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We propose and investigate a new method of quantum process tomography (QPT)
which we call projected least squares (PLS). In short, PLS consists of first computing
the least-squares estimator of the Choi matrix of an unknown channel, and subsequently
projecting it onto the convex set of Choi matrices. We consider four experimental setups
including direct QPT with Pauli eigenvectors as input and Pauli measurements, and
ancilla-assisted QPT with mutually unbiased bases (MUB) measurements. In each case,
we provide a closed form solution for the least-squares estimator of the Choi matrix.
We propose a novel, two-step method for projecting these estimators onto the set of
matrices representing physical quantum channels, and a fast numerical implementation
in the form of the hyperplane intersection projection algorithm. We provide rigorous,
non-asymptotic concentration bounds, sampling complexities and confidence regions
for the Frobenius and trace-norm error of the estimators. For the Frobenius error, the
bounds are linear in the rank of the Choi matrix, and for low ranks, they improve
the error rates of the least squares estimator by a factor d2, where d is the system
dimension. We illustrate the method with numerical experiments involving channels
on systems with up to 7 qubits, and find that PLS has highly competitive accuracy and
computational tractability.

1 Introduction
Quantum process tomography (QPT) – the task of estimating an unknown quantum transforma-
tion completely from measurement data – is a powerful, but resource-intensive, tool for quantum
technology. It has been applied in a variety of experimental contexts [1, 2, 3, 4, 5, 6]. However, the
ongoing growth in size of quantum hardware, such as quantum circuits and simulators, motivates
the design of QPT techniques that use relevant resources as sparingly as possible.

The earliest QPT proposals [7, 8] used linear inversion techniques to reconstruct quantum
channels from informationally complete datasets obtained by feeding different (known) input states
into the process and performing full quantum state tomography on the resulting outputs. Later,
it was realised that by applying the channel-state duality uncovered by Choi [9] and Jamiołkowski
[10], one could perform QPT by simply applying the channel to a maximally entangled state on
the system and an ancilla, and using quantum state tomography to reconstruct the channel’s Choi
matrix directly [11, 12]. Other statistical methods developed in the context of state estimation
have been adapted for QPT, including maximum-likelihood [13, 14, 15, 16] and Bayesian inference
[17, 18, 19, 20] techniques. In practical applications, point estimators of the quantum process
need to be accompanied by error bars [21], hence the importance of developing confidence regions
methodology [22, 23, 24].

A major challenge in current applications is the experimental and computational cost of esti-
mating high dimensional systems. The ‘low-rank’ paradigm developed in the context of compressed
sensing [25, 26, 27] partly addresses this challenge by reducing the number of measurements re-
quired to estimate channels with a small number of Kraus operators, or equivalently, a Choi matrix
Trystan Surawy-Stepney: corresponding author: eetss@leeds.ac.uk
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that is low-rank. Other types of latent structures, such as matrix product states with small bond
dimension, have been exploited in quantum tomography [28, 29, 30] and more recently extended to
quantum state and process tomography in conjunction with machine learning [31, 32]. Techniques
like randomized benchmarking can reliably certify unitary channels with limited resource consump-
tion and a robustness against state preparation and measurement errors [33, 34]. An alternative
approach is to estimate the fidelity with respect to a known target process [35, 36].

In this work we go back to the traditional ‘full-tomography’ problem and propose a computa-
tionally effective and statistically tractable QPT method, based on an extension of the projected
least-squares (PLS) method of state estimation proposed in [37]. The method is particularly ef-
fective in estimating low rank channels as a proxy for noisy unitary transformations realised in
near-term quantum architectures. We provide theoretical concentration bounds for the Frobenius
and trace-norm errors and and present simulation results for channels with up to 7 qubits (this
corresponds to a Choi matrix with 228 ≈ 2.684× 108 degrees of freedom).

Let us consider an unknown channel C : M(Cd)→M(Cd), and represent this by its Choi matrix
Φ = C ⊗Id(Ω), where Ω is a maximally entangled state on Cd⊗Cd. We gather data by repeatedly
measuring either the output of the channel with known inputs (direct QPT), or the Choi matrix as
output of C ⊗ Id (ancilla-assisted QPT). The PLS estimator Φ̂PLS is obtained by first computing
the least squares estimator Φ̂LS of Φ based on the measurement data, and then projecting this on
the convex space of Choi matrices, the latter being the intersection between the cone of positive
matrices CP and the hyperplane T P determined by the linear constraints Trs(Φ) = 1d/d. We note
that the idea of projecting the least-squares estimator of a Choi matrix onto the intersection of
CP and T P has been previously considered in [38]. However, this differs in several respects to our
implementation: we consider specific choices of input states and measurement settings for which
we provide explicit expressions for the LS estimator, and more significantly, we use a different
projection algorithm. These result in a protocol of significantly lower computational complexity
for which we are able to provide precise statistical convergence results.

We implement the projection using several methods including Dykstra’s algorithm [39] and
our own hyperplane intersection projection (HIP). Dykstra’s algorithm involves an iteration of
alternating projections onto CP and T P with certain adjustments that make sure that the limit
is the closest point with respect to the Frobenius distance. While the projection onto T P is
fast, the projection onto the cone CP requires matrix diagonalisation and is the slowest sub-
routine of the algorithm. The HIP algorithm also alternates between those projections, but uses
them to approximate CP and directly compute the projection on the intersection between this
approximation and T P. This vastly decreases the required number of iterations and leads to a
significant speed-up in the computation time, while the statistical errors remain comparable to
those of PLS using Dykstra’s algorithm. To illustrate the versatility of PLS we estimated a 7-qubit
noisy version of the quantum Fourier transform, with Pauli measurements (cf. Section 3.1 for details
of the experimental setup). The channel is obtained by performing the quantum Fourier transform
and then measuring the first qubit in the z direction with probability 1/4. Figure 1 contains a
summary of the results, showing increasing accuracy in trace-norm error, as well as eigenvalues
and eigenvectors estimators, with sample size. While sample sizes of order 1012 are prohibitive for
experiments, we note that important features become visible for more moderate sample sizes of
around 108. For a rank-one channel, 107 would arguably be enough, and is significantly less than
the number of measurement settings.

The proposed methods are accompanied by mathematically rigorous performance guarantees.
They are summarised in Theorem 1 and Corollary 1 which establish concentration bounds for
estimators resulting from four possible experimental scenarios detailed in Section 3. In particular,
we show that the number of samples required to reconstruct a rank r Choi matrix to accuracy
ε with respect the the Frobenius distance is rd2/ε2 (for trace-norm distance it becomes r2d2/ε2).
This shows that that PLS is particularly well-suited for estimating approximately unitary channels
(r ≈ 1), for which it achieves error reduction by a factor d2 compared to the ordinary LS estimator.
In Theorem 2 we provide a recipe for constructing confidence regions without any prior assumption
about the Kraus rank r.
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Full channel tomography of a noisy (2-rank) QFT on 7 qubits with Pauli measurements

Figure 1: PLS QPT of a 7-qubit noisy quantum Fourier transform (QFT) channel of rank 2 with product input
states and Pauli measurements. The top left panel shows the trace-norm error and fidelity as function of sample
size, with reasonable errors for one repetition for each combination of input state and measurement setting.
The top right panel shows the true and estimated eigenvalues of the Choi matrix as function of the sample
size. The bottom panels show details of the real part of the first Kraus operator, and the imaginary part of
the second one for different sample sizes. The structure of the first eigenvector becomes visible at 107 samples
while that of the second at 109.

Roadmap Section 2 summarises important background, in particular the LS estimator. Section
3 describes the 4 experimental procedures we analyse. Each procedure concerns either direct or
ancilla-assisted QPT and involves either Pauli measurements or mutually unbiased bases measure-
ments. Explicit expressions for each LS estimator are also provided. Section 4 introduces the PLS
estimator and its different implementations. Section 5 contains the main theoretical results de-
scribed above. Section 6 details the numerical algorithms and present numerical results comparing
different projection methods, the dependence of errors on rank, and that of the computation time
on dimension. Detailed proofs of concentration bounds for LS and PLS estimators can be found
in the appendices.

2 Background
In quantum mechanics, the state of a d-dimensional quantum system is represented by a density
matrix, i.e. a positive operator ρ ∈ M(Cd) of trace one (Tr(ρ) = 1). This state characterizes all
properties and correlations of the underlying quantum system, but is not directly accessible. One
can gain information about it by measuring the system. A measurement with a finite number of
outcomes, say {1, 2, . . . , s}, is described by a positive operator valued measure (POVM). This is a
set of positive operators {Mi}si=1 on Cd, such that

∑
iMi = 1d, where 1d is the identity operator.

The measurement outcome is random and the underlying probability distribution p is given by
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Born’s rule:
p = {pi}si=1, with pi = Tr(ρMi).

In quantum state tomography (QST) one aims to estimate an unknown state ρ by measuring a
(large) ensemble of independent state copies prepared in the state ρ. Among various measurement
and estimation techniques described in the literature [40], the projected least squares (PLS) method
[41, 37] is particularly suitable for estimating states which are well approximated by low rank
operators. In a nutshell, PLS combines an initial ‘quick and dirty’ least squares estimation step
with a ‘noise reduction’ step where the unphysical estimator is projected onto the space of quantum
states. For low-rank states, the projection step reduces the estimation error by a factor of order
d, and PLS was shown to achieve optimal error rates when the measurements are chosen from a
sufficiently generic ensemble (2-design).

In this paper we address the related problem of quantum process tomography (QPT). Rather
than estimating a quantum state, we want to estimate a physical evolution, such as that imple-
mented by a noisy quantum circuit. Such a transformation is described by a quantum channel, i.e.
a completely positive, trace preserving map

C : M(Cd)→M(Cd).

In QPT we assume that the channel is unknown, and we would like to estimate it by probing many
identical realisations of C with known input states and performing measurements on the outputs.

A particularly useful representation of C is the Choi matrix [9]. It arises from maximally
entangling the input intended for C with an equally-sized quantum memory, also called an ancilla.

Ω := |ω〉〈ω|, where|ω〉 := 1√
d

d∑
q=1
|q〉 ⊗ |q〉 ∈ Cd ⊗ Cd

is a maximally entangled state on two d-dimensional quantum systems. Here, {|q〉} denote the
computational basis vectors in Cd. By applying the channel C to the system and leaving the
quantum memory untouched, we obtain the Choi matrix of the channel

Φ = ΦC = (C ⊗ Id)(Ω).

Here, Id denotes the identity operation on the quantum memory (do nothing). The Choi matrix
describes a bipartite quantum state which satisfies the constraint Trs(Φ) = 1d/d, where Trs/a
denotes the partial trace over the system or ancilla respectively. Conversely, any positive operator
satisfying the above constraint is the Choi matrix of a quantum channel. The action of the quantum
channel C on a state ρ can be expressed in terms of its Choi matrix as

C(ρ) = Tra(Φ (1d ⊗ ρ>)), (1)

where > denotes the transpose.
Quantum channel and Choi matrix are two mathematically equivalent descriptions of the un-

derlying process. Moving from one to the other allows us to recast QPT as an instance of QST.
Meaningful distance measures between channels, say C1 and C2, can also be expressed in terms of
differences between the Choi matrices Φ1 and Φ2. This includes the squared Frobenius distance

‖Φ1 − Φ2‖22 = Tr
[
(Φ1 − Φ2)2] ,

as well as trace distance

‖Φ1 − Φ2‖1 = Tr(|Φ1 − Φ2|), |X| =
√
X∗X.

The latter is related to the diamond distance between the underlying channels – arguably one of
the strongest and most widely used distance measures for quantum channels, see e.g. [42, Propo-
sition 50].

We restrict our attention to independent and sequential uses of the channel. This is an actual
restriction, as there are powerful techniques for QST [43, 44, 45], as well as quantum enhanced
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metrology [46, 47], which require the parallel application of the channel to different parts of a global
quantum system. We do, however, investigate both ancilla-free and ancilla-assisted strategies.

In the first case the system is measured after an appropriate input state ρ has been passed
through the channel C. In this case the probabilities associated to an output measurement with
POVM {Mi}si=1 are

pi = Tr(C(ρ)Mi) = Tr
(
Φ(Mi ⊗ ρ>)

)
,

where the second equality uses Eq. (1). This procedure is illustrated in Figure 4, Section 3.2.
In the ancilla-assisted case, we input one half of a maximally entangled state Ω into the unknown

channel, the other half is left unchanged in a quantum memory. This procedure is illustrated in
Figure 3, Section 3.1 and produces an output quantum state described by the Choi matrix Φ.
Subsequently, we perform quantum measurements. The outcome probabilities associated with
POVM {Mi}si=1 are

pi = Tr(ΦMi).
A common feature of both setups described above is the existence of a positive linear transfor-

mation
A : M(Cd)⊗M(Cd)→ Cs

which maps the Choi matrix Φ into the probability vector of the measurement outcomes. That is,
p = A(Φ) ∈ Cs, where s counts the number of measurement outcomes. This follows from the fact
that the measured states depend linearly on the channel which, in turn, is in a linear, one-to-one
correspondence with its Choi matrix.

After performing several independent preparation-measurement rounds, the data is collected
as a vector of frequencies f ∈ Rs, so that for for large sample sizes f ≈ p. The resulting estimation
problem can be recast as linear regression

f = p+ ε = A(Φ) + ε,

where ε is the statistical noise due to finite sample size. The simplest estimator for Φ is the least
squares (LS) estimator:

Φ̂LS = arg min
τ
‖A(τ)− f‖ = (A†A)−1A†(f), (2)

where A† is the adjoint of A. The minimum is taken over all matrices τ on Cd⊗Cd with compatible
dimension, and the loss function ‖ · ‖ is the `2-norm.

The solution to Problem (2) is easy to compute and produces a self-adjoint matrix with unit
trace. However, Φ̂LS is typically not a Choi matrix of a channel. A quantum channel must be
trace-preserving and completely positive; properties which provide additional constraints on the
estimators of the Choi matrix. To obtain estimators representing physical quantum channels, we
propose to project the LS estimators onto the set of matrices that satisfy the given constraints.

By Choi’s theorem [9], the complete positivity condition for the quantum channel is equivalent
to the positive semidefiniteness of the d2×d2 Choi matrix. The convex set of positive-semidefinite
matrices forms a pointed cone in the space of complex square matrices. We call this cone CP, be-
cause it contains matrices that represent completely positive maps. The trace-preserving property
of the quantum channel is equivalent to a partial trace condition for the Choi matrix: TrsΦ = 1d/d.
This provides a further affine constraint involving d2 elements. Hence, the trace-preserving matri-
ces lie on a flat plane of dimension d4 − d2. We call this set T P.

The intersection of CP and T P forms the set of matrices that represent physical quantum
channels. Accordingly, we call this intersection CPT P and refer to Figure 2 for a geometric
illustration.

For concreteness, we focus on reconstructing physical evolutions of multi-qubit systems. That
is, the unknown channel C acts on a quantum system comprised of k qubits, i.e. d = 2k. This will
allow us to discuss different scenarios depending on the choice of measurement and input states.
We will focus on two types of measurement setups: single-qubit Pauli measurements and (global)
mutually unbiased basis measurements. The different choices of experimental strategies (ancila-
free or ancilla-assisted) and measurement setups (single-qubit Pauli or mutually unbiased bases)
produce four scenarios which are discussed in detail in the following section. For each scenario, we
give a closed form solution to Eq. (2).
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Figure 2: The set of CP maps on M(Cd) are represented via the Choi isomorphism by a pointed cone embedded
in M(Cd2

). The set of trace preserving maps forms a hyperplane with codimension d2, whose intersection with
the CP cone is the set of Choi matrices. We also show a representation of the projection of the LS estimator
onto the set of quantum states, giving Φ̂CP 1, followed by the projection onto CPT P, including mixing with
1d/d, with solution Φ̂P LS .

3 Proposed experimental procedures and least-squares estimators
3.1 Scenario 1: ancilla-assisted QPT with single-qubit Pauli measurements
We first propose an ancilla-assisted protocol. The experimenter prepares many independent copies
of the maximally entangled state Ω and acts with the quantum channel on the right subsystem
consisting of k qubits, before performing state tomography on the collection of output states which
are instances of the Choi matrix Φ (Figure 3).
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Figure 3: Ancilla-assisted QPT.

The experimenter performs single-qubit Pauli measurements on each of the 2k qubits. That
is, each qubit is measured either in the (Pauli) x-, y- or z-basis. Let {|0, s〉, |1, s〉} denote the
eigenbasis of the Pauli matrix σs, i.e. σs|o, s〉 = (−1)o|o, s〉 for s = x, y, z (Pauli matrix) and
o = −1,+1 (eigenvalue). In particular, | + 1, z〉 = |0〉 and | − 1, z〉 = |1〉 (computational basis),
while |+ 1, x〉 = |+〉 and | − 1, x〉 = |−〉 (Hadamard basis). To measure the Pauli observable σs we
apply a single-qubit basis change Us =

∑1
o=0 |o, s〉〈o, s| and, subsequently, measure the qubit in

the standard basis. For a given collective setting s = (s1, . . . , s2k) ∈ {x, y, z}2k, the corresponding
2k-qubit unitary factorizes nicely into tensor products: U = ⊗iUsi

, see Figure 3. The outcome of
such a measurement is a sequence o = (o1, . . . , o2k) ∈ {0, 1}2k, and the corresponding POVM is
the set of one dimensional projections P s

o = ⊗2k
i=1|oi, si〉〈oi, si|.

Two schemes for generating measurement settings come to mind: a ‘fixed’ one and a ‘random’
one. In the fixed scheme, we cycle through all 32k possible measurement settings a total of ν
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times. There, sample size N transforms to ν32k cycles. In the random scheme, we choose mea-
surement settings uniformly at random, and write ν = N/32k for the mean number of times each
measurement setting is used. In the random scheme ν may be non-integer and strictly smaller
than one.

In both cases, the frequency f s
o is equal to the number of times the outcome o has occurred

when measuring in setting s, divided by ν.
These frequencies are unbiased estimators of, and tend to in the limit of large N , the probabil-

ities of observing outcome o when measuring with setting s, given by Born’s rule:

ps
o = Tr(ΦP s

o). (3)

The formula of the least-squares estimator can be adapted from [37] which deals with QST
from single-qubit Pauli measurements:

Φ̂LS = 1
32k

∑
s,o

f s
o

2k⊗
i=1

(3|oi, si〉〈oi, si| − 12). (4)

Here, the |oi, si〉 are single-qubit eigenstates of a Pauli matrix, and 12 is the 2-dimensional identity
operator.

3.2 Scenario 2: Direct QPT with single-qubit Pauli measurements
Compared to preparing a large number of maximally entangled states of 2k qubits, individual
k-qubit (pure) product states are a much more tractable proposition. Our second proposed exper-
imental setup, illustrated in Figure 4, takes this into account.

C U2U1

|0〉
|0〉

|0〉

P a
p C(P a

p )

Figure 4: Direct QPT (without ancilla)

The experimenter prepares a state from the set of pure product states {P a
p
>} where a ∈

{x, y, z}k and p ∈ {0, 1}k, and > denotes the transpose. This is achieved by initialising the qubits
in the product state |0〉 = ⊗ki=1|0〉 and applying a unitary Uai

pi
to qubit i such that

Uxp |0〉 7→ |p, x〉, Uyp |0〉 7→ |p⊕ 1, y〉, Uzp |0〉 7→ |p, z〉

The overall product unitary is U = ⊗ki=1U
ai

bi
.

The quantum channel C is applied to the prepared state producing the output state C(P a
p
>).

Using another product unitary U2 as described in the previous section, the experimenter performs
a Pauli measurement with measurement setting b ∈ {x, y, z}k, to obtain an outcome q ∈ {0, 1}k.
Similarly to scenario 1, either we repeat the procedure a fixed number of times ν for each choice of
indices a,b,p, so that the sample size is N = ν32k2k, or we choose the indices at random for each
of the N samples and set ν = N/(32k2k) for the mean number of times each setting is used. The
q-th frequency entry {fab

pq}q counts the number of times outcome q is observed having measured
the state C(P a

p
>) with setting b, divided by ν. These frequencies are unbiased estimators of the

probabilities
pab
pq = Tr(C(P a

p
>)P b

q ) (5)

and converge to them in the limit of large N .
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Proposition 1. For direct QPT with single-qubit Pauli inputs and single-qubit Pauli measure-
ments, the least-squares estimator for the Choi matrix Φ of a k-qubit quantum channel takes the
following form:

Φ̂LS = 1
32kd

∑
abpq

fab
qp

k⊗
i=1

M bi
pi

k⊗
j=1

M aj
qj
, where (6)

M bi
pi

= (3|pi, bi〉〈pi, bi| − 12), (7)
M aj

qj
= (3|qj , aj〉〈qj , aj | − 12). (8)

We refer to Appendix 8.1 for a proof.

3.3 Scenario 3: Ancilla-assisted QPT with mutually unbiased basis measurements
The set-up is similar to that of ancilla-assisted QPT with single-qubit Pauli measurements, though
we now use the POVM consisting of a maximal set of mutually unbiased bases (MUB) [48, 49] to
measure instances of the Choi matrix. Such measurements require entangling gates to implement,
but they also have a rich, global structure that turns out to produce sampling complexities that
are essentially optimal [37]. A MUB POVM on 2k qubits consists of m = d2(d2 + 1) rank-one
operators {Mk = |vk〉〈vk|/(d2 + 1)}mk=1 in d2 = 22k dimension. Each vector (range) |vk〉 belongs to
one of d2 +1 orthonormal bases, and any pair belonging to different bases satisfies the unbiasedness
condition |〈vi|vj〉|2 = d−2. The following ‘near isotropy’ property is shared with a larger class of
2-design POVMs, see e.g. [50, Lemma 8], and plays an important role in proving our results:

m∑
k=1
|vk〉〈vk|Tr(|vk〉〈vk|A) = A+ Tr(A)1⊗2

d ,

for all operators A with compatible dimensions. Our proofs rely mainly on the near isotropy
property and can therefore be readily generalized to other (approximate) 2-design constructions.
Concrete examples are symmetric informationally complete (SIC) POVMs [51], complete sets of
stabiliser states [52] and local random circuits of depth (order) k [53, 54, 55].

Let us now return to the actual protocol. The system-ancilla input state Ω is passed through
the channel C ⊗ Id and produces a system characterized by the Choi matrix Φ as output. This
system is then measured with a MUB POVM as described above. The frequency fi indicates the
number of times outcome i is observed, divided by the total number of measurements N . These
frequencies are unbiased estimators of, and tend to in the limit of large N , the probabilities

pi = Tr(ΦMi). (9)

As with single-qubit Pauli measurements, the expression of the least squares estimator is found in
[37]

Φ̂LS = (d2 + 1)
m∑
i=1

fi|vi〉〈vi| − 1d2 . (10)

3.4 Scenario 4: Direct QPT with mutually unbiased basis measurements
Our final experimental method is similar to direct QPT with single-qubit Pauli measurements, in
that we do not use an ancillary system. However, we use a different POVM and a different set of
input states.

As input states we use the transposes of one dimensional projections |wk〉〈wk| onto vectors of a
set of d+ 1 MUBs. On the respective outputs, we measure a MUB POVM whose elements |vl〉〈vl|
may be different from those of the input. As with the previous scenario, similar results can be
obtained with other 2-designs.

Here, frequencies fkl indicate the number of times outcome l ∈ {1, . . . ,m} is observed having
measured the state C(|wk〉〈wk|>), divided by the (mean) number of repetitions ν = N

m . These
frequencies are unbiased estimators of the probabilities

pkl = Tr(C(|wk〉〈wk|>)Ml), (11)
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with Ml = 1
d+1 |vl〉〈vl| and converge to them in the limit of large N .

Proposition 2. For direct QPT with (transposed) MUB inputs (|wi〉〈wi|)> and MUB measure-
ments d

m |vl〉〈vl|, the least-squares estimator for the Choi matrix Φ of a k-qubit quantum channel
takes the following form:

Φ̂LS = d+ 1
d

m∑
l,k=1

fkl |vl〉〈vl| ⊗ |wk〉〈wk|

−1
d

m∑
l,k=1

fkl (|vl〉〈vl| ⊗ 1d + 1d ⊗ |wk〉〈wk|)

+1d ⊗ 1d. (12)

We refer to Appendix 8.2 for a proof.

We conclude this section by emphasizing that all estimators found from (2) are linear and
unbiased, given that the frequencies observed are unbiased estimators of true probabilities. Hence
those estimators discussed so far, Φ̂LS , are unbiased estimators of the underlying Choi matrix Φ.

4 Methods of projection
We turn our attention now to the task of finding our final estimator, Φ̂PLS ∈ CPT P, from the
least-squares estimator Φ̂LS . We do this in the following way (see Figure 2 for an illustration of
the geometry):

1. Project Φ̂LS onto the set of CP matrices of trace one (the quantum states) - we call this set
CP1 and the resulting estimator Φ̂CP1.

2. ‘Project’ Φ̂CP1 onto CPT P to obtain Φ̂PLS .

For reference, the projection of a matrix M onto a non-empty closed convex set S with respect to
a norm ‖ · ‖α is defined by: Mproj = argminM ′∈S ‖M −M ′‖α.

In order for our theoretical results to hold, the above two procedures need not constitute true
projections. For our purposes an adequate ‘projection’ would be to find points in CP1 and CPT P
respectively that satisfy the following two key properties:

‖Φ− Φ̂CP1‖∞ ≤ 2‖Φ− Φ̂LS‖∞, (13)
‖Φ− Φ̂PLS‖2 ≤ ‖Φ− Φ̂CP1‖2, (14)

where Φ is the Choi matrix we are trying to estimate and here, and henceforth, ‖ · ‖∞ indicates
the operator norm. While a direct, Frobenius projection of Φ̂LS onto CPT P (e.g. using Dykstra’s
algorithm) may seem less involved than the above procedure, our method turns out to be more
amenable to deriving a priori error bounds that are capable of resolving latent structure in the
form of low rank. In addition, the advantage of working with more relaxed definitions is that we
obtain ‘projections’ that are easier to compute numerically, and better-behaved in practice. For
the rest of the paper we focus on the two-step method, but some results also hold for the direct
projection method (see Appendix 12). We give the general description of steps 1 and 2 and point
to the numerics Section 6 for the detailed algorithms.

Step 1. The projection onto CP1 is implemented by an eigenvalue thresholding algorithm (cf.
Section 6.1 for the details and the proof of property (13)). This step constitutes a true projection.

Step 2. Finding Φ̂PLS from Φ̂CP1 is the problem of projecting a matrix onto the intersection
of two convex sets (CP and T P) and is the most involved part of the PLS algorithm. We sketch
3 possible, iterative procedures, including our preferred HIP method, and refer to Section 6.2 for
detailed algorithms and the proof of property (14). The key idea behind the contraction property
((14)) is contained in the following lemma whose proof can be found a number of textbooks, e.g.
[56], Prop 4.16.
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Lemma 1. Let S be a closed, non-empty, convex subset ofM(Cd2) and let PS : M(Cd2)→M(Cd2)
be the projection onto S with respect to the Frobenius distance. Then the projection of a matrix A
onto S is closer to every point B in S than A, i.e.

‖PS(A)−B‖2 ≤ ‖A−B‖2.

Using Lemma 1, one may construct a ‘projection’ of a matrix X onto CPT P, satisfying prop-
erty (14), by repeatedly projecting X onto a set of convex sets containing CPT P. One such choice
is to project X alternately onto T P and CP. We refer to this as alternating projections (AP).
AP can be made into a true projection onto CPT P by adding a correction term orthogonal to
CP after each CP projection – this is Dykstra’s algorithm [39]. In this work, we define our own
fast, generalised algorithm which makes use of Lemma 1 – called hyperplane intersection projection
(HIP), a discussion of which is deferred to Section 6.2. Again, this does not constitute a true
projection but satisfies property (14). We find this algorithm to be significantly faster than AP or
Dykstra’s algorithm, with continued convergence at large iterations (see Section 6.3.).

Whichever of the above iterative methods we chose, after a number of iterations we need to
ensure that Φ̂PLS exactly satisfies the conditions to be an element of CPT P. For this, we mix
the current estimator with the maximally mixed state. Concretely, after near-convergence of the
projection algorithm, we have an estimator Φ̂′PLS in T P but which may have very small negative
eigenvalues. We call the largest magnitude of these λmin. For a system of dimension d, we thus
then take our final estimator to be

Φ̂PLS = (1− p)Φ̂′PLS + p

d2 1d (15)

where p is the solution to (1 − p)λmin + p/d2 = 0. In this way, we ensure the estimator is
positive-semidefinite while simultaneously preserving the partial trace condition. Mixing with the
maximally mixed state adds an error proportional to ‖λmin‖, hence this additional error can be
made arbitrarily small by stopping the algorithm when λmin is sufficiently small in magnitude. The
convergence rate of the algorithm is hence defined by how quickly ‖λmin‖ falls below the required
threshold.

Closed form expressions for projections onto CP, T P and CP1 are required for the imple-
mentation of any protocol discussed in this work. These are provided and proven in Appendix
13.

5 Error bounds and sampling complexities
In this section we provide rigorous error bounds on the PLS estimator in the four experimental
scenarios described in Section 3. We first state our results in terms of concetration bounds for
the squared Frobenius norm distance ‖Φ̂ − Φ‖22 and the trace norm (L1) distance ‖Φ̂ − Φ‖1, and
then discuss how such results can be used to construct confidence regions. A discussion of different
channel distance measures, and how they compare to each other, can be found in [57], see also
[58, 59, 60].

Theorem 1. Let C be a k-qubit channel and assume that its Choi matrix Φ has rank r. The squared
Frobenius norm error of the estimators Φ̂PLS derived from the LS estimators Φ̂LS in scenarios 3.1,
3.2, 3.3, and 3.4 satisfy the following error bounds: for ε ∈ (0, 1),

Pr[‖Φ̂PLS − Φ‖2 ≥ ε] ≤ 22kexp
(
−3Nε2

8
g(k)
8r

)
, (16)

and, respectively,

Pr[‖Φ̂PLS − Φ‖1 ≥ ε] ≤ 22k exp
(
−3Nε2

32
g(k)
8r2

)
. (17)
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Here, g(k) is a function that depends on the number of qubits k and the type of measurement
scenario:

g(k) =


1

32k Scenarios 3.1, 3.2,
1
2

1
22k Scenario 3.3,

1
4

1
22k Scenario 3.4.

(18)

Theorem 1 shows that the PLS estimators can be brought arbitrarily close to the true Choi
matrix, provided that we perform sufficiently many measurements. In particular, the Frobenius
square error rates scale as O(r/(Ng(k))) up to logarithmic factors, and we note that scenarios 3.1
and 3.2 exhibit error bounds which are larger by a factor (3/2)2k than those of scenarios 3.3 and 3.4.
This is consistent with the fact that MUB measurements are more ‘informative’ than local Pauli
measurements that necessarily factorize in to tensor products [61, 62, 63]. Another interesting
observation is that the error rates for ancilla-assisted versus ancilla-free settings are the same in
the case of Pauli measurements and differ only by a factor 2 in the case of MUB measurements.

The next corollary provides the sampling complexities derived from the above the theorem.

Corollary 1. Fix ε, η ∈ (0, 1). To achieve Frobenius accuracy

Pr[‖Φ̂PLS − Φ‖2 ≥ ε ] ≤ η, (19)

one requires a sample size of

N(k, r) ≥ 32r
g(k)

8
3ε2 log(22k

η
). (20)

Up to logarithmic factors, this results in sampling complexity

N(k, r) =
{
O( 1

ε2 d
3.17r) for Scenarios 3.1, 3.2,

O( 1
ε2 d

2r) for Scenarios 3.3, 3.4.
(21)

These observations showcase that the PLS method for QPT yields sampling complexities which
increase linearly for the Frobenius error (quadratically for norm-one error) with the rank of the
channel, so that low rank channels have lower errors than full rank ones. This behavior is very
similar to compressed sensing estimators that are designed to exploit (approximate) low rank
[25, 26, 27]. In contrast, the LS estimator shows weak dependence on rank and for low rank states,
its Frobenius error is O(d2) larger that that of PLS, as shown in Corollary 2 in Appendix 9.5 .

Although the concentration bounds characterise the PLS error behaviour in terms of rank, it
is unlikely that an experimenter knows the rank of the Choi matrix of the quantum process under
investigation. Therefore, the bounds cannot be used to construct confidence regions unless the
rank is known. We now state a more general result which allows us to define confidence regions
without prior knowledge of the rank of Φ, but rather in terms of properties of the estimator Φ̂CP1.

To state the result, we first formalise a notion of being close to rank r:

Definition 1. A state ρ is δ-almost rank r if there is a rank r state ρ(r) such that

‖ρ− ρ(r)‖∞ ≤ δ. (22)

Theorem 2 below provides confidence balls for the PLS estimator for both the Frobenius and
the trace-norm distance, in terms of computable properties of the intermediary estimator Φ̂CP1.

Theorem 2. Let Φ be the Choi matrix of a channel and Φ̂PLS our estimator, generated with any
‘projections’ satisfying Properties (13) and (14). Suppose that Φ̂CP1 is δ-almost rank r for some
(r, δ). Then, with probability (at least) 1− ε,

‖Φ̂PLS − Φ‖22 ≤ 2r
(
δ + 2

√
8 ln(22k/ε)

3Ng(k)

)2

. (23)
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The trace distance error ‖Φ̂PLS − Φ‖1 is instead bounded by

r

(
(4
√

2 + 2)δ + (4 + 8
√

2)

√
8 ln(22k/ε)

3Ng(k)

)
. (24)

In both cases, g(k) has been defined in (18).

The theorem can be applied by choosing the pair (r, δ) which provides the tightest bound and
constitutes the confidence ball. All the results of this section follow from Theorem 4 - proven in
appendix 11.

We finally note that the constants given in Theorems 1 and 2 and Corollary 1 are likely to the
pessimistic and the true error probabilities may be significantly smaller. However, the advantage
is that the bounds hold exactly for any channel and any N . It is certainly possible to get tighter
asymptotic bounds for large N .

6 Numerical experiments
In this section we outline the implementation and results of several computer simulations to illus-
trate the proposed methods.

All experiments presented in this section were run on a quad-core Intel Core i3-8100 with 16
GB memory (computation times given in Figure 8). Mainly because of memory requirements, the
experiments on 7 qubits in Figure 1 were done on 64 cores of Intel Xeon E7-8890 with 512 GB
memory, needing around three days for each.

The code is available on GitHub [64]. The repository also contains up-to-date information on
the future article on the theoretical underpinnings and heuristics behind HIP [65].

6.1 Thresholded projection on trace-one CP operators
As described in Section 4, the first step of the PLS method is the projection of Φ̂LS onto the
space of quantum states CP1. This is implemented using the following algorithm which describes
a general thresholded projection process.

Algorithm 1 Thresholded Projection on trace-one CP
1: function projCP(Φ matrix with trace 1, τ =threshold)
2: λ1 ≤ · · · ≤ λd ← eigenvalues of Φ
3: v1, . . . , vn ← corresponding eigenvectors of Φ
4: for 1 ≤ i ≤ d do
5: if λi ≤ τ then
6: µi ← 0
7: else
8: µi ← λi + τ

9: if
∑
µi ≥ 1 then

10: Find x0 such that
∑

(µi − x0)+ = 1
11: ∀i, µi ← (µi − x0)+
12: else
13: find j such that
14:

∑d
j+1 λi + (d− j − 1)τ < 1 ≤

∑d
j λi + (d− j)τ

15: ∀i ≥ j, µi ← λi + τ
16: µj−1 ← 1−

∑d
j λi + (d− j)τ

17: ∀i < j − 1, µi ← 0
18: return operator

∑
i µi|vi〉〈vi|

The algorithm is separated into two parts. The first, up to and including line 8, is a thresholded
projection onto CP, while the second (lines 9 to 17) ensures unit trace and completes the thresh-
olded projection onto CP1. Note that performing the first part of the algorithm while setting τ = 0
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produces the direct Frobenius projection onto CP (see appendix 13.2 for the proof). We choose,
for projection onto CP1, τ = −λmin(Φ̂LS) (the sign-flipped, least eigenvalue of Φ̂LS), though we
note that the output satisfies Property (13) regardless of the value of τ (Lemma 2 in the appendix
10).

For numeric implementations, we use the full eigenvalue decomposition (EVD) but acknowledge
that iterative, randomised implementations or the use of partial EVDs can have a lower theoretical
complexity with lower memory requirements - especially in the estimation of high-dimensional,
low-rank processes.

6.2 Hyperplane intersection projection
We now move on to discuss the numerical implementation of the second step in the PLS projection,
that of Φ̂CP1 onto CPT P. In order to solve this problem, we have developed a fast, generalised
‘projection’ algorithm to find a point in the intersection of an affine space and a convex set satisfying
Property (14). Here we give a high-level description of the hyperplane intersection projection and
prove that it satisfies Property (14) (cf. Lemma 3 in appendix 10).

We know how to efficiently project (in Euclidean distance) onto CP and T P, though the
projection projCP on CP is more costly. (Closed form expressions for these projections are given
in appendix 13, and we do not provide explicit algorithms for them, given their simplicity.)

In the hyperplane intersection projection (HIP) algorithm, we switch between the AP regime
(projecting alternately onto CP and T P) and HIP mode, based on a criterion discussed below.
In HIP mode, we keep a list of half-spaces that contain CP - defined by the estimator after each
iteration - and project on the intersection of a large subset of these half-spaces and T P. The key
idea that allows efficient computations is that it is easy to do the following two things: project onto
the intersection of hyperplanes, and check that the projection onto the intersection of hyperplanes
is the same as the projection onto the intersection of half-spaces. We select a large subset of
half-spaces that ensures that this equality holds, before projecting onto the intersection of T P and
the associated set of hyperplanes. See algorithms 2 and 3 for pseudocode respectively showing
construction of the set of hyperplanes, and the HIP algorithm.

Algorithm 2 Choosing hyperplanes
1: function HIP_inner(w_list list of half-spaces, Φ state)
2: w_active ← empty list
3: for w ∈ w_list do
4: . The following test can be checked by looking at whether some coefficients are all

non-negative.
5: if the projection of Φ on the intersection of T P and the half-spaces of w_active and

w is equal to the projection of Φ on the intersection of T P and the corresponding hyperplanes
then

6: Append w to w_active
7: Φnew ← the projection of Φ on the intersection of T P and the half-spaces in w_active
8: return w_active, Φnew

Whatever the criterion for switching between AP and HIP mode, Property 14 is always satis-
fied. An easy choice that works well in practice is to take a small fixed number of steps (say six)
in AP mode, and a bigger fixed number of steps (say thirty) in HIP mode. The criterion we use
in the experiments is more convoluted, and can be read in the implementation [64].

6.3 Comparison of projection algorithms
Here, we compare the performance of several variants of the HIP algorithm discussed in Section
6.2, with AP and Dykstra’s algorithm.

It turns out that the largest reduction in error during the projection of Φ̂LS onto CPT P occurs
during the initial thresholded projection onto CP1 discussed in Section 6.1. After near-convergence
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Algorithm 3 Hyperplane Intersection Projection
1: function HIP(Φ initial state, ε tolerance)
2: mode ← AP
3: while λmin(Φ) < −ε do
4: while mode = AP do
5: Φ← projCP(Φ)
6: Φ← projT P(Φ)
7: if SwitchCondition_toHIP then
8: mode← HIP
9: w_active← empty list

10: while mode = HIP do
11: ΦCP ← projCP(Φ)
12: w← half-space containing CP orthogonal at ΦCP to ΦCP − Φ
13: Add w as first element of w_active
14: w_active,Φ← HIP_inner(w_active,Φ)
15: if SwitchCondition_toAP then
16: mode← AP
17: return Φ

of any of the subsequent algorithms discussed, before mixing with the depolarizing channel, the L1

distance ‖Φ̂PLS −Φ‖1 is the same as that of ‖Φ̂CP1 −Φ‖1, up to a relative change of five percent.
Hence the important question regarding the choice of algorithm is which converges the fastest?

We test convergence times for ‘projections’ of Φ̂LS for a 5-qubit quantum Fourier transform,
with 5 different algorithmic implementations: AP, Dykstra, HIPswitch, OneHIP (HIP without any
memory of past hyperplanes or switches to AP), and PureHIP (no switch to AP). (HIPswitch,
OneHIP and PureHIP are variations on Algorithm 3, and we provide their explicit algorithmic
implementations in Appendix 14.) We do so primarily to test the convergence time of our main
algorithm HIPswitch compared to that of AP and Dykstra. Additionally, by turning on parts of
HIPswitch in turn (OneHIP, PureHIP) we explore the efficacy of the algorithm. Note also in Figure
5, that we display the results of a dual-approach to the projection of Φ̂CP1 onto CPT P; we defer
a discussion of this to Section 6.7.

Figure 5: Convergence of different projections for the quantum Fourier transform on 5 qubits, sample size 107.
The plot shows minus the log of the least eigenvalue of Φ̂T P as function of number of iterations for different
implementations. The projection algorithm based on the dual problem is discussed in section 6.7.
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In Figure 5, we see that:

• Dykstra’s algorithm and AP are almost indistinguishable, and do not converge in reasonable
time.

• The simplified version oneHIP of HIP, without memory of past hyperplanes or AP, does a
little better, but also fails to converge rapidly.

• The simplified version of HIP ‘pureHIP’, in which we always stay in HIP mode, improves
linearly in this setting.

• The main algorithm HIPswitch converges faster than pureHIP. The flat low points corre-
spond to the AP mode. At the end, we might have hit the quadratic convergence regime.
HIPswitch and pureHIP attain this faster on easier problems (lower dimension, higher rank)
for convergence.

In all subsequent experiments discussed in this article, we use the algorithm HIPswitch (Al-
gorithm 3). We stop when the effect of adding the depolarizing channel changes the trace-norm
distance by at most 2× 10−3, corresponding to a least eigenvalue of 10−7 for 5 qubits, i.e. −7 on
Figure 5.

6.4 Effect of sample size

Figure 6: Trace-norm error as function of sample size for PLS (blue lines) and LS (yellow line) of a QFT on
5 qubits. The slope of the lines corresponds to a

√
N rate. The two blue lines correspond to two regimes

determined by the rank of the first projection Φ̂CP 1, and are roughly 4/d2 times the least-squares line.

We now look at how the performance of our QPT method depends on the number of mea-
surements made. We repeat ten times the estimation of the QFT on 5 qubits, for sample sizes of
N = 3e5, 1e6, 3e6, 1e7, 3e7, 1e8. We can see on Figure 6 that:

• unsurprisingly, the least-squares estimator error scales as N−1/2.

• The least-squares estimator always has almost the same error for the same sample size: each
set of ten points is indistinguishable on the figure.

• Our final estimator has two possible regimes. It depends on the rank of the first projection
Φ̂CP1. For a given rank, there is visible but low variation of the loss.

• Most importantly, the final estimator also scales as N−1/2.

• For this rank-one channel, the final estimator divides the loss of the least-squares estimator
by d2/3 or d2/5. That is, for 5 qubits, we improve by a factor of 300.
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6.5 Effect of rank

Figure 7: Trace norm error for 5-qubit channels of different ranks, with different sample sizes. The dots
corrsespond to ten repetitions for each experiment. Light colored dots correspond to intial projection on CP1
with no thresholding.

In this section, we estimate sums of orthogonal unitary channels, with the ranks 1, 2, 4, 8, 16, 32,
and equal eigenvalues. We include a comparison of the performance of the projected estimator
when using the two methods of initial projection onto CP1: our default thresholded projection,
and Frobenius projection, using the same data. We test for sample sizes N = 1e6, 1e7, 1e8. Each
experiment is reproduced ten times. In Figure 7, we see that:

• the loss is slightly less than linear in the rank, until it is close to the maximum of 2.

• The thresholded projection is much better than the standard projection, unless the loss is
already close to the maximum of 2, in which case it is worse.

• The effect of getting the wrong rank with the thresholded projection decreases with the rank.

6.6 Effect of dimension
We now test the estimation of the Quantum Fourier Transform using Pauli measurements on one
to six qubits, and for mutually unbiased measurements in dimensions 3, 7, 11, 17, 31, 67. To get
comparable losses, we copy the scaling of Theorem 1, and set the respective sample sizes as 10×9k
for k qubits, and 100× d2, equivalent to 100× 4k, for MUBs.

In Figure 8, we show the mean trace norm loss and time requirements over ten experiments.
For the latter, we show the time needed for one loop of algorithm 3, and the time needed for
the whole estimation. (We do not include the time taken for the generation of the least-squares
estimator, as it is included in the data generation.) We can see that:

• the scaling of Theorem 1 seems comparable to what we get in practice.

• The time for each loop does not depend on the setting. Slightly more loops are usually
needed for MUBs than for Pauli.

• We see that the scaling in time gets steeper: possibly for low dimension, bigger arrays are
computed faster per entry. The most time-consuming operation is the diagonalisation in
projCP , and its implementation will dictate the complexity. Going from five to six qubits
makes loops forty times slower, and the whole computation ninety times slower, hence more
loops are required.
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Figure 8: Sample size: 10× 9k for Pauli, 100× 4k for MUBs.

• Experiments on six qubits can be done in half an hour on a personal computer (plus 15
minutes to generate the data); on 5 qubits in less than twenty seconds.

The memory requirements are at the very minimum of d4, the size of the Choi matrix. With
Algorithm 3, we need to keep one such matrix in memory for each hyperplane, which can multiply
the needs by 20. However, the limiting factor for the simulations in the Pauli setting is the data
generation, where a careful reasonably fast implementation requires 24k complex entries.

6.7 An alternative optimisation procedure
We thank an anonymous referee for pointing out that the dual optimisation problem for finding the
projection onto CPT P may be more well-behaved than the primal one. Starting from that point,
it is possible to devise a simpler projection algorithm that yields the Euclidean projection, is well-
rooted in optimisation theory, and has speeds comparable to HIP - based on the few experiments
we tested it on. In this section we outline the method and present a preliminary result but we
postpone a more in-depth analysis and comparison to HIP for the future publication [65].

The direct projection problem (without projection of Φ̂LS onto CP1) may be written as follows:
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Φ̂PLS = argmin
Φ∈CP,Φ∈T P

∥∥∥Φ− Φ̂LS
∥∥∥

2
. (25)

The constraint Φ ∈ CP can be made explicit as Φ ≥ 0, that is, a set of linear inequality
constraints, and the constraint Φ ∈ T P can be made explicit as Trs(Φ) = 1

d1d, that is, a set
of linear equality constraints. Hence, we can look at the following dual problem. We relax the
trace-preserving constraint and form the Lagrangian:

L(Φ, ν) = ‖Φ− Φ̂LS‖2 + 〈ν|Trs(Φ)− 1
d

1d〉F , (26)

with ν ∈ Hermn×n our dual variable. Let the solution to this relaxed problem be:

Φrel(ν) = argmin
Φ∈CP

L(Φ, ν). (27)

The associated dual function is
q(ν) = min

Φ∈CP
L(Φ, ν), (28)

and the optimal value of ν is found by solving the dual problem:

νopt = argmax
ν∈Hermn×n

q(ν). (29)

The totally mixed state Φ = 1
d2 1d2 strictly satisfies the inequalities, hence Slater’s conditions

[66, 67] hold, and the solution of the primal problem (25) is the same as the one yielded by the
dual problem: Φrel(νopt) = Φ̂PLS .

This is beneficial as the solution to the relaxed problem is easy to compute:

L(Φ, ν) =
∥∥∥Φ− Φ̂LS

∥∥∥
2

+ 〈ν|Trs(Φ)− 1
d

1d〉F

=
∥∥∥Φ− Φ̂LS

∥∥∥
2

+ 〈1d ⊗ ν|Φ−
1
d2 1d2〉F

=
∥∥∥∥Φ− (Φ̂LS −

1
21d ⊗ ν)

∥∥∥∥
2
− f(Φ̂LS , ν),

for a function f which we do not need to make explicit, so that

Φrel(ν) = projCP(Φ̂LS −
1
21d ⊗ ν). (30)

This allows simple computation of the Lagrangian. We can also check that the gradient is ∇q(ν) =
Trs(Φ(ν))− 1

d1d.
This dual problem is well-behaved: to start with, there are only d2 real parameters, instead of

d4. Moreover, the function is much smoother: the gradient is Lipschitz, so that we can use fast
optimisation algorithms. We used BFGS ([68, 69, 70, 71]), since it is available in scipy, but options
such as Nesterov’s accelerated gradient [72] could be considered.

Some simple simulations show that the speeds obtained using this algorithm are comparable
with HIP (Figure 5), with again most of the time spent in projCP . We need slightly more loops than
for HIP in the five qubit case, as in Figure 5, but there is likely to be room for improvement. Notice
that the line corresponding to the dual+BFGS algorithm stops around 10−8. This is because this
implementation of the optimisation algorithm stops for lack of precision at that point.

We can also give an interesting interpretation of the dual variable ν: when we use alternate
projections, we project on CP, then correct by projecting on T P, and so on. By contrast, in the
dual optimisation, we look for an element in the orthogonal space to T P to be added to Φ̂LS , so
that the projection on projCP belongs to T P, too.
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7 Conclusions and outlook
In this work we proposed and investigated a computationally efficient and statistically tractable
quantum process tomography method called projected least squares (PLS), inspired by previous
work on quantum state tomography [37]. The estimator is constructed by first computing the
LS estimator and then projecting this on the space of physical Choi matrices. We propose this
projection be carried out in two steps: a projection onto the set of quantum states followed by a
projection onto the set of Choi matrices. Additionally, we proposed a fast numerical implementation
of this projection – hyperplane intersection projection – which accelerates an alternating projections
procedure by employing fast projections onto the intersection of several tangent spaces and the
hyperplane of linear constraints.

We studied four experimental scenarios for data generation. We consider the most experimen-
tally feasible to be ancilla-free tomography with single-qubit Pauli measurements (scenario 3.2),
while the most statistically efficient is the ancilla-assisted setup with mutually unbiased bases mea-
surements (scenario 3.3). For each scenario we provided explicit expressions for the LS estimator
(Section 3), and non-asymptotic concentration bounds for the PLS estimator with respect to the
Frobenius and trace norm error of the associated Choi matrix, cf. Theorem 1.

Via the two-step projection procedure, all proposed methods are able to exploit latent structure
in the form of low rank. Low rank channels are particularly interesting as a class of transformations
modelling noisy implementations of unitary channels, which are relevant for quantum technology
and quantum computing. Our sampling complexity bounds for the Frobenius error depend linearly
on the rank r of the channel and are smaller than those of the LS estimator by a factor r/d2. This
qualitative behaviour is confirmed by numerical simulations which show that the PLS errors are
significantly lower than those of LS for low rank channels.

We carried out several numerical studies involving 5 to 7 qubit channels, including a comparison
between the two projection methods, a study on the error dependence on rank, and an analysis
of how the computational time scales with system dimension. The code is available on GitHub
[64]. The repository also contains up-to-date information on the future article on the theoretical
underpinnings and heuristics behind HIP [65]. Following a suggestion by an anonymous referee, we
implemented an alternative projection algorithm based on the dual optimisation problem, which
shows a similar behaviour to HIP and will be analysed in more detail in [65].

We leave as a topic of future investigations the extension of these results to quantum instru-
ments described in terms of non trace-preserving quantum operations. In a different direction, we
would like to further investigate the efficacy and possible improvement of the confidence regions
prescribed by Theorem 2. Research should also be carried out to find improvements to the algorith-
mic implementation of the projections of Φ̂LS onto CPT P to decrease computational complexity
and memory demands. These could arise from “matrix-free” representations of the least-squares
estimator and from exploiting the low rank of many high-dimensional processes of interest [73].
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Appendix
8 Form of the LS estimators in Section 3
8.1 Proof of Proposition 1
We start with a restatement of the form of the least-squares estimator for the Choi matrix, found
using measurement scenario 2.

Proposition 1. For direct QPT with single-qubit Pauli inputs and single-qubit Pauli measure-
ments, the least-squares estimator for the Choi matrix Φ of a k-qubit quantum channel takes the
following form:

Φ̂LS = 1
32kd

∑
abpq

fab
qp

k⊗
i=1

M bi
pi

k⊗
j=1

M aj
qj
, where (31)

M bi
pi

= (3|pi, bi〉〈pi, bi| − 12), (32)
M aj

qj
= (3|qj , aj〉〈qj , aj | − 12). (33)

Proof. The proof of this result comes from relating the frequency measurements made in scenarios
3.1 and 3.2. It relies on the following identity relating the output state C(ρ) of a channel C to the
Choi matrix Φ = C(|Ω〉〈Ω|)

C(ρ) = d× TrA(Φ (1⊗ ρ>)). (34)

Using this result, we have that the probability of observing the result p ∈ {0, 1}k when measuring
with setting b, having passed in the pure state P a>

q is:

pa b
q p = d× Tr(Φ Pb

p ⊗ P a
q ). (35)

Note that up to the factor d, these coincide with the probabilities (3) from scenario 3.1, with the
identifications (a b) = o and (q p) = s. The difference is due to the fact that while in scenario 3.1
both parts (a b) of the outcome o are random, in scenario 3.2 a single dataset is generated from
random outcomes b for each deterministically chosen state with labels a and q.

Since the maps from the Choi matrix to probabilities are the same in the two scenarios, up to
the factor d, the expression (4) of the LS estimator in scenario 3.1 can be transferred to scenario
3.2 by replacing the frequencies f s

o with f ab
qp/d which gives us (31).

In the rest of this section we give a longer, but perhaps more transparent proof of the equality

ps
o = 1

d
pa b
q p

which may be of interest in its own right. We make the following comparisons between scenarios
3.1 and 3.2.

In scenario 3.2, we have that the probability of observing the result p ∈ {±}k when measuring
with setting b, having passed in the projector state P a

q is:

pa b
q p = Tr(C(P a

q
>)P b

p ). (36)

If we choose to prepare input state with indices (a, q) and measure with each setting b an equal
number of times, the construction of the estimator (31) involves sampling equally from the 32k×2k
corresponding distributions.

Alternatively, we could assign a probability of 1
d to choosing index q while the setting indices

(a,b) are deterministic as above; in this case the probability for recording joint outcome (q, p) for
an input/measurement setting of (a, b) is:

p̃a b
q p = 1

d
Tr(C(P a

q
>)P b

p ). (37)
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In this case we are sampling from the 32k distributions corresponding to each setting (a, b).

Consider now scenario 3.1. Observing the joint outcome o = (q, p) when measuring the Choi
matrix with setting s = (a, b) is equivalent to first measuring the ancilla qubits with setting a,
recording the outcome q, and then measuring the conditional system state with setting b and
recording outcome p. The probability of observing outcome q when measuring with setting a is
always 1

d , since the marginal state of the ancilla is always the maximally mixed state.
The deferred measurement principle in quantum information theory [75] implies that the this

set up is equivalent to making a measurement on the marginal ancilla state before acting with C⊗Id
on the joint system. Defining Ω a

q as the marginal system state conditional on the measurement
on the ancilla side of the maximally entangled state Ω, we will now show that the probabilities in
scenario 1 (3) can be expressed as:

ps
o = p̃a b

q p = 1
d
Tr(C(Ω a

q ) P b
p ). (38)

Let {|q〉 =
k/2⊗
i=1
|qi〉} be the standard basis in Cd. For each different measurement setting a, the

corresponding Pauli basis {|q, a〉}, is related to {|q〉} by a unitary transformation Ua

Ua|q〉 = |q, a〉 (39)

and the associated projection operators transform as

P a
q = UaPq(Ua)∗. (40)

The maximally entangled input state |ω〉 in the standard basis is:

|ω〉 = 1√
d

∑
p
|p〉 ⊗ |p〉. (41)

Therefore, after measuring the ancilla qubits with setting a on the joint state |ω〉 and obtaining
outcome q, the projected state is

1d ⊗ P a
q |ω〉 = (1d ⊗ (UaPq(Ua)∗)|ω〉

= (1d ⊗ (UaPq(Ua)∗)Ūa ⊗ Ua|ω〉
= (Ūa ⊗ UaPq)|ω〉

= (Ūa ⊗ Ua) 1√
d
|q〉 ⊗ |q〉.

(42)

Therefore, the conditional state of the system after making the above measurement on the ancilla
qubits is Ūa|q〉. We conclude, then, that

Ω a
q = Ūa|q〉〈q|(Ūa)∗. (43)

But |q〉〈q| = Pq = P>q , so:
Ω a

q = P a>
q (44)

Therefore the probabilities obtained making measurements in scenario 1 are:

ps = a b
o = q p = 1

d
Tr(C(P a>

q ) P b
p ). (45)

which coincides with equation (38) corresponding to the alternative scenario 2, where the input
indices q were chosen randomly with uniform probability.
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8.2 Proof of Proposition 2
Proposition 2. For direct QPT with (transposed) MUB inputs (|wi〉〈wi|)> and MUB measure-
ments d

m |vl〉〈vl|, the least-squares estimator for the Choi matrix Φ of a k-qubit quantum channel
takes the following form:

Φ̂LS = d+ 1
d

m∑
l,k=1

fkl |vl〉〈vl| ⊗ |wk〉〈wk|

−1
d

m∑
l,k=1

fkl (|vl〉〈vl| ⊗ 1d + 1d ⊗ |wk〉〈wk|)

+1d ⊗ 1d. (46)

Proof. We apply the relation
C(ρ) = d× TrA(Φ (1⊗ ρ>)).

to express the probability distribution for a give input state |wk〉〈wk|> and measurement with
POVM elements Ml = d

m |vl〉〈vl| as

pkl = Tr(C(|wk〉〈wk|>)Ml) = d2

m
Tr(Φ (Pl ⊗Qk)) (47)

where Pl = |vl〉〈vl|, Qk = |wk〉〈wk|. The linear map from Choi matrices to the collection of proba-
bility distributions is then

A : M(Cd) → Cm ⊗ Cm ∼= Cm
2

(48)
A : Φ 7→ p := {pkl : l, k = 1, . . . ,m} (49)

It’s adjoint is

A† : q 7→ d2

m

m∑
l,k=1

qkl Pl ⊗Qk.

The general form of the LS estimator, assuming A†A is invertible, is given by

Φ̂ = (A†A)−1A†f (50)

where f := {pkl : l, k = 1, . . . ,m} is the vector of empirical frequencies. To find a more explicit
expression and prove the validity of equation (50), we analyse A†A in more detail. For this we use
the relations characteristic for 2-designs

m∑
k=1

Tr(XPl)Pl = X + Tr(X)1d

m∑
k=1

Tr(XQk)Qk = X + Tr(X)1d

We now show that A†A has 3 eigevalues with eigenspaces consisting of linear spans of the following
4 types of operators:

1. Let Λ1 = X ⊗ Y with Tr(X) = Tr(Y ) = 0. In this case

A†A(Λ1) = d4

m2

m∑
l,k=1

Tr(Z(Pl ⊗Qk))Pl ⊗Qk

= d4

m2

(
m∑
l=1

Tr(XPl)Pl

)(
m∑
k=1

Tr(Y Qk)Qk

)

= d4

m2X ⊗ Y = d2

(d+ 1)2 Λ1
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2. Let Λ2 = X ⊗ 1d with Tr(X) = 0. In this case

A†A(Λ2) = d4

m2

m∑
l,k=1

Tr(Λ2(Pl ⊗Qk))Pl ⊗Qk

=
(

m∑
l=1

Tr(XPl)Pl

)(
m∑
k=1

Tr(Qk)Qk

)

= d4(d+ 1)
m2 X ⊗ 1d = d2

d+ 1Λ2

where in the last step we used that
∑
kQk = (d+ 1)1d.

3. A similar equality holds for Λ3 = 1d ⊗ Y with Tr(Y ) = 0.

4. Let Λ4 = 1d ⊗ 1d. Here, we have

A†A(Λ4) = d4

m2

m∑
l,k=1

Tr(Z(Pl ⊗Qk))Pl ⊗Qk

= d4

m2

(
m∑
l=1

Pl

)(
m∑
k=1

Qk

)

= d4(d+ 1)2

m2 1d ⊗ 1d = d2Λ4

Writing Pl = P̃l + 1d/d with Tr(P̃l) = 0, and Qk = Q̃k + 1d/d with Tr(Q̃k) = 0, we now have(
A†A

)−1A†f =
(
A†A

)−1 d2

m

m∑
l,k=1

fkl Pl ⊗Qk

=
(
A†A

)−1 d2

m

m∑
l,k=1

fkl (P̃l + 1d
d

)⊗ (Q̃k + 1d
d

).

By expanding the brackets and using the fact that each term is an eigenvector of A†A, taking the
form of one of Z(1,2,3,4) above, we get

(
A†A

)−1A†f = d2

m

(d+ 1)2

d2

m∑
l,k=1

fkl P̃l ⊗ Q̃k

+d2

m

d+ 1
d2

m∑
l,k=1

fkl P̃l ⊗
1d
d

+d2

m

d+ 1
d2

m∑
l,k=1

fkl
1d
d
⊗ Q̃k

+d2

m

1
d2

m∑
l,k=1

fkl
1d
d
⊗ 1d

d

By expressing P̃l = Pl − 1d/d and Q̃k = Qk − 1d/d we get(
A†A

)−1A†f = d+ 1
d

m∑
l,k=1

fkl (Pl −
1d
d

)⊗ (Qk −
1d
d

)

+1
d

m∑
l,k=1

fkl

[
(Pl −

1d
d

)⊗ 1d
d

+ 1d
d
⊗ (Qk −

1d
d

)
]

+1d
d
⊗ 1d

d
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Finally, by rearranging terms we get

(
A†A

)−1A†f = d+ 1
d

m∑
l,k=1

fkl Pl ⊗Qk

−1
d

m∑
l,k=1

fkl (Pl ⊗ 1d + 1d ⊗Qk)

+1d ⊗ 1d

9 Concentration bounds for the LS estimators
In order to prove Theorem 1, we first find error bounds for the least-squares estimators for each of
the scenarios 3.1- 3.4 in Frobenius norm distance, in sections 9.1-9.4. For this we will be applying
a matrix generalisation of the classical scalar Bernstein inequality, see Ref. [76].

Theorem 3. Consider a sequence of N independent, Hermitian, random matrices {Ai}Ni=1 ∈ Cn×n

satisfying
E[Ak] = 0 and ‖Ak‖∞ ≤ R. (51)

Then, for t ≥ 0:

Pr[‖
N∑
i=1

Ai‖∞ ≥ t] ≤ N exp
(
− t2/3
σ2 +Rt/3

)
, (52)

where σ2 = ‖
∑N
i=1 E[(Ai)2]‖∞ captures the norm of the total variance.

9.1 Scenario 3.1
Proposition 3. The operator norm distance of the least-squares estimator from the true Choi
matrix for scenario 3.1 satisfies the following bound:

Pr[‖Φ̂LS − Φ‖∞ ≥ τ ] ≤ d2exp
(
− 3Nτ2

8× 32k

)
(53)

for a 2k-qubit joint system-ancilla system, where d = 2k, N is the total number of measurements,
Φ̂LS is the least-squares estimator for the true state Φ, and τ ∈ [0, 1].

Proof. We construct this bound by borrowing the result for the ‘Pauli basis measurements’ case
given in [37] and adapting it for a larger system. The proof is an application of the matrix Bern-
stein Inequality and we sketch it here, though the reader is directed to [37] for details.

We can write the LS estimator (4) in the following way:

Φ̂LS =
∑

s

1
N

N/32k∑
i

Xs
i (54)

where, for every s ∈ {x, y, z}2k, the Xs
i are independent instances of the random matrices:

Xs : o 7→
2k
⊗
i=1

(3|oi, si〉〈oi, si| − 1d2) (55)

with probability distribution over o ∈ {0, 1}2k

ps
o = Tr(Φ P s

o). (56)
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We can then write

‖Φ̂LS − Φ‖∞ =

∥∥∥∥∥∥
∑

s

1
N

N/32k∑
i

(Xs
i − E[Xs])

∥∥∥∥∥∥
∞

. (57)

If we define the matrices:
As
i = 1

N
(Xs

i − E[Xs
i ]), (58)

equation (57) becomes

‖Φ̂LS − Φ‖∞ = ‖
∑

s

N/32k∑
i

As
i‖∞. (59)

Thus we can apply the matrix Bernstein inequality to bound ‖Φ̂LS − Φ‖∞. We have that:

σ2 =

∥∥∥∥∥∥
∑

s

1
N2

N/32k∑
i

E[(Xs
i − E[Xs])2]

∥∥∥∥∥∥
∞

(60)

and
R = max{ 1

N
‖Xs

i − E[Xs
i ]‖∞}. (61)

Using the following inequality:

E[(Xs
i − E[Xs

i ])2] ≤ E[(Xs)2] (62)

and Jensen’s inequality [77], we can solve (60) and (61) to find:

σ2 = 3k

N
and R = 2k+1

N
. (63)

Applying the matrix Bernstein inequality then gives us equation (53) , provided that τ is not too
large.

We now convert this bound into one containing the Frobenius norm.

Proposition 4. The following bound holds

Pr[‖Φ̂LS − Φ‖22 ≥ δ2] ≤ d2exp(− 3Nδ2

8× d2 × 32k ) (64)

for δ2 ∈ [0, 1].

Proof. Taking (66) as our starting point, we can make use of the following inequality involving the
Frobenius norm and operator norm of a Hermitian matrix:
Let A ∈ Hermn×n be an arbitrary Hermitian matrix, then

‖A‖22 ≤ d2‖A‖2∞. (65)

Φ̂LS − Φ is clearly Hermitian since it is constructed as a sum over a set of random Hermitian
matrices.

If ‖Φ̂LS − Φ‖∞ ≤ τ with some probability, it must be that ‖Φ̂LS − Φ‖22 ≤ d2τ2 with at least
that probability, by equation (65). Therefore, setting δ2 = d2τ2 we arrive at (64). This is valid for
δ2 ∈ [0, d2], so is too in the region [0, 1] that we are interested in.
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9.2 Scenario 3.2
Proposition 5. The LS estimator in scenario 3.2 satisfies the concentration bound

Pr[‖Φ̂LS − Φ‖∞ ≥ τ ] ≤ d2exp(− 3Nτ2

8× 32k ) (66)

where N is the total number of measurements, Φ̂LS is the least-squares estimator for the true state
Φ, and τ ∈ [0, 1].

Proof. Using Proposition 1 we can express the least squares estimator in scenario 3.2 as a sum of
random matrices, similarly to scenario 3.1.

Φ̂LS =
∑

a,b,q

1
N

N/s∑
i

Xa,b
q,i

where s = 32k · 2k, and a,b ∈ {x, y, z}k, q ∈ {0, 1}k. Here, Xa,b
q,i are independent instances of the

random matrices:

Xa,b
q : p 7→

k⊗
i=1

M bi
pi

k⊗
j=1

M aj
qj

where
M bi

pi
= (3|pi, bi〉〈pi, bi| − 12), M aj

qj
= (3|qj , aj〉〈qj , aj | − 12).

with probability distribution over p ∈ {0, 1}k

pa b
q p = Tr(C(P a

q
>)Pb

p ).

Then

Φ̂LS − Φ =
∑

a,b,q

N/s∑
i

Aa,b
q,i

where Aa,b
q,i = 1

N (Xa,b
q,i − E(Xa,b

q,i )) and we can apply the concentration bound from Theorem 3
similarly to Proposition 3. Since Xa,b

q takes values in the same set as the random matrix Xs in
Proposition 3 (scenario 3.1), we obtain

R = max
a,b,q

1
N
‖Xa,b

q − E(Xa,b
q )‖∞ = 2k+1

N
.

We now consider the variance

σ2 =

∥∥∥∥∥∥
∑

a,b,q

1
N2

N/s∑
i

E[(Xa,b
q,i − E[Xa,b

q ])2]

∥∥∥∥∥∥
∞

Using E[(X = E(X))2] ≤ E[X2] we get

σ2 ≤

∥∥∥∥∥∥
∑

a,b,q

1
sN

E[(Xa,b
q )2]

∥∥∥∥∥∥
∞

Now using the relation between scenario 3.1 and 3.2 probabilities pa,b
q,p = dps

o where s = (a,b) and
o = (q,p), we have ∑

a,b,q

1
sN

E[(Xa,b
q )2] = 1

sN

∑
a,b,q

∑
p
pa,b

q,p(Xa,b
q (p))2

= d
∑
o,s

ps
o(Xs(o))2

= d
∑

s
E[(Xs)2].

Accepted in Quantum 2022-10-05, click title to verify. Published under CC-BY 4.0. 30



Taking into account that s = d32k we arrive at the same upper bound expression as found in
scenario 3.1

σ2 ≤ ‖ d
sN

∑
s

E[(Xs)2]‖∞

= 1
32kN

‖
∑

s
E[(Xs)2]‖∞

= 32k

N
.

Proposition 6. The following bound holds

Pr[‖Φ̂LS − Φ‖22 ≥ δ2] ≤ d2exp(− 3Nδ2

8× d2 × 32k ) (67)

for δ2 ∈ [0, 1].

9.3 Scenario 3.3
Proposition 7. The operator norm error of the least-squares estimator in scenario 3.3 satisfies
the following bound:

Pr[‖Φ̂LS − Φ‖∞ ≥ τ ] ≤ d2exp(−3Nτ2

16
1
d2 ). (68)

This is a direct application of the result for 2-design POVMs in [37] to a system of dimension of
d2. It serves no purpose to repeat the proof - another application of the matrix-Bernstein inequality
- here, and the reader is directed to [37] for an exposition.

Proposition 8.

Pr[‖Φ̂LS − Φ‖22 ≥ δ2] ≤ d2exp(−3Nδ2

16
1
d4 ). (69)

Proof. As with scenario 3.1, we use the relation (65) to derive the extra factor of 1
d2 in the expo-

nential, and arrive at (69).

9.4 Scenario 3.4
Proposition 9. The operator norm error of the least-squares estimator in scenario 3.4 satisfies
the following bound:

Pr[‖Φ̂LS − Φ‖∞ ≥ τ ] ≤ d2exp
(
−3Nτ2

32d2

)
(70)

Proof. We return to another application of the concentration inequality (52).

Once again, define Pl = |vl〉〈vl| and Qk = |wk〉〈wk|. Define also Y kl = d+1
d Pl ⊗ Qk and

Zkl = 1
d (Pl ⊗ 1d + 1d ⊗Qk) for future use.

For each k ∈ [m] we define the random matrices

Xk : l 7→ d+ 1
d

Pl ⊗Qk −
1
d

(Pl ⊗ 1d + 1d ⊗Qk) (71)

with probability distribution over l ∈ {1, ...,m}

pkl = Tr(C(Q>k )Ml). (72)

We denote by Xk
i the independent samples of Xk corresponding to the measurement outcomes for

input state Q>k , with i = 1, ..., N/m.

Accepted in Quantum 2022-10-05, click title to verify. Published under CC-BY 4.0. 31



We then write the LS estimator (46) in the following way:

Φ̂LS =
(d+1)d∑
k=1

m

N

N/m∑
i=1

Xk
i + 1d ⊗ 1d, (73)

assuming again that the N measurements are distributed uniformly among the different input
states.

Then, we can write the least-squares estimator operator-norm distance as

‖Φ̂LS − Φ‖∞ =

∥∥∥∥∥∥
(d+1)d∑
k=1

m

N

N/m∑
i=1

Xk
i −

(d+1)d∑
k=1

E[Xk]

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
(d+1)d∑
k=1

N/m∑
i=1

Aki

∥∥∥∥∥∥
∞

(74)

i.e. the operator norm of a sum over independent centred random matrices:

Aki = m

N
(Xk

i − E[Xk]); i ∈ [N ], k ∈ [(d+ 1)d]. (75)

The upper bound, R, for the operator norm of each contribution to the sum (see equation (52))
can be found in the following way:

‖Aki ‖∞ ≤
m

N
(‖Xk

i ‖∞ + ‖E[Xk
i ]‖∞)

≤ m

N
(‖Xk

i ‖∞)(1 + max{pkl })

≤ 2m
N

(‖Y ki ‖∞ + ‖Zki ‖∞)

= 2(d+ 1)(d+ 3)
N

=: R.

(76)

And the variance term:

σ2 =

∥∥∥∥∥∥
m∑
k=1

N/m∑
i=1

E[(Aki )2]

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
m∑
k=1

m2

N2

N/m∑
i=1

E[(Xk
i − E[xki ])2]

∥∥∥∥∥∥
∞

= m

N
‖
m∑
k=1

E[(Xk − E[Xk])2]‖∞

≤ m

N
‖
m∑
k=1

E[(Xk)2]‖∞

(77)

where the inequality is with respect to Loewner ordering. Now
m∑
k=1

E[(Xk)2] =
m∑

k,l=1
pkl (Y kl − Zkl )2

= 1
d2

m∑
k,l=1

pkl (d(d− 1)Pl ⊗Qk − dXk
l )

= d− 1
d

m∑
k,l=1

pkl Pl ⊗Qk −
1
d

m∑
k=1

E[Xk].

(78)
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Given that (46) is unbiased, we have that
∑m
k=1 E[Xk] = Φ− 1d⊗ 1d. Focussing on the first term:

m∑
k,l=1

pkl Pl ⊗Qk =
m∑

k,l=1
tr( d
m
PlC(Q>k ))Pl ⊗Qk

= d2

m

m∑
k,l=1

tr(Pl ⊗QkΦ)Pl ⊗Qk

(79)

by equation (34).
We now use the fact that the Pl and Qk form spherical 2-designs. The near-isotropy of such

2-designs ensures the following for arbitrary selfadjoint operators A,B:

d2

m

m∑
k,l=1

tr((Pl ⊗Qk)(A⊗B))Pl ⊗Qk = d3(d+ 1)( 1
m

m∑
l=1

Pltr(PlA))( 1
m

m∑
l=1

Qktr(QkB))

= d

d+ 1(A+ tr(A)1d)(B + tr(B)1d)

= d

d+ 1(A⊗B +A⊗ tr(B)1d + tr(A)1d ⊗B + tr(A)tr(B)1d ⊗ 1d).

(80)

This can be extended linearly to all selfadjoint Φ ∈M(Cd)⊗2 such that:

d2

m

m∑
k,l=1

tr(Pl ⊗QkΦ)Pl ⊗Qk = d

d+ 1(Φ + trA(Φ)⊗ 1d + 1d ⊗ trS(Φ) + tr(Φ)1d ⊗ 1d). (81)

Thus:

σ2 ≤ m

N
‖
m∑
k=1

E[(Xk)2]‖∞

≤
∥∥∥∥d− 1
d+ 1(Φ + trA(Φ)⊗ 1d + 1d ⊗ trS(Φ)

+ tr(Φ)1d ⊗ 1d))

−1
d

(Φ + 1d ⊗ 1d))
∥∥∥∥
∞

≤ m

N

(
4(d− 1)
d+ 1 + 2

d

)
≤ 4d2

N

(82)

Substituting our upper bound of σ2 into the matrix Berstein inequality yields the claim, provided
that τ does not become too large.

Proposition 10. The following bound holds

Pr[‖Φ̂LS − Φ‖22 ≥ δ2] ≤ d2exp
(
−3Nδ2

32d4

)
. (83)

Proof. As with scenario (3.1), we use the relation (65) to arrive at (83).

9.5 Summary of LS concentration bounds
The LS error bounds derived in sections 9.1,9.2, 9.3 and 9.4 can be summarised as follows

Corollary 2.

Pr[‖Φ̂LS − Φ‖∞ ≥ τ ] ≤ d2exp(−3Nτ2

8 g(k)) (84)

Pr[‖Φ̂LS − Φ‖22 ≥ δ2] ≤ d2exp(−3Nδ2

8
g(k)
d2 ) (85)
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where:

g(k) =


1

32k Scenarios 3.1, 3.2
1
2

1
22k Scenario 3.3

1
4

1
22k Scenario 3.4

(86)

for τ and δ2 ∈ [0, 1].

10 Key properties for two-step projection
In this section, we prove that the implementations of our projection procedures for computing
Φ̂PLS satisfy the two properties (13) and (14).

We start with the following lemma relating the operator norm distances of ΦLS and ΦCP1 from
Φ, that is, ensuring Property (13).

Lemma 2. For any non-negative threshold τ that is less than ‖Φ̂LS − Φ‖∞, the first thresholded
CP1 estimator ΦτCP1 defined in Algorithm 1 satisfies:

‖Φ̂τCP1 − Φ‖∞ ≤ 2‖Φ̂LS − Φ‖∞. (87)

In particular, if τ is zero (projection on CP) or if τ = −λmin(Φ̂LS) (our main implementation),
the condition is satisfied.

Proof. We write λi for the eigenvalues of Φ̂LS , as in Algorithm 1.
First, since Φ is positive semi-definite, all negative eigenvalues of Φ̂LS have smaller absolute

value than ‖Φ̂LS − Φ‖∞. In particular τ = −λmin(Φ̂LS) satisfies the conditions of the lemma.
The operators Φ̂τCP1 and Φ̂LS are diagonal in the same basis. By the triangle inequality, we

just have to prove that no eigenvalue gets changed by more than ‖Φ̂LS − Φ‖∞.
If the condition on line 9 is met, then all eigenvalues between λmin(Φ̂LS) and τ are set to zero,

and all the other eigenvalues µi are set to (λi + τ − x0)+. So that the small eigenvalues change by
at most τ ∨ |λmin(Φ̂LS)| ≤ ‖Φ̂LS − Φ‖∞, and the big eigenvalues change by at most τ ∨ |τ − x0|.
We must then bound |τ − x0|. First notice that x0 ≥ 0 since

∑
µi ≥ 1 and

∑
(µi − x0)+ = 1. Our

worst case is then if x0 > 2τ . But in that case, all final eigenvalues can be seen as (λi + τ − x0)+.
Since 〈vi|Φ|vi〉 ≥ (λi−‖Φ̂LS −Φ‖∞)+, and TrΦ = 1, we deduce x0− τ ≤ ‖Φ̂LS −Φ‖∞, as wished.

On the other hand, if the condition on line 9 is not met, all eigenvalues bigger than the critical
eigenvalue λj are increased by τ , all smaller eigenvalues are set to zero, and the final eigenvalue j
satisfies 0 ≤ µj ≤ λj + τ . So that we only have to prove that 0 ≤ λj ≤ τ . Since the trace of Φ̂LS is
one, the left inequality on line 14 ensures that λj > 0. On the other hand, if λj > τ , then the right
inequality on line 14 would ensure that the the condition on line 9 was met. The contradiction
ends the proof.

We now prove that the second ‘projection’ does not increase the Frobenius distance, that is,
Property (14).

Lemma 3. Assume that Φ̂PLS is, given the input Φ̂CP1, the output of either Dykstra’s algorithm
at convergence, AP algorithm for any tolerance, or hyperplane intersection projections algorithm
with any switch conditions for any tolerance. Then

‖Φ̂PLS − Φ‖2 ≤ ‖Φ̂CP1 − Φ‖2 (88)

Proof. By Lemma 1, we merely have to prove that all our ‘projections’ can be seen as a succession
of usual projections in Frobenius norm on convex sets that contain CPT P.

Dykstra’s algorithm directly outputs the Frobenius projection on CPT P.
AP are a succession of Frobenius projections on CP, and on T P, both of which are convex set

that include CPT P.
Hyperplane intersection projections in AP mode is just AP. In HIP mode, we project on the

intersection of: T P, and a set of half-spaces that contain CP. All those sets are convex sets that
contain CPT P, hence their intersection also is.
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11 Proof of Theorem 1
We now return to the proof of Theorem 1 and use the concentration bounds (84) for the LS
estimators in the 4 scenarios to obtain bounds for PLS.

We will prove a stronger version, Theorem 4 which also covers the proof of Theorem 2.
To state it, we recall the notion of being close to rank r: a state ρ is δ-almost rank r if there is

a rank r state ρ(r) such that

‖ρ− ρ(r)‖∞ ≤ δ. (89)

Theorem 4. Let Φ be the Choi matrix of a channel and Φ̂PLS our estimator, generated with any
‘projections’ satisfying Properties (13) and (14). Then, with probability at least 1− η, the bounds
(90), (91) and (92) below hold simultaneously true, for all r and corresponding values of δ.

Assume that either Φ or Φ̂CP1 is δ-almost rank r. With probability at least 1− η:

‖Φ̂PLS − Φ‖22 ≤ 2r
(
δ + 2

√
8 ln(d2/η)
3Ng(k)

)2

, (90)

If it was Φ that was δ-almost rank r, then:

‖Φ̂PLS−Φ‖1 ≤ r
(

(4
√

2 + 2)δ + 4
√

2

√
8 ln(d2/η)
3Ng(k)

)
, (91)

If it was Φ̂CP1 that was δ-almost rank r, then:

‖Φ̂PLS − Φ‖1 ≤ r
(

(4
√

2 + 2)δ + (4 + 8
√

2)

√
8 ln(d2/η)
3Ng(k)

)
. (92)

As a remark, Theorem 4 reduces to Theorem 1 when Φ is δ-almost rank r, with δ = 0, i.e. it
is exactly rank r. The formulation in Theorem 4 can be seen by taking ε to equal the right hand
side of the equations, solving for η and inverting the probabilities.

First, Property (13) relates the L∞ norms of the errors of Φ̂LS and Φ̂CP1:

‖Φ̂τCP1 − Φ‖∞ ≤ 2‖Φ̂LS − Φ‖∞.

The next step is to relate the Frobenius norm of the distance between Φ̂CP1 and Φ to their
operator norm distance.

Lemma 4. Assume either that Φ̂CP1 or Φ is δ-almost rank r. Then

‖Φ̂CP1 − Φ‖22 ≤ 2r(‖Φ̂CP1 − Φ‖∞ + δ)2. (93)

Proof. A key argument is presented in [37] for the following inequality relating the 1-norm to the
operator-norm of two trace-1 positive-semidefinite matrices ρ1 (of definite rank r) and ρ2:

‖ρ1 − ρ2‖1 ≤ 2r‖ρ1 − ρ2‖∞. (94)

Thus we have:

‖Φ̂CP1 − Φ‖1 ≤ ‖Φ̂CP1 − Φr‖1 + ‖Φr − Φ‖1 (95)
≤ 2r(‖Φ̂CP1 − Φr‖∞ + ‖Φr − Φ‖∞) (96)
≤ 2r(δ + ‖Φ̂CP1 − Φ‖∞ + δ). (97)

There exists the following inequality relating the Frobenius, 1- and operator-norms:
Let A ∈ Hermn×n be an arbitrary Hermitian matrix, then

‖A‖22 ≤ ‖A‖∞‖A‖1, (98)
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which we can make use of since Φ̂CP1−Φ is the difference of two quantum states, and hence must
be Hermitian.

Using this, we can say:

‖Φ̂CP1 − Φ‖22 ≤ 2r(‖Φ̂CP1 − Φ‖∞ + 2δ)‖Φ̂CP1 − Φ‖∞
≤ 2r(‖Φ̂CP1 − Φ‖∞ + δ)2.

By Property 14 we may transfer this result to Φ̂PLS :

‖Φ̂PLS − Φ‖22 ≤ 2r(‖Φ̂CP1 − Φ‖∞ + δ)2. (99)

We can now pull these results together to prove Theorem 4.

If ‖Φ̂LS − Φ∞‖ ≤ τ with some probability, then ‖Φ̂CP1 − Φ‖∞ ≤ 2τ with at least that
probability by Lemma 2. Then, by Lemma 4

‖Φ̂PLS − Φ‖22 ≤ 2r(2τ + δ)2 (100)

with yet greater probability.
Using Equation (84), and setting the right-hand-side equal to η, we get τ =

√
8 ln(d2/η)
3Ng(k) . We

thus obtain, with probability at least 1− η:

‖Φ̂PLS − Φ‖22 ≤ 2r
(
δ + 2

√
8 ln(d2/η)
3Ng(k)

)2

, (101)

where, to remind the reader:

g(k) =


1

32k Scenarios 3.1, 3.2
1
2

1
22k Scenario 3.3

1
4

1
22k Scenario 3.4

(102)

Recall that Equation (84) is valid if τ ∈ [0, 1]. But if τ is more than one, then the right-hand side
of Equation 90 is more than two, hence always true. The expression is thus always valid.

For the norm-one bound we use inequality (103) below. Let ρ and ρ(r) be states, and assume
that ρ is rank r. We write ϕ = ρ(r) − ρ and consider its decomposition into positive and negative
parts ϕ = ϕ+−ϕ− Since ρ(r) has rank r, the positive part ϕ+ has at most rank r. Moreover, since
Tr(ϕ) = 0, we have that

‖ρ(r) − ρ‖1 = 2Tr(ϕ+) ≤ 2
√
r‖ϕ+‖2 (103)

≤ 2
√
r‖ρ(r) − ρ‖2. (104)

With this inequality, we may write:

‖Φ̂PLS − Φ‖1
≤ ‖Φ̂PLS − Φr‖1 + ‖Φ− Φr‖1

≤ 2
√
r
(
‖Φ̂PLS − Φr‖2

)
+ ‖Φ− Φr‖1

≤ 2
√
r
(
‖Φ̂PLS − Φ‖2 + ‖Φ− Φr‖2

)
+ ‖Φ− Φr‖1.

Now, if Φr was the approximation to the δ-almost rank r true state Φ, then ‖Φ−Φr‖1 ≤ 2rδ and
‖Φ−Φr‖2 ≤

√
2rδ. If Φr was the approximation to the δ-almost rank r CP projection Φ̂CP1, then

‖Φ− Φr‖1 ≤ 2r(δ + ‖Φ− Φ̂CP1‖∞) and ‖Φ− Φr‖2 ≤
√

2r(δ + ‖Φ− Φ̂CP1‖∞).
Substituting with the upper bound τ and using Inequality (103) ends the proof.
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12 Error bounds and sampling complexities for the direct projection
method

Theorem 5. The squared Frobenius norm errors of the estimators Φ̂PLS of a Choi matrix Φ
representing a k-qubit channel, found by projecting the LS estimators scenarios 3.1, 3.2, 3.3 and
3.4, directly onto CPT P satisfy the following bound:

Pr[‖Φ̂PLS − Φ‖22 ≥ ε] ≤ d2exp
(
−3Nε

8 f(k)
)
. (105)

where:

f(k) =


1

32k×22k Scenarios 3.1, 3.2
1
2

1
24k Scenario 3.3

1
4

1
24k Scenario 3.4

(106)

for ε ∈ [0, 1].

Proof. Using Lemma 1, one can take the bound defined in (85) and simply apply it to Φ̂PLS to
arrive at equation (105).

Inverting Theorem 5 we prove following:

Corollary 3. To achieve the following accuracy:

Pr[‖Φ̂PLS − Φ‖22 ≥ ε ] ≤ η (107)

one requires a sample size of

N ≥ 1
f(k)

8
3ε log(d

2

η
). (108)

The sampling complexities for each method of data collection, with direct projection, are then:

N(k) =
{
O( 1

ε 32k × 22k) ≈ O( 1
εd

5.17) Scenarios 1/2
O( 1

εd
4) Scenarios 3/4

(109)

up to logarithmic factors.

Equation (16) is to be contrasted with (105). Clearly, the bound (16) is stricter than that of
equation (105) when r < d2

32 . Therefore, the first method of projecting Φ̂CP1 onto CPT P improves
upon the error bound when the channel acts on more than 5 qubits, and for certain ranks in states
of 3 to 5 qubits, while for 1 and 2 qubits the direct projection bound is tighter. Most importantly,
the bound for the two steps projection method captures the qualitative dependence on the rank of
the channels, which is confirmed by the numerical simulations described in Section 6.5.

13 Expressions for Direct Projections
13.1 Solution to the TP Projection
The projection, with respect to the Frobenius norm, of a matrix X onto the set of matrices
representing trace-preserving maps is the solution to the following optimisation problem:

ProjT P [X] = argmin
X′

‖X −X ′‖22

s.t. Trs(X ′) = 1
d1d

(110)

.

Proposition 11 (Closed-form expression for TP-projection). The unique solution to the optimiza-
tion problem (110) is

ProjT P [X] = X + 1
d1⊗

( 1
d1− trs(X)

)
.
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Proof. Let us start by defining the projection onto the linear subspace of trace annihilating maps
T A = {X : trs(X) = 0}:

ProjT A[X] = X − 1
d1⊗ trs(X).

It is easy to check that this operator defines a projection with respect to the Frobenius norm
(ProjT A

[
ProjT A[X]

]
= ProjT A[X] and tr

(
ProjT A[X]Y

)
= tr

(
XProjT A[Y ]

)
for all matrices X,Y

with compatible dimension) and we denote its ortho-complement by

Proj⊥T A[X] = X − ProjT A[X] = 1
d1⊗ trs(X).

For the matrixX we introduce the short-hand notationXT A = ProjT A[X] andX⊥T A = Proj⊥T A[X].
The following identity is essentially the Pythagorean theorem:

‖X‖22 =‖XT A +X⊥T A‖22 = ‖XT A‖22 + ‖X⊥T A‖22. (111)

Applying it to X −X ′ with X ′ ∈ T A (trs(X ′) = 1
d1) yields

‖X −X ′‖22 =‖(X −X ′)T A‖22 + ‖(A− Y )⊥T A‖22
=
∥∥X + 1

d1⊗
( 1
d1− trs(X)

)
−X ′

∥∥2
2

+
∥∥ 1
d1⊗

( 1
d1− trs(X)

)∥∥2
2 .

The second term is independent from the actual choice of X ′. The first term is minimal for

X ′] = X + 1
d1⊗

( 1
d1− tr1(X)

)
∈ T P.

The argument above conveys another interesting piece of information. Projecting onto the
set of trace-preserving maps decreases the Frobenius distance. Suppose that Y ∈ T P and X is
arbitrary. Then,

‖ProjT P [X]− Y ‖22 = ‖X − Y ‖22 −
1
d

∥∥ 1
d1− trs(X)

∥∥2
2 .

The right hand side is equal to ‖X − Y ‖22 if and only if X is also trace preserving. Otherwise it is
strictly smaller.

13.2 Solution to the CP Projection
The projection of a matrix X onto the set of positive-semidefinite matrices is the solution to the
following optimisation problem:

ProjCP [X] = argmin
X′

‖X −X ′‖22

s.t. X ′ positive semi-definite
(112)

The condition of positive semidefiniteness is that all eigenvalues be greater than or equal to
zero. An obvious method, therefore, for enforcing the positive semidefiniteness of a matrix is to set
all negative eigenvalues to zero. This turns out to be the unique solution to equation (112) [16].
We provide a short proof for the sake of being self-contained.

Proposition 12 (Closed-form expression for PSD-projection). Fix a self-adjoint matrix X with
eigenvalue decomposition X =

∑
i ξi|xi〉〈xi|. Then, the unique solution to optimization prob-

lem (112) is
ProjCP [X] = X+ =

∑
i

max {0, ξi} |xi〉〈xi| (113)
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Proof. Decompose X = X+ −X− such that X+, X− are both psd and orthogonal with respect to
the Frobenius inner product (tr(X+X−) = 0). For X ′ positive semidefinite, we can expand the
squared Frobenius norm difference as

‖X −X ′‖22 =‖(X+ −X ′)−X−‖22
=‖X+ −X ′‖22 − 2tr((X+ −X ′)X−) + ‖X−‖22
=‖X+ −X ′‖22 + 2tr(X−X ′) + ‖X−‖22,

where we have used orthogonality between X+ and X−. Note that tr(X−X ′) ≥ 0, because both
X− and X ′ are psd and ‖X+ −X ′‖22 ≥ 0. Hence,

‖X −X ′‖22 ≥ ‖X−‖22 for all X ′ positive semidefinite.

Equality holds if and only if X = X+.

This argument also conveys another interesting piece of information: Projecting onto the set of
positive-semidefinite matrices decreases the squared Frobenius distance. Suppose that Y is positive
semidefinite and X is arbitrary. Then,

‖ProjCP [X]− Y ‖22 ≤ ‖X − Y ‖
2
2 − ‖X − ProjCP [X]‖22

and we can always compute the minimal shrinkage ‖X − ProjCP [X]‖22 explictly. With the projec-
tion defined as in (113), we note that the computational cost of projecting onto the the CP cone
comes almost entirely from that of computing the eigen-decomposition of the estimator.

13.3 Solution to the CP1 Projection
The final projection we discuss is that on trace one positive matrices, which is required in the first
step of the PLS method. The projection itself is similar to the CP projection, the difference being
that the output obeys the additional constraint

Tr( ProjCP1(Φ̂LS) ) != 1 (114)

Define λ′ = λ − x0, where x0 = (x0, · · · , x0) is a vector that will ensure unit trace. Then the
solution is a simple modification of the CP projection [16]:

ProjCP1[Φ̂LS ] = Vdiag(λ′
+)V† (115)

where λ′
+ = (max(λ′1, 0), · · · ,max(λ′d2 , 0)). The parameter x0 can be found by solving the equa-

tion:

2 + Tr(Φ̂LS)− d2x0 +
d2∑
i=1
|λi − x0| = 0. (116)

Such constrained projection is well-known, see for instance [16, 37]. (The result appears to be have
been known earlier in the optimization community but we were unable to find a reference.)

14 Additional Projection Algorithms
The algorithms HIPswitch, OneHIP and PureHIP explored experimentally in Section 6.3 are based
on Algorithm 3. Here, we show explicitly their individual implementations. We rely on Algorithm
2.

First, the simplest implementation: OneHIP, in which we carry out no AP iterations, and only
project onto the single, most recent, hyperplane (Algorithm 4).

Next, PureHIP, in which still do no AP iterations, and we keep a number of hyperplanes in
memory (the list w_active in the algorithm below), and project onto their intersection (Algorithm
5).

Finally, we show HIPswitch with the condition that we do 6 iteration of AP, followed by 30
iterations of HIP (Algorithm 6)
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Algorithm 4 oneHIP
1: function oneHIP(Φ initial state, ε tolerance)
2: while λmin(Φ) < −ε do
3: w_active← empty list
4: ΦCP ← projCP(Φ)
5: w← half-space containing CP orthogonal at ΦCP to ΦCP − Φ
6: Add w as first element of w_active
7: w_active,Φ← HIP_inner(w_active,Φ)
8: return Φ

Algorithm 5 pureHIP
1: function pureHIP(Φ initial state, ε tolerance)
2: while λmin(Φ) < −ε do
3: ΦCP ← projCP(Φ)
4: w← half-space containing CP orthogonal at ΦCP to ΦCP − Φ
5: Add w as first element of w_active
6: w_active,Φ← HIP_inner(w_active,Φ)
7: return Φ

Algorithm 6 HIPswitch
1: function HIPswitch(Φ initial state, ε tolerance)
2: SwitchCondition_toHIP: i is divisible by 6
3: SwitchCondition_toAP: j is divisible by 30
4: i = 1
5: j = 1
6: mode ← AP
7: while λmin(Φ) < −ε do
8: if mode = AP then
9: Φ← projCP(Φ)

10: Φ← projT P(Φ)
11: i = i + 1
12: if SwitchCondition_toHIP then
13: mode← HIP
14: w_active← empty list
15: if mode = HIP then
16: ΦCP ← projCP(Φ)
17: w← half-space containing CP orthogonal at ΦCP to ΦCP − Φ
18: Add w as first element of w_active
19: w_active,Φ← HIP_inner(w_active,Φ)
20: j = j + 1
21: if SwitchCondition_toAP then
22: mode← AP
23: return Φ
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