Fujiwara K, Nishida K, Inoue H. Arthroscopic surgery for traumatic triangular fibrocartilage complex injury. J Orthop Sci. 2004;9(4): 354-9
- 22. Moritomo H, Masatomi T, Murase T, Miyake J, Okada K, Yoshikawa H. Open repair of foveal avulsion of the triangular fibrocartilage complex and comparison by types of injury mechanism. J Hand Surg Am. 2010;35 (12): 1955-63
- 23. Moritomo H. Open repair of the triangular fibrocartilage complex from palmar aspect.J Wrist Surg. 2015;4(1): 2-8
- 24. Nakamura T, Nakao Y, Ikegami H, Sato K, Takayama S. Open repair of the ulnar disruption of the triangular fibrocartilage complex with double three-dimensional mattress suturing technique. Tech Hand Up Extrem Surg. 2004;8(2): 116-23
- 25. Nakamura T, Sato K, Okazaki M, Toyama Y, Ikegami H. Repair of Foveal Detachment of the Triangular Fibrocartilage Complex: Open and Arthroscopic Transosseous Techniques. Hand clinics. 2011;27: 281-90

- 26. Papapetropoulos PA, Wartinbee DA, Richard MJ, Leversedge FJ, Ruch DS. Management of peripheral triangular fibrocartilage complex tears in the ulnar positive patient: arthroscopic repair versus ulnar shortening osteotomy. J Hand Surg Am. 2010;35(10):1607-13.
- 27. Park MJ, Jagadish A, Yao J. The rate of triangular fibrocartilage injuries requiring surgical intervention. Orthopedics. 2010;3(11): 806
- 28. Reiter A, Wolf MB, Schmid U, Frigge A, Dreyhaupt J, Hahn P and Unglaub F. Arthroscopic repair of Palmer 1B triangular fibrocartilage complex tears. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2008;24(11): 1244-1250.
- 29. Ruch DS and Papadonikolakis A. Arthroscopically assisted repair of peripheral triangular fibrocartilage complex tears; factors affecting outcome. Arthroscopy. 2005;21(9): 1126-30
- Shih JT, Lee HM and Tan CM.. Early isolated triangular fibrocartilage complex tears: management by arthroscopic repair. Journal of Trauma and Acute Care Surgery. 2002;53(5): 922-927.
- 31. Shinohara T, Tatebe M, Okui N, Yamamoto M, Kurimoto S, Hirata H. Arthroscopically assisted repair of triangular fibrocartilage complex foveal tears. J Hand Surg Am. 2013;38(2): 271-7
- 32. Soreide E, Husby T, Haugstvedt JR. A long-term (20 years") follow-up after arthroscopically assisted repair of the TFCC. J Plast Surg Hand Surg. 2016;1-5
- 33. Tang C, Fung B., Chan R, Fok M. The beauty of stability: distal radioulnar joint stability in arthroscopic triangular fibrocartilage complex repair. Hand Surg. 2013;18(1): 21-26
- 34. Tang CY, Fung B, Rebecca C, Lung CP. Another light in the dark: review of a new method for the arthroscopic repair of triangular fibrocartilage complex. J Hand Surg Am. 2012;37 (6): 1263-8
- 35. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage: management by early arthroscopic repair. J Hand Surg Am. 1997;22 (1): 57-65
- Wolf MB, Kroeber MW, Reiter A, et al.. Ulnar shortening after TFCC suture repair of Palmar type 1B lesions. Arch Orthop Trauma Surg. 2010;130(3): 301-6
- Wolf MB, Haas A, Dragu A, Leclere FM, Dreyhaupt J, Hahn P, Unglaub F. Arthroscopic repair of ulnar-sided triangular fibrocartilage complex (Palmar Type 1B) tears: a comparison between short-and midterm results. J Hand Surg Am. 2012;37 (11): 2325-30

- Woo SJ, Jegal M, Park MJ. Arthroscopic-assisted repair of triangular fibrocartilage complex foveal avulsion in distal radioulnar joint injury. Indian J Orthop. 2016;50 (3): 263-268.
- 39. Yao J. All-arthroscopic repair of peripheral triangular fibrocartilage complex tears. Operative techniques in sports medicine. 2010;18(3): 168-172
- 40. Yao J and Lee AT. All-arthroscopic repair of Palmer 1B triangular fibrocartilage complex tears using the FasT-Fix device. The Journal of hand surgery. 2011;36(5): 836-842.

	Iwasaki	Kim	Bayoumy
	et al,	et al,	et al,
	2011	2013	2015
1. Were there clear criteria for inclusion in	Yes	Yes	No
the case series?			
2. Was the condition measured in a	Yes	Yes	Yes
standard, reliable way for all participants			
included in the case series?			
3. Were valid methods used for identification	Yes	Yes	Yes
of the condition for all participants included			
in the case series?			
4. Did the case series have consecutive	Yes	Unclear	Yes
inclusion of participants?			
5. Did the case series have complete	Unclear	Yes	Yes
inclusion of participants?			
6. Was there clear reporting of the	Yes	Yes	Yes
demographics of the participants in the	1		
study?		R.	
7. Was there clear reporting of clinical	Yes	Yes	Unclear
information of the participants?		L	
8. Were the outcomes or follow up results of	Yes	Yes	Yes
cases clearly reported?			
9. Was there clear reporting of the	N/a	N/A	N/A
presenting site(s)/clinic(s) demographic			
information?			
10. Was statistical analysis appropriate?	Yes	Yes	Yes
	l		l

Supplementary table II. Joanna Briggs Checklist Results – Primary Analysis Group

Wysocki	Jegal	Woo et	Atzei	Nakamura	Yao &	Luchetti
et al	et al	al	et al	et al	Lee	et al
2012	2016	2016	2015	2011	2011	2014
Yes	Unclear	No	Yes	Unclear	Yes	Yes
Yes	Yes	Yes	Yes	Unclear	Yes	Yes
O						
Yes	Yes	Yes	Yes	Unclear	Yes	Yes
		~				
			0			
			12.			
			6			
Unclear	Unclear	Unclear	Unclear	No	Unclear	Unclear
				6		
Yes	Unclear	Unclear	Unclear	No	Unclear	Unclear
Yes	Yes	Yes	Yes	Yes	Yes	Yes
	et al 2012 Yes Yes Ves	et al20122016YesUnclearYesYesYesYesYesUnclearYesUnclear	et alal201220162016YesUnclearNoYesYesYesYesYesYesYesYesYesYesYesYesYesUnclearUnclearYesUnclearUnclear	et alalet al201220162015YesUnclearNoYesYesYesYesYesYesYesYesYesYesVesYesYesYesYesYesYesYesYesYesYesYesUnclearUnclearUnclearYesUnclearUnclearUnclear	et alet alet alet alet al20122016201620152011YesUnclearNoYesYesUnclearYesYesYesYesYesUnclearYesYesYesYesYesUnclearUnclearUnclearVesYesYesVesYesYesYesYesYesNoUnclearUnclearUnclearUnclearNoYesUnclearUnclearUnclearNo	et alet alet alet alet alLee20122016201520112011YesUnclearNoYesUnclearYesYesYesYesYesYesUnclearYesYesYesYesYesUnclearYesYesYesYesYesUnclearYesYesYesYesYesUnclearYesYesYesYesYesUnclearYesUnclearUnclearUnclearUnclearNoYesUnclearUnclearUnclearUnclearNoYesUnclearUnclearUnclearUnclearNoYesUnclearUnclearUnclearNoUnclear

Supplementary table III. Joanna Briggs Checklist results – Secondary analysis group

demographics of the							
participants in the							
study?							
7. Was there clear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
reporting of clinical							
information of the							
participants?							
8. Were the	Yes	Yes	Yes	Yes	Yes	Yes	Yes
outcomes or follow							
up results of cases							
clearly reported?	0						
9. Was there clear	N/a 🧹	N/a	N/a	N/a	N/a	N/a	N/a
reporting of the		R					
presenting							
site(s)/clinic(s)		() (
demographic							
information?			7	20			
10. Was statistical	Yes	N/a	Yes	Yes	N/a	N/a	Yes
analysis				1			
appropriate?							
					2		
L							

https://mc.manuscriptcentral.com/hand