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Abstract—This paper presents a fault tolerant study of a
multiphase sectored permanent magnet synchronous machine
involving a tripel three-phase winding. The machine electro-
megnetic model is written in a general way so that it can be
extended and applied to all machines with a similar winding
structure. An expression of the d − q axis reference currents
of each three-phase winding as a function of the x − y force
components and torque is provided taking into acccunt the
Joule losses minimization. Then, the case of open-circuit of one
winding sector is considered, the model of the faulty machine
derived and an expression of the new reference currents needed
to generate radial suspension force and motoring torque is
written.
Finally, the theoretical analysis are validated through finite
elements simulations and the levitation performance of the
machine considered are evaluated in the Matlab-Simulink
environment in the case of one sector fault per time.

Index Terms—Bearingless motor, Fault Tolerant, Force Con-
trol, Permanent Magnet Machines, Multiphase Motors.

I. INTRODUCTION

The bearingless machines (BM), sometimes also referred
as self-bearing machines, own the potential of producing
motoring torque and radial suspension force simultaneously
and with a single stator element. Therefore, they have the ad-
vantage of presenting no wear caused by friction, making them
particularly suitable for lubricant free applications. As a matter
of facts, they have found space in chemical, pharmaceutical
and semiconductor industries where an ultra-high cleanness
environment has to be guaranteed. More in the specific, the
most targeted applications for BMs are centrifugal pumps
[1], [2] and artificial hearts [3], [4], mixers for chemical and
pharmaceutical applications [5], [6].
A primitive bearingless motor prototype was proposed by
Hermann in the middle of 1970s [7]. Then only in the early
1990s the BM technology started attracting growing interest
and it was first applied to reluctance motors [8] and then
to induction motors [9] and permanent magnet synchronous
motors [10]. The latter are of particular interest because of
their advantage of simple structure, reliability, high efficiency
and high torque density [11].
Typically, two separated windings were employed for torque
and radial suspension force generation [8], [10]. The instal-
lation of the additional winding for force production leads to
a bigger outer diameter than that of the conventional motor.

Different winding arrangements has been presented in order
to embed radial suspension force and torque generation in a
single winding set. In [9] one of the phases of a four-pole
induction motor was split into four so that each resultant
coil could be supplied independently and used to control the
radial rotor position. [12] exploited the concept of bridge
configured winding where parallel branches were connected
and the current through them could be controlled unbalancing
the airgap magnetic field and generating a resultant force.
More recently, multiphase winding structures have been con-
sidered for their high power density, simple structure and fault
tolerant capability. In particular, [13] presents a bearingless
five-phase PM motor where the multiphase winding was
exploited to control two decoupled d−q planes for torque and
radial force production, respectively. [14] the suspension force
and motoring torque of a multi-three phase bearingless ma-
chine are controlled by means the Space Vector Decomposition
(SVD) technique. In [15] a three three-phase sectored PMSM
with a similar winding structure of the machine considered in
this paper relied on the independent d−axis and q−axis current
control of each winding to control suspension force and torque
respectively. An harmonic compensator was then employed to
suppress the force ripple caused by neglecting the coupling
effect of torque and force production. The same authors have
also tested the radial force technique for an open-circuit fault
of one sector in [16] demonstrating the fault tolerant capability
of the considered machine. A fault tolerant six-phase PM
bearingless motor was proposed in [17] where each phase was
controlled by a single phase inverter and an efficient reference
current calculation was proposed. The multiphase structure and
control method proposed allowed for fault tolerant operations
when one or two phases were open-circuited.
The short-circuit fault instead was studied for a single-winding
bearingless switched reluctance motor in [18] and for a six-
phase bearingless PM motor in [19].
In this paper the open-circuit fault tolerant capabilities of the
bearingless multi-sector PMSM are studied and a model for
the faulty machine is carried out. The machine is a 18 slot
- 6 poles PMSM with three three-phase windings [20], [21].
Open-circuit faults are considered involving the loss of a whole
machine sector. It will be shown that the machine is still able
to produce controllable torque and radial suspension force with
two out of three healthy sectors. The torque and radial force



Fig. 1. Cross section of the 18 slot - 6 poles – 3 sectors PMSM with 3 × 3
single layer distributed winding.

Fig. 2. MSPM machine connected to three three-phase inverters and open-
circuit fault in inverter 1.

control technique employed in this work was presented in [20]
and compared to the one applied to a similar machine in [15]
showing advantages in terms of computational efforts. This
work will also show that the control technique allows a simple
formulation of the model for the faulty machine.

II. MATHEMATICAL MODEL OF THE BMSPM MACHINE

This section deals with the theoretical aspects of the radial
suspension force and torque control for both healthy and fault
operating conditions. At first the machine structure is presented
and then the force production principles and the mathematical
model for both operating conditions are exposed.

A. The machine structure

Fig. 1 displays the cross section of the machine considered
highlighting its multi-three phase winding arrangement. The
machine is a conventional surface mounted PM synchronous
motor and its main features are listed in Table I. The original
three-phase winding was removed and three full-pitched dis-
tributed star-connected windings with floating neutral points
were installed. Each of the three windings occupies one
third of the stator circumference and there is no overlapping
between different sectors.

TABLE I
MACHINE PARAMETERS

Parameter Value
Pole number (2p) 6
PM material NdFeB
Power rating 1.5 [kW]
Nominal current peak (In) 13 [A]
Rated Speed (ωmax

m ) 2π50 [rad/s]
PM flux of one sector (ΛPM ) 0.0284 [Wb]
Torque constant (kT ) 0.128 [Nm/A]
Line to line voltage constant (kV ) 15.5 [V/krpm]
Rotor mass (m) 2 [Kg]
Magnetic stiffness (km) 0.7 [N/µm]
Backup bearing clearance (δmax) 150 [µm]
Outer Stator diameter 95 [mm]
Inner Stator diameter 49.5 [mm]
Axial length 90 [mm]
Airgap length 1 [mm]

B. Force production principles

Qualitatively, it can be observed that the airgap flux density
distribution can be unbalanced controlling the current of each
sector winding independently. In particular, assuming γ0 = 0
(sector 1 aligned with the x−axis) in Fig. 1, a resultant net
radial force in the x− axis direction can be generated in
healthy conditions increasing the flux density in the airgap
underneath sector 1 and reducing the ones in correspondence
of sector 2 and 3.
Fig. 2 shows a schematic representation of an open-circuit
fault of the three-phase inverter connected to sector 1. Now, the
remaining healthy sectors have to compensate the loss of sector
1 to the force production. Radial force can still be generated
along the x−axis decreasing the flux density distribution in
the airgap underneath sector 2 and 3. On the other hand,
decreasing the flux density distribution in correspondence of
sector 3 and increasing the one of sector 2 produces a force
in the y−axis direction.

C. Healthy machine model

This paragraph provides the fundamental equations of the
mathematical model for the healthy machine that was intro-
duced and well detailed in [20]. The model is based on the
assumptions of linear magnetic behaviour of the materials
and magnetic decoupling between sectors. The latter allows
to remarkably simplify the model since only one machine
sector can be studied and the former permits to apply the
superposition principle. Furthermore, the rotor is modelled as a
rigid body that can move radially within a certain displacement
δmax given by the clearance of the backup bearing. The rotor
radial displacement is defined by the translation δ and angle
ϕd of the rotor centre from the rectangular x − y reference
frame origin of the stator Os.
In this work, the number of machine sectors is ns = p
and the angular position between the generic sector s and
the x-axis is given by sγ = s (2π)/ns + γ0 . Under the
aforementioned assumptions the matrix formulation of the
x − y force components and torque can be expressed in (1)
as a function of the electrical angular position ϑe = pϑm,



radial displacement information and stationary reference frame
current components siα and siβ of each sector s.

W̄E = KE(ϑe,
sγ)̄iαβ + K̄m(ϕd)δ (1)

Where W̄E =
[
Fx Fy T

]T
and īαβ =[

1iα
1iβ · · · siα

siβ · · · nsiα
nsiβ

]T
are the

mechanical x − y forces and torque vector and the total
vector of the α − β axis currents, respectively. The structure
of matrix KE(ϑe,

sγ) ∈ R3×2ns is reported in (2) showing
the contributions of the ns machine sectors to the force and
torque production.

KE =
[
1KE(ϑe,

1 γ) · · · nsKE(ϑe,
ns γ)

]
(2)

The structure and the calculation procedure of sub-matrices
1KE(ϑe,

1 γ), . . . , nsKE(ϑe,
1 γ) is presented in [20], [22].

The reference current commands can be calculated inverting
matrix KE . However, KE results in general in a rectangular
matrix, hence it cannot be easily inverted. In [20] the min-
imization of the copper losses has been chosen as strategy
leading to the calculation of the pseudo inverse of KE as
follow

K+
E = KT

E(KEK
T
E)−1 (3)

Therefore, the current command vector ī∗αβ can be deter-
mined in (4) considering also the rotor displacement.

ī∗αβ = K+
E

[
W̄ ∗E − K̄m(ϕd)δ

]
= K+

E

[
(W̄ ∗E − km

uv
0

] (4)

Where u and v are the x− and y− axis displacements and
km is the magnetic radial stiffness [22].
Conventional PI controllers require d − q axis current in the
rotor synchronous reference frame. Hence, ī∗αβ has to be
multiplied by a rotating matrix as in (5) to obtain the reference
currents in the d− q reference frame.

ī∗dq = TR9(ϑe)̄i
∗
αβ = K+

E,dq

[
W̄ ∗E − K̄m(ϕd)δ

]
(5)

Where TR9(ϑe) is the nine-phase rotation matrix and K+
E,dq

is the pseudo inverse matrix in the rotor synchronous reference
frame. The latter can be found in the Appendix .

D. Open circuit fault condition

When an open-circuit fault occurs in one motor sector the
correspondent d−q axis current vector goes to zero eliminating
its contribution to the radial force and torque production.
Therefore, the sub-matrix related to the open-circuited sector
will disappear in KE and the new matrices expressions can
be written as

KE,f1 =
[
2KE(ϑe,

2γ) 3KE(ϑe,
3γ)
]

KE,f2 =
[
1KE(ϑe,

1γ) 3KE(ϑe,
3γ)
]

KE,f3 =
[
1KE(ϑe,

1γ) 2KE(ϑe,
2γ)
] (6)

for open-circuit in sector 1, 2, 3, respectively. It can be noticed
that matrices KE,f1, KE,f2 and KE,f3 ∈ R3×(2ns−2) are

also rectangular. Therefore, in order to obtain the reference
current signals in the case of open-circuit fault conditions,
they can be substituted into (3) obtaining K+

E,f1, K+
E,f2 and

K+
E,f3 ∈ R(2ns−2)×3 respectively that in turn can be used in

place of K+
E in (4) to calculate the α − β reference current

vectors. The d−q reference current values are then calculated
as follow

ī∗dq,f1 = K̂+
E,f1

[
W̄ ∗E − K̄m(φd)δ

]

ī∗dq,f2 = K̂+
E,f2

[
W̄ ∗E − K̄m(φd)δ

]

ī∗dq,f3 = K̂+
E,f3

[
W̄ ∗E − K̄m(φd)δ

] (7)

K̂+
E,f1, K̂+

E,f2 and K̂+
E,f3 are the pseudo inverse matrices

in the rotor reference frame in the case of fault in sector
1, 2 and 3 respectively. Their expressions are reported in
the Appendix. ī∗dq,oc1 =

[
2id

2iq
3id

3iq
]T

, ī∗dq,oc2 =[
1id

1iq
3id

3iq
]T

and ī∗dq,oc3 =
[
1id

1iq
2id

2iq
]T

.
On the other hand, 1̄

i∗dq,oc1 =
[
0 0

]T
, 2̄
i∗dq,oc2 =

[
0 0

]T
and 3̄

i∗dq,oc3 =
[
0 0

]T
when the open circuit fault occurs in

sector 1,2 and 3, respectively.
Fig. 3 shows the harmonic content of the coefficients of matrix
K+
E ∈ R6×3, for healthy operating condition and of matrices

KE,f1, KE,f2 and KE,f3 ∈ R4×3 for an open-circuit fault in
sector 1, 2 and 3, respectively. The magnitudes of the harmon-
ics have been obtained through the fast Fourier transform of
the aforementioned coefficients waveforms presented in [20].
It can be noticed that the first two lines do not contain the
coefficients of matrix KE,f1 since the current components
of sector 1 are null in the case of open-circuit fault. The
same is true for matrices KE,f2 and KE,f3. Their coefficients
do not appear in lines 3, 4 and lines 5, 6, respectively.
Comparing the different harmonic contents it can be observed
that a non negligible third harmonic appears in the terms of
matrices KE,f1, KE,f2 and KE,f3, while the ones of KE are
essentially sinusoidal. Their waveforms were reported in [20]
and they can be easily implemented in a DSP reducing the
computational efforts. On the other hand, the third harmonic
has to be considered in the coefficients of KE,f1, KE,f2 and
KE,f3 in order to produce the required suspension force and
motoring torque complicating the control algorithm.

III. FINITE ELEMENTS SIMULATION RESULTS

In this section the FE validation of the mathematical model
written for open-circuit fault is presented. The FE software
employed is MagNet 7.7.1. Fig. 4, 5 and 6 a)-b) show the
force production for healthy and open-circuit fault in sector 1,
2 and 3 respectively considering two case studies: a) setting
T ∗E = 0; b) setting T ∗E = 2.7[Nm].
In the simulations the rotor is rotated of two whole mechanical
revolutions (720 deg) while the force reference magnitude
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Fig. 3. Comparison in terms of harmonic content between the coefficients
of matrix K+

E (healthy machine), matrix K+
E,f1 (fault in sector 1), matrix

K+
E,f2 (fault in sector 2) and matrix K+

E,f3 (fault in sector 3). (r, c) stands
for the coefficient in the rth row and cth column.

|FE |∗ is kept constant and the direction ∠F ∗E varies from 0 to
360 deg with steps of 120 deg as it is possible to observe in
the figures. In order to satisfy the current limit of the machine
the force reference magnitude |FE |∗ = 100 N is halved when
torque is also produced.
It is possible to observe from Fig. 4, 5 and 6 a) that the
force ripple remains about the same when a fault occurs
and no torque is produced. On the other hand, when torque
is simultaneously generated the ripple slightly increases as
depicted in Fig. 4, 5 and 6 b). The above observations can
be quantified in terms of Total Harmonic Distortion (THD) of
the x− y axis force components and summarized in Table II
for all the considered case studies. It is straightforward to see
that the highest THD occurs for an open-circuit fault in sector
3 for TE = 2.7 N. The THD obtained is 7.42 % which is only
3 % higher than the one obtained at no-load.
Finally, the torque generated during healthy and faulty condi-
tions can be examined in Fig. 4, 5 and 6 c) showing that the
torque ripple is not significantly affected by the open-circuit
faults.

IV. NUMERICAL SIMULATION RESULTS

A. Simulation structure

Fig. 7 shows the block scheme of the simulation imple-
mented in the Simulink-Matlab environment. It is possible to
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Fig. 4. Force and torque generation with open-circuit fault in sector 1: a)
x − y axis force production for Tref = 0; b) x − y axis force production
for Tref = 2.7[Nm]; c) torque production setting Tref = 2.7[Nm].

distinguish three different regions: the control algorithm (in
green) operating in the discrete domain at the sample time
Ts = 100 [µs]; the electro-mechanical model of the MSPM
motor (in yellow) simulated in the continuous domain; the
rotor-dynamic model of the rotor (in red) implemented in
discrete with Tss = 1 [µs].
The control algorithm includes the position and speed con-
trollers, responsible for the suspension force and torque ref-
erences calculation, the mathematical model described in (4),
(5) for healthy machine and in (6), (7) for faulty machine and
the blocks delay z−2 representing the current controllers. As
a matter of fact, a well tuned current controller introduces a
delay of two sample times Ts between the reference current
and motor current (if no voltage saturation occurs). The design
of the position controller considered in this work can be found
in [23]. The speed loop controller is a standard PI controller
as the one proposed in [24]. The electro-mechanical model of
the motor considered is stored in the form of lookup table and
it maps the d− q axis currents to x− y force components and
torque. The lookup table has been carried out by means ”multi-
static” non-linear FE simulations to take into account the iron
saturation. The rotor weight force and an eventual disturbance
are then added and the resultant Fx,t and Fy,t forces are the
input of the rotor dynamic model block represented by

[
m 0
0 m

] [
ü
v̈

]
−
[
km 0
0 km

] [
u
v

]
=

[
Fx,c + Fx,d

Fy,c + Fy,d −mg

]
(8)



TABLE II
THD OF THE FORCE GENERATION

TE = 0Nm TE = 2.7Nm
Healthy Fault 1 Fault 2 Fault 3 Healthy Fault 1 Fault 2 Fault 3

Fx 4.31 5.1 4.58 4.56 4.05 7.22 6.64 7.42
Fy 3.56 3.77 4.04 4.02 3.25 5.27 5.52 5.11
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Fig. 5. Force and torque generation with open-circuit fault in sector 2: a)
x − y axis force production for Tref = 0; b) x − y axis force production
for Tref = 2.7[Nm]; c) torque production setting Tref = 2.7[Nm].

where u and v are the rotor x − y axis displacements and
Fx,c, Fy,c and Fx,d, Fy,d are the x − y components of the
forces generated by the controller and by the disturbance,
respectively.
The simulation also presents a fault selector block that allows
to easily simulate a fault, hence setting the currents of the
faulty sector to zero and switching from healthy to faulty
mathematical models.

B. Simulation results

The results of the simulation for open-circuit faults are
displayed in Fig. 8, 9 and 10. A simulation time of 1 s is
considered.
At first, the fault selector is set to 0 and the rotor is positioned
in the stator centre after an initial short transient (Fig. 8 a)).
Then at 0.02 and 0.04 s the rotor speed is commanded to its
rated value (Fig. 9 a)) and force disturbance is applied in the
y− axis (Fig. 8 b)) respectively justifying the first perturbation
in the rotor position observed in Fig. 8 a) and the increase of
the d − q axis currents in the motor sectors observed in Fig.
10 a)-c). The aforementioned force disturbance Fy,d = −100
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Fig. 6. Force and torque generation with open-circuit fault in sector 3: a)
x − y axis force production for Tref = 0; b) x − y axis force production
for Tref = 2.7[Nm]; c) torque production setting Tref = 2.7[Nm].

N has a duration of 0.02 s. At 0.1 s, then, the load torque is
set equal to 3 Nm (Fig. 9 b)) justifying the increment of the
q−axis currents of the three sectors (Fig. 10).
While the simulation is running the fault selector is manually
set to 1 in order to simulate a sudden open-circuit fault in
sector 1. It can be observed from Fig. 8 a) that the position
controller achieves to maintain the rotor centred after a very
small position transient. Fig. 10 a) shows that, for the duration
of the fault, the d − q currents of sector 1 is zero while Fig.
10 b) and c) show that the ones of sectors 2 and 3 increase
their magnitudes to compensate the loss of the contribution
of sector 1 to the force generation. From Fig. 10 b) and c)
it can also be noticed that the current ripple of the healthy
sectors is remarkably increased after the fault occurs. This
phenomena could be predicted observing the increment of the
current distortion depicted in Fig. 3. The previously described
force disturbance is applied during the fault (Fig. 8 b)) in
order to verify the disturbance rejection capability of the faulty
bearingless drive.
The same procedure is followed to simulate the open-circuit
fault in sectors 2 and 3 showing a similar behaviour.



Fig. 7. Block scheme implemented in the MATLAB-Simulink environment.
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Fig. 8. Result of the numerical simulation for bearingless operation in open-
circuit fault condition: a) x− y axis rotor position; b) x− y axis generated
forces and y−axis force disturb.

V. CONCLUSIONS

A 6-pole PMSM featuring multi-sector multi-phase
winding arrangement has been considered. The machine
has been analysed for healthy and open-circuit fault
conditions providing a detailed mathematical model for
the electromagnetic torque and radial force production. FE
simulation results for radial suspension force and motoring
torque production are provided. The levitation performance for
healthy and faulty machine are studied by means numerical
simulations performed in the Simulink-Matlab environment
showing good fault capability of the bearingless drive.

APPENDIX

A. Healthy operating condition

The pseudo inverse matrix in the rotor synchronous ref-
erence frame was introduced in (5). It can be explicated as
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Fig. 9. Result of the numerical simulation for bearingless operation in open-
circuit fault condition: a)rotor speed; b) generated torque.

follow

K+
E,dq(ϑe) =



1k+xd(ϑe)
1k+yd(ϑe) 0

1k+xq(ϑe)
1k+yq(ϑe) −k′T

2k+xd(ϑe)
2k+yd(ϑe) 0

2k+xq(ϑe)
2k+yq(ϑe) −k′T

3k+xd(ϑe)
3k+yd(ϑe) 0

3k+xq(ϑe)
3k+yq(ϑe) −k′T


(9)

where k′T = 1/3kT [A/Nm] and the expression of the
generic coefficient sk+∗×(ϑe) is

sk+∗×(ϑe) = sc∗× + ss∗× cos(2ϑe + sϕ∗×) (10)

It is possible to notice that sk+∗×(ϑe) presents a constant and
a sinusoidal term. The latter pulsates at twice the electrical
frequency and produces a non-constant d − q axis current
reference signals.
The angle γ0 is required for the calculation of parameters sc∗×,
ss∗× and sϕ∗× . As a matter of facts, γ0 was defined in Section
II as the angular position of the magnetic axis of the sector 1
with respect to the x−axis. As an example, Table III reports
the above mentioned parameters calculated for γ0 = 0.

B. Open-circuit operating condition

In order to describe the model in the rotor synchronous
reference frame, matrices K+

E,f1, K+
E,f2 and K+

E,f3 have to
be replaced with K̂+

E,f1, K̂+
E,f2 and K̂+

E,f3 obtained as follow:

K̂+
E,f1(ϑe) = TR,f (ϑe)K

+
E,f1(ϑe)

K̂+
E,f2(ϑe) = TR,f (ϑe)K

+
E,f2(ϑe)

K̂+
E,f3(ϑe) = TR,f (ϑe)K

+
E,f3(ϑe)

(11)

where TR,f is the six-phase rotation matrix.
The expressions of the force and torque coefficients contained



TABLE III
PARAMETERS OF FORCE COEFFICIENTS

Sector 1 Sector 2 Sector 3
x, d x, q y, d y, q x, d x, q y, d y, q x, d x, q y, d y, q

sc∗×[A/N] 0.068 0 0 0.021 0.034 0.018 0.058 0.01 0.034 0.018 0.058 0.01
ss∗×[A/N] 0.0055 0.0025 0.014 0.013 0.012 0.0112 0.0083 0.0068 0.0121 0.0121 0.0083 0.0068
sϕ∗×[rad] 0.0622 1.63 1.63 -3.08 -1.74 -0.05 -0.9 0.39 1.86 -2.97 -2.12 -0.26
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Fig. 10. Result of the numerical simulation for bearingless operation in open-
circuit fault condition: :a) d− q axis currents sect. 1; b) d− q axis currents
sect. 2; c) d− q axis currents sect. 3.

in the pseudo inverse matrix K̂+
E,fs related to the fault in a

generic sector s can be found in (12) and (13), respectively.

sk+∗×,fs(ϑe) = sc∗×,fs + ss∗×,fs cos(2ϑe + sϕ∗×,fs)+

+ sr∗×,fs cos(4ϑe + sψ∗×,fs)

(12)

sk+T×,fs(ϑe) = scT×,fs + ssT×,fs cos(2ϑe + sϕT×,fs)+

+ srT×,fs cos(4ϑe + sψT×,fs)

(13)

It can be noticed that the coefficients of K̂+
E,fs still contain

the second harmonic as in (10). Furthermore, a forth harmonic
term appears due to the presence of the third harmonic in the
coefficients of K+

E,fs (see Fig. 3).

The parameters in (12) and (13) can be easily calculated once
γ0 is defined. As an example, the parameters of the force and
torque coefficients for fault in sector 1 (matrix K̂+

E,f1) have
been calculated for γ0 = 0 and they have been reported in
Tables IV and V.
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