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Abstract 31 

Several calcium-binding proteins including calcium-dependent protein kinases, play important 32 

roles in several facets of the intracellular infection cycle of the apicomplexan protozoan parasite 33 

Toxoplasma gondii. However, the role of the calcium binding epidermal growth factor (EGF) 34 

domain-containing proteins (CBDPs) remains poorly understood. In this study, we examined 35 

the functions of four CBDP genes in T. gondii RH strain of Type I by generating knock-out 36 

strains using CRISPR-Cas9 system. We investigated the ability of mutant strains deficient in 37 

CBDP1, CBDP2, CBDP3 or CBDP4 to form plaques, replicate intracellularly, and egress the 38 

host cells. The results showed that no definite differences between any of these four CBDP 39 

mutant strains and the wild-type strain in terms of their ability to form plaques, intracellular 40 

replication, and egress. Additionally, CBDP mutants did not exhibit any significant attenuated 41 

virulence compared to the wild-type strain in mice. The expression profiles of CBDP2-4 genes 42 

were conserved among T. gondii strains of different genotypes, life cycle stages, and 43 

developmental forms. Whether other CBDP genes play any roles in the pathogenicity of T. 44 

gondii strains of different genotypes remains to be elucidated. 45 
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Introduction 51 

 52 

The globally prevalent protozoan Toxoplasma gondii can infect humans and a large number of 53 

avian and mammalian species (Elsheikha et al. 2021; Robert-Gangneux and Dardé 2012; Smith 54 

et al. 2021). T. gondii infection occurs via ingestion of raw or poorly cooked meat containing 55 

the parasite tissue cysts or drinking water contaminated with oocysts excreted in the feline feces 56 

(Wang et al. 2019). T. gondii infection in immunocompetent individuals rarely causes any 57 

clinical symptoms. However, this parasite can lead to life-threatening conditions in patients 58 

with a compromised immune system, such as those with AIDS or malignancies (Elsheikha et 59 

al. 2021; Wang et al. 2017). T. gondii can also be transmitted vertically via the placenta to the 60 

fetus, which can lead to miscarriage, premature birth, fetal malformation, or stillbirth 61 

(Elsheikha, 2008; Robert-Gangneux and Dardé 2012; Rico-Torres et al. 2016; Smith et al. 62 

2021). 63 

Ca2+ is a signalling molecule involved in a wide range of cellular processes in eukaryotic 64 

mammalian cells and regulates the host cell invasion, parasite motility, and egress in T. gondii 65 

(Borges-Pereira et al. 2015; Lovett and Sibley 2003; Lourido et al. 2013; Nagamune et al. 66 

2008). Calcium storage organelles in T. gondii are located in the Golgi, endoplasmic reticulum 67 

(ER), mitochondria, apicoplast, and a plant-like vacuole (Moreno and Docampo 2003; Moreno 68 

et al. 2011; Pingret et al. 1996). Calcium-binding proteins (CBP) include calmodulin (CAM), 69 

calmodulin neuropilin B-like proteins (CBL), and calcium-dependent protein kinases (CDPK), 70 

all have highly conserved EF-chiral structural domains (Moreno et al. 2011). At least twelve 71 

CDPKs (CDPK1, CDPK2, CDPK2A, CDPK2B, CDPK3, CDPK4, CDPK4A, CDPK5, 72 

CDPK6, CDPK7, CDPK8 and CDPK9) are expressed in T. gondii (Billker et al. 2009), and 73 

several CDPKs are involved in the parasites propagation. For example, CDPK1 plays a role in 74 

the motility, host-cell invasion and egress of T. gondii (Lourido et al. 2010), while deletion of 75 
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CDPK2 causes the accumulation of starch granules in the bradyzoite stage, leading to 76 

morphological defects and inhibition of cyst formation (Uboldi et al. 2015; Wang et al. 2018). 77 

CDPK3 plays important roles in parasite egress and cyst formation in the brain of mice 78 

(Garrison et al. 2012; Kannan et al. 2021; Wu et al. 2022). Downregulation of CDPK7 causes 79 

division and growth defects in T. gondii (Morlon-Guyot et al. 2014). On the other hand, 80 

CDPK4, CDPK4A, CDPK5, CDPK6, CDPK8 and CDPK9 are non-essential genes and are not 81 

involved in the invasion, egress and intracellular proliferation or virulence of T. gondii (Long 82 

et al. 2016; Wang et al. 2015). In calmodulin (CaM)-like proteins, calcium binds and regulates 83 

the functions of many different partner proteins, including motor proteins, ion channels, and 84 

other enzymes (Kursula et al. 2014). A large number of CaM proteins have been identified in 85 

T. gondii including a single highly conserved CaM gene, and numerous CaM-like genes 86 

(Nagamune and Sibley 2006). CaM1 and CaM2 are individually dispensable, but the loss of 87 

both genes results in a lethal phenotype, whereas CaM3 is refractory to deletion. All three genes 88 

(CaM1, CaM2 and CaM3) contribute to parasite motility, host cell invasion, and egress (Long 89 

et al. 2017). 90 

Epidermal growth factor (EGF) is a short peptide with a distinctive motif of six cysteines 91 

which is found in many proteins and performs various functions (Davis et al. 1990). EGF or 92 

EGF-like domains have been reported in many membrane-bound proteins (Appella et al. 1988; 93 

Blomquist et al. 1984; Barker et al. 1986; Doolittle et al. 1984; Davis et al. 1990). In T. gondii, 94 

TgMIC3 is a microneme protein containing five overlapping EGF-like domains (Garcia-Reguet 95 

et al. 2000), which assists parasite attachment and invasion (Zhang et al. 2019). A calcium-96 

binding site has been found at the N terminus of some EGF-like domains (Selander-97 

Sunnerhagen et al. 1992). Apicomplexan parasites, such as T. gondii, rely on calcium as a 98 

signalling molecule to regulate various cellular processes (Lourido et al. 2013). Calcium-99 

binding may be crucial for protein-protein interactions and potentially parasite protein-host 100 
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interactions. However, knowledge of the role of the calcium binding EGF domain-containing 101 

proteins (CBDPs) in the replication and infectivity of T. gondii is limited. 102 

Identification of the genes required for the infectivity of T. gondii is essential for 103 

understanding the parasite intracellular replication cycle as well as development of effective 104 

anti-T. gondii strategies. Although numerous parasite genes important for T. gondii 105 

pathogenicity have been identified, it is likely that additional genes remain to be discovered. In 106 

the present study, we sought to uncover the role T. gondii CBDPs in the replication and 107 

virulence of T. gondii Type I RH strain. We investigated whether the deletion of CBDP1, 108 

CBDP2, CBDP3 and CBDP4 using the CRISPR-Cas9 gene editing technology affects the 109 

parasite plaque formation, intracellular replication, and egress. The impact of CBDP gene 110 

deletion on the parasite virulence and acute T. gondii infection in mice was also investigated. 111 

 112 

Materials and methods 113 

Mice and parasites 114 

Female Kunming mice of 7–8 weeks old were purchased from the Centre of Laboratory 115 

Animals, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences. 116 

All mice were raised under specific pathogen-free and biocontainment conditions with free 117 

access to water and food as well as environmental enrichment. The tachyzoites of T. gondii RH 118 

strain (Type I) and the corresponding knockout strains were cultured in human foreskin 119 

fibroblasts (HFFs, American Type Culture Collection, Manassas, VA, USA) maintained at 37 120 

°C in a 5% CO2 air atmosphere, as previously described (Wang et al. 2020b). 121 

 122 

Generation of CBDP knockout strains by CRISPR-Cas9 system 123 

The CRISPR/Cas9 target selection website (http://www.e-crisp.org/E-CRISP/) was used for 124 

prediction of the four target genes (TGGT1_315520, TGGT1_318540, TGGT1_269930 and 125 
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TGGT1_315550) of T. gondii RH strain. The details of the primers used are listed in Table 1. 126 

The pSAG1::CAS9-U6::sgUPRT was used as a template and the UPRT targeting guide RNA 127 

was replaced with the corresponding guide RNAs using the Q5 fixed-point mutagenesis kit 128 

(NEB). The primers listed in Table 2 were used to amplify the 3′ and 5′ homologous arms of 129 

each CBDP gene from the genomic DNA of T. gondii RH strain. The plasmid pUPRT-DHFR-130 

D was used as a template to amplify the DHFR fragment. The 5′ and 3′ homologous sequences 131 

of each gene were obtained by amplification of the genomic DNA of the RH strain, and the 132 

DHFR fragment was amplified from the pUPRT-DHFR-D plasmid. The above sequences were 133 

inserted into the PUC19 vector using a multi-fragment cloning method using the Clone Express 134 

II one-step Cloning Kit (Vazyme). After transformation, positive plasmids were identified by 135 

sequencing and the positive plasmid was extracted using Endo-Free Plasmid DNA Mini Kit 136 

Protocols (OMEGA). Finally, the corresponding gene specific CRISPR plasmid (30 µg) and 137 

the homology construct (25 µg) were co-transfected into freshly egressed tachyzoites (n=107), 138 

and the positive strains were screened by 3 μM pyrimethamine. Finally, 96-well plates were 139 

used to isolate single clones and T. gondii DNA was extracted and verified by PCR using 140 

previously designed primers (Table 3) (Wang et al. 2020a). 141 

 142 

Assessment of the plaque formation 143 

We examined the ability of the mutant and wild-type strains to produce plaques in HFF tissue 144 

culture. Briefly, HFF monolayers in 12-well culture plates were infected with 500 freshly 145 

egressed tachyzoites per well. After 7 days of incubation at 37°C, the infected cell cultures were 146 

washed gently with phosphate buffered saline (PBS) three times. After fixation with 4% 147 

paraformaldehyde (PFA) for 10 min, the infected monolayers were stained for 15 min with 0.2% 148 

crystal violet to visualize the plaques. The stained monolayers were imaged using a scanner to 149 
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analyse the relative size and number of plaques formed by the growing tachyzoites, as 150 

previously described (Wang et al. 2020a). 151 

 152 

Intracellular replication of tachyzoites 153 

We investigated the effect of CBDP gene deletion on the intracellular replication of T. gondii. 154 

In brief, HFF monolayers grown on 12-well culture plates were infected with 105 freshly 155 

egressed tachyzoites per well for 1 h, and then washed with PBS to remove unbound 156 

tachyzoites. The plates were incubated for further 23 h and then the cell monolayers were fixed 157 

with 4% PFA and tachyzoites were stained with anti-SAG1. At least 200 parasitophorous 158 

vacuoles (PVs) were examined using the microscope to determine the number of tachyzoites 159 

(1, 2, 4, 8, and 16 tachyzoites) within each PV. The percentage of the PVs containing different 160 

numbers of tachyzoite was calculated as previously described (Garrison et al. 2012; Shen and 161 

Sibley 2014).  162 

 163 

Egress assay 164 

HFF monolayers growing in 12-well tissue culture plates were infected with 2×104 tachyzoites 165 

of each of the deletion strains and the wild-type RH strain. After 30-36 h of incubation, the 166 

infected cells were treated with 3 μM calcium ionophore A23187 1:1000 in Dulbecco's 167 

Modified Eagle Medium and tachyzoites egress from host cells was recorded immediately by 168 

time-lapse microscopic imaging as previously described (McCoy et al. 2012; Morlon-Guyot et 169 

al. 2014). 170 

 171 

Mouse infection with the mutant strains 172 

Kunming mice were infected with 100 freshly egressed tachyzoites of each of the four CBDP 173 

knockouts or the wild-type strains (6 mice/strain) by intraperitoneal (i.p.) injection. All mice 174 
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were monitored and weighed daily for any clinical signs, and twice daily if they started to show 175 

a change in their appetite, body weight, behavior, level of activity, or posture. Mice were 176 

euthanized immediately on reaching the humane endpoint. 177 

 178 

Bioinformatic analysis of T. gondii calcium binding EGF domain-containing proteins 179 

The CBDP proteins were analyzed for the presence of functional domains using the SMART 180 

tool as previously described (Zhang et al. 2020). Information on the genomic characteristics 181 

(such as signal peptide, the number of exons and transmembrane domains) and time-series 182 

expression data of the CBDP genes were obtained from the ToxoDB (Gajria et al. 2007). Data 183 

was representative to T. gondii cell cycle phases, life cycle stages (oocyst, tachyzoite and 184 

bradyzoite), and genotypes (I, II and III). We compared the cell cycle stages of the RH strain 185 

for CBDP2 (TGGT1_318540), CBDP3 (TGGT1_269930) and CBDP4 (TGGT1_315550) as 186 

previously described (Behnke et al. 2010). 187 

 188 

Statistical analysis  189 

All statistical analyses were performed using GraphPad Prism 9 (GraphPad Software, La Jolla, 190 

CA, USA) and the level of significance was determined by one-way ANOVA or two-way 191 

ANOVA as indicated in the figure legends. Survival differences were tested for statistical 192 

significance by the log rank (Mantel-Cox) test. Each experiment was repeated three times, and 193 

the results were shown as means ± standard deviations (SD), and the difference was considered 194 

significant when the p-value was < 0.05. 195 

 196 

Results 197 

Identification of the functional domains of CBDPs 198 
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The prediction of the functional domains of the amino acid sequences of TGGT1_315520, 199 

TGGT1_318540, TGGT1_269930 and TGGT1_315550 of T. gondii RH strain was performed 200 

by using the SMART tool. We detected the presence of EGF, epidermal growth factor calcium-201 

binding (EGF-CA) and EGF-like domains, showing that these proteins are CBDPs (Fig. S1).  202 

 203 

Successful construction and validation of the CBDP knockout strains 204 

To investigate the functions of the four TgCBDPs, the CRISPR-Cas9 technique was used to 205 

delete the CBDP genes, individually, in Type I RH strain, and the CBDP coding region was 206 

successfully replaced by 5′ UTR-DHFR-3′ UTR fragment using a homologous recombination 207 

system (Fig. 1A). Single clones were obtained by drug selection and limiting dilution assay. 208 

The primers in Table 3 were used to validate the construction of mutant strains. As shown in 209 

Fig. 1B, in the four mutant strains (RHΔCBDP1, RHΔCBDP2 RHΔCBDP3 and RHΔCBDP4), 210 

the PCR2 targeting ∼600 bp CBDP fragment did not produce any amplicons, confirming the 211 

absence of the targeted gene in the knocked-out strain. Additionally, replacement of DHFR 212 

fragment was confirmed by PCR1 and PCR3, with ~1500 bp fragment being amplified in the 213 

KO strains but was not detected in the wild-type RH strain (Fig. 1B), indicating the successful 214 

construction of four CBDP deletion mutant strains. 215 

 216 

Deletion of CBDP1-4 does not affect the parasite ability to form plaques  217 

To explore the potential involvement of CBDP1-4 in the parasite infectivity, we began by 218 

testing the effect of deleting CBDP1-4 on the ability of T. gondii to form plaques in cultured 219 

cells. There was no significant difference in the number or the size of the plaques between any 220 

of the four knockout strains and the corresponding wild-type RH strain (p > 0.05, Fig. 2A-B). 221 

This result suggests that CBDP1-4 play no roles in T. gondii replication. 222 

 223 
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CBDP1-4 are not involved in the egress and replication of T. gondii 224 

As the plaque assay is limited by the parasite's ability to cause cell lysis and plaque formation 225 

in the host cell monolayer, it does not discern the changes that occur at the different stages of 226 

the lytic infection cycle. Therefore, it was important to investigate additional properties of the 227 

mutant strains such as the egress process and the intracellular replication kinetics. The results 228 

showed that the majority of tachyzoites of the four CBDP mutant strains and the wild-type 229 

strain egressed from host cells within 2 min, without any significant differences between all the 230 

examined strains (Fig. 3A). We also tested the extent to which the deletion of CBDP1-4 affects 231 

the intracellular growth dynamics of tachyzoites inside the PVs. We found that largest 232 

proportion of the vacuoles contained 16 tachyzoites. However, the numbers of tachyzoites 233 

inside the PVs were not significantly different between any of the four deletion strains and the 234 

wild-type RH strain (p > 0.05, Fig. 3B). 235 

 236 

CBDP1-4 do not mediate the virulence of T. gondii in mice 237 

To gain insight into the role of CBDP1-4 in the parasite virulence, we inoculated five groups 238 

of Kunming mice (6 mice/ group) with 100 tachyzoites of each deletion mutant strain or the 239 

wild-type RH strain by i.p. injection. The results showed that all 5 groups of mice reached their 240 

humane endpoint between 9 and 12 dpi. The survival time of mice inoculated with each of the 241 

four deletion strains was slightly prolonged compared with mice infected by the wild-type 242 

strain, however the difference was not significant (p > 0.05, Fig. 4). 243 

 244 

Sequence characteristics and expression patterns of CBDPs in T. gondii 245 

Table 4 summarizes the bioinformatic characteristics of the four CBDP genes. We found that 246 

none of the four CBDP genes had signal peptides. The CBDP1, CBDP3 and CBDP4 had 247 

transmembrane regions, but CBDP2 did not. Most of the CBDP genes were encoded by multiple 248 
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exons, with CBDP3 having the largest number. To corroborate the results from the in vitro and 249 

in vivo studies, we analyzed the expression levels of the four genes in different genotypes of T. 250 

gondii strains, parasite cell cycles, and different life-cycle stages. The CBDP1 251 

(TGGT1_315520) did not have any representative transcriptome in the ToxoDB and therefore 252 

CBDP1 was not included in the bioinformatic analysis. The expression profiles of the three 253 

CBDP2-4 genes did not follow a specific cell cycle pattern, with a higher expression of CBDP3 254 

and a lower expression for CBDP2 and CBDP4 (Fig. S2A). Next, we analysed the transcript 255 

levels of the 3 CBDP genes in different genotypes of T. gondii (Type I, Type II and Type III) 256 

(Fig. S2B) and found that CBDP3 of RH strain (genotype I) had a slightly higher expression, 257 

compared with the expression levels of CBDP2 and CBDP4 of the same strain. However, for 258 

Type II and Type III, the expression levels of the three genes were similar. Our analysis revealed 259 

that all three CBDP genes were differentially expressed at different life cycle stages, with 260 

CBDP4 being significantly higher than CBDP2 and CBDP3 in oocysts sporulated for 4 days; 261 

the expression of the three CBDP genes was lower after 2 days in vitro (Fig. S2C).  262 

 263 

Discussion 264 

The present study was undertaken to identify the role of CBDP genes in the pathogenicity and 265 

infection process of T. gondii. The study did not detect any significant differences in the 266 

intracellular replication between the four CBDP mutant strains and the wild-type RH strain. 267 

Likewise, no significant differences were detected in the parasite egress between the mutant 268 

and wild-type strains. Additionally, no significant differences were observed between the wild-269 

type RH strain and any of the four CBDP mutant strains in regard to the number or size of 270 

plaques, which is a direct reflection of the extent of infection-related cell monolayer damage, 271 

and thus, is used as a proxy of T. gondii virulence (Liang et al. 2021). These results suggest that 272 

the four CBDP genes are not essential for T. gondii growth, replication, or pathogenicity. 273 
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We also examined the possibility that these four CBDP genes are involved in the parasite 274 

virulence. Our in vivo data showed that all 5 groups of Kunming mice, infected by RHΔCBDP1, 275 

RHΔCBDP2, RHΔCBDP3 and RHΔCBDP4 or wild-type RH strain, have reached their humane 276 

endpoint between 9-12 days. There was no significant difference in the survival rate between 277 

mice infected by CBDP-mutant-type and those infected by wild-type RH strain. Whether the 278 

deletion of CBDPs can influence the cyst formation in the mouse brain remains to be 279 

investigated. 280 

T. gondii has a complex life cycle and its development involves alternations between 281 

biologically distinct stages, which involves significant transcriptional changes (Chen et al. 282 

2018; Radke et al. 2010; Sharma et al. 2020). Likewise, the pathogenic effect of this obligate 283 

intracellular parasite requires direct engagement with the host cell in numerous lytic cycles 284 

involving cell invasion, intracellular replication and egress, culminating in the destruction of 285 

the host cell. The transition between these distinct steps of T. gondii lytic cycle is accompanied 286 

by marked changes in gene expression (Gaji et al. 2011; Lescault et al. 2010). Furthermore, 287 

significant differences were detected in the proteome (Zhou et al. 2017), phosphoproteome 288 

(Wang et al. 2019) and post-translational modification (Nie et al. 2022) between T. gondii 289 

strains of different genetic and virulence backgrounds. 290 

In the present study, we characterized the transcriptomic expression levels of CBDP2-4 291 

genes. Our bioinformatic analysis revealed low expression of CBDP2-4 in T. gondii strains of 292 

Types I, II and III, with CBDP3 of RH strain (genotype I) having a slightly higher expression, 293 

compared with the expression levels of CBDP2 and CBDP4 of the same strain. Additionally, 294 

there were low expression levels and non-significant differences between different phases of 295 

the parasite lytic cycle and the different life cycle forms obtained in vitro or in vivo. These 296 

results suggest that the expression profiles of CBDP genes were conserved between the 297 

different lytic cycle phases, genotypes, and life cycle forms of T. gondii. Given the remarkable 298 
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transcriptomic changes that underpin the parasite alternation between different stages and 299 

phases during its developmental cycle (Chen et al. 2018; Fritz et al. 2012; Radke et al. 2005; 300 

Sharma et al. 2020) and infection cycle (Gaji et al. 2011; Lescault et al. 2010), the lack of 301 

definite differences in the expression patterns of CBDP2-4 genes across lytic cycle phases, 302 

genotypes, life cycle forms is consistent with the non-essential role of CBDP2-4 genes in the 303 

replication and virulence of T. gondii RH strain. 304 

 305 

Conclusion 306 

Here, we examined the biological roles of CBDP1, CBDP2, CBDP3 and CBDP4 in the 307 

pathogenicity of T. gondii RH strain in vitro and in vivo. CRISPR-Case9-mediated disruption 308 

of the four CBDP genes showed that none of these genes is essential for the parasite virulence 309 

or lytic cycle including intracellular replication, plaque formation, and egress. These results 310 

were consistent with the high CRISPR fitness and limited transcriptional changes of these genes 311 

between the parasite cell cycle phases, genotypes and life cycle forms. Further investigations 312 

are required to elucidate the specific roles of other CBDP genes in the establishment and 313 

maintenance of T. gondii infection. 314 
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Table 1 Construction of the CBDP knockout T. gondii RH strains. 507 
Primer name Sequence (5' → 3') 

Sg-315520 

Sg-318540 

Sg-269930 

Sg-315550 

GCGGCGATTATCGAGAGCTAGTTTTAGAGCTAGAAATAGC 

GATCATCTCCTCTAACAAGTGTTTTAGAGCTAGAAATAGC 

GAAGACAACGAACCAGGCCAGTTTTAGAGCTAGAAATAGC 

GGTTATACGGAGACCAGCGCGTTTTAGAGCTAGAAATAGC 

Note: The underlined sequence is the sgRNA. 508 
 509 
 510 

 511 

  512 
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Table 2  Primers for amplification of homologous fragments.  513 
Primer name Sequence (5' → 3') 
U5-315520-F 
U5-315520-R 
U3-315520-F 
U3-315520-R 

GGTTTTCCCAGTCACGACGTTTCTGGGAGGAAGGACACGAGCAA 
GGATTTACAGCCTGGCGAAGCTTTTTCAACCCCTGAGCGAAAAGC 
CTATGCACTTGCAGGATGAATTCTATGCTTCGGTCTTTTATGTTCCTGG 
GAGCGGATAACAATTTCACAACGCCAACTGGTCGGGTGATT 

U5-318540-F 
U5-318540-R 
U3-318540-F 
U3-318540-R 

GGTTTTCCCAGTCACGACGTTAGCCTCTTGCGGAGTCTTGTGG 
GGATTTACAGCCTGGCGAAGCTTGTATGCTGGCACCGACGGAGAT 
CTATGCACTTGCAGGATGAATTCGGAAGTGGCTGCTGGCGTTTT 
GAGCGGATAACAATTTCACACATCGGTTCGTAATTCATTGTTATTGTCT 

U5-269930-F 
U5-269930-R 
U3-269930-F 
U3-269930-R 

GGTTTTCCCAGTCACGACGTTTGTTTGGAGGGAGGCTAGAAGTGC 
GGATTTACAGCCTGGCGAAGCTTACGATAGAAGACGCCGAAATGGTTA 
CTATGCACTTGCAGGATGAATTCTTCAGCAACATCGTTCCACCCC 
GAGCGGATAACAATTTCACAATATTTCTTGTCCAGAAACCGGATTACAT 

U5-315550-F 
U5-315550-R 
U3-315550-F 
U3-315550-R 

GGTTTTCCCAGTCACGACGTTGCTGCTGCTTGGCTTCCCTCA 
GGATTTACAGCCTGGCGAAGCTTTGTCCTTTCGGTTGAAAATGTCGC 
CTATGCACTTGCAGGATGAATTCCAAGGTTGTGCGGGGCAGGTC 
GAGCGGATAACAATTTCACATGGCTTCGATGGTTGTCTTTCCAG 

Note: The underlined sequences are designed to amplify homologous fragments. 514 
 515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
  528 
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Table 3  Primers used for the confirmation of the targeted gene deletion. 529 
Primer name Sequence (5' → 3') 
315520-PCR1-F 
315520-PCR2-F 
315520-PCR2-R 
315520-PCR3-R 

GGGAAGGAAATGCACGGTGGATTA 
CCACTTAGATGGGACGGGATTGC 
TGAGTGAGACAGTGCTTCCACCAGA 
CTCCGACTTTCCGAGATTTCGCTT 

318540-PCR1-F 
318540-PCR2-F 
318540-PCR2-R 
318540-PCR3-R 

TTCTGCCCCTTCACAACCACAGTT 
CGGAGGATTTGAATGCGGTTGC 
CCCGATGTTAGTTTTGGTGATGTTTG 
GCCGAGTGCGATAAGAGTGATTGT 

269930-PCR1-F 
269930-PCR2-F 
269930-PCR2-R 
269930-PCR3-R 

CGCATGAGAACGTTGGTTCACCTG 
GTCTTAGGATTTGATGCTTGTCTGATGG 
GAAGTGAAAAGTAACAGGAGCTGGGTC 
GTTTGCGCACAGAAACTGGCATGT 

315550-PCR1-F 
315550-PCR2-F 
315550-PCR2-R 
315550-PCR3-R 

CCCAGCAGTTGATCGATCTCGATA 
CAACGGATTTTCGTCTAATGAGGTCTT 
CCATCGGACTCCTGGCTGACC 
AAGGTTCTGTTCTGCCTCTTCCGA 

PCR1-R 
PCR3-F 

GCCAAAGTAGAAAGGAATTAGCAT 
TGACGCAGATGTGCGTGTATCCAC 

 530 
 531 

  532 
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Table 4  Bioinformatics features of the CBDPs of Toxoplasma gondii. 533 
Name Gene ID Product description Exons Phenotype value TMHMMa Molecular weight (kDa) Predicted signal peptide 

CBDP1 TGME49_315520 Calcium binding egf 

domain-containing protein 

8 1.04 Yes 36.589 No 

CBDP2 TGME49_318540 Calcium binding egf 

domain-containing protein 

2 0.77 No 72.334 No 

CBDP3 TGME49_269930 Calcium binding egf 

domain-containing protein 

13 -0.14 Yes 337.852 No 

CBDP4 TGME49_315550 Calcium binding egf 

domain-containing protein 

7 0.85 Yes 33.195 No 

Note: a Prediction of transmembrane helices was carried out using the TMHMM, program version 2.0. 534 
 535 
 536 
 537 
 538 
 539 

 540 
  541 
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Figures: 542 

 543 

 544 

Fig. 1 Construction of the CBDP knockout strains using CRISPR-cas9 technology. A 545 

Schematic diagram showing the disruption of the targeted CBDP genes. B The knockout strains 546 

(RHΔCBDP1, RHΔCBDP2, RHΔCBDP3 and RHΔCBDP4) were verified by PCR analysis. 547 

PCR1 and PCR3 amplified ~ 1500 bp band in knockout strains, while wild-type RH strain had 548 

no band, indicating that DHFR fragments were successfully inserted into knockout strains from 549 

5' to 3' ends by homologous recombination. PCR2 showed that ~ 600 bp band was amplified in 550 

the wild-type RH strain, while knockout strains had no bands, showing that the targeted genes 551 

were successfully deleted. 552 
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 553 

 554 

 555 

 556 

 557 

Fig. 2 The plaque formation of CBDP knockout strains compared with wild-type RH strain in 558 

vitro. HFF monolayers were infected by 500 tachyzoites for 7 days and stained with crystal 559 

violet to determine the number of plaques. A Representative photographs of the plaques 560 

detected in HFFs infected by the 4 RHΔCBDP1-4 strains and those produced by the wild-type 561 

RH strain. B The relative size of the plaques generated by CBDP1-4 mutant strains versus the 562 

wild-type RH strain showing no significant differences between RH strain and any CBDP 563 

mutant strains. n.s, not significant, one-way ANOVA. 564 

 565 

 566 

 567 

 568 

 569 

 570 
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 572 

 573 

 574 

 575 

 576 

 577 

Fig. 3 Egress process and intravacuolar replication of the CBDP knockout strains and wild-type 578 

RH strains in vitro. After inoculation of 2×104 tachyzoites of the CBDP mutant and wild type 579 

RH strains into HFF monolayers grown in 12 plates for 28-32 h, the culture medium was 580 

discarded. The tachyzoite exist of the host cells was recorded after adding 3 µM of calcium 581 

ionophore A23187. A Representative images showing that one of the CBDP1-4 mutant strains 582 

(RHΔCBDP1) and the wild-type RH strain egress during 2 min after adding 3 µM calcium 583 

ionophore A23187. B The percentages of the parasitophorous vacuoles containing tachyzoites 584 

(1, 2, 4, 8, and 16 tachyzoites per vacuole). The wild-type RH strain and the CBDP1-4 mutant 585 

strains had roughly similar intracellular replication dynamics. n.s., not significant, two-way 586 

ANOVA. 587 

 588 

 589 

 590 

 591 
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 592 

 593 

 594 

 595 

Fig. 4 Survival curve of the Kunming mice infected by the CBDP mutant strains and wild-type 596 

RH strain of T. gondii. The mice (6/group) were intraperitoneally injected with 100 tachyzoites 597 

of each strain. Following infection, the mice reached their humane endpoint within 9 to 12 days 598 

after infection. Statistical analysis was performed with GraphPad Prism. Log-rank (Mantel-Cox) 599 

tests and revealed no statistically significant differences (p >0.05)  600 

 601 

 602 
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Supplementary information 610 

 611 

Fig. S1 The schematic diagram of the predicted functional domains in each CBDP protein. EGF, 612 

epidermal growth factor-like domain; EGF-CA, calcium- binding EGF-like domain; EGF-like, 613 

EGF domain, unclassified subfamily. The putative functional domains of the CBDP proteins 614 

were predicated by the SMART algorithm (http://smart.embl-heidelberg.de). The blue 615 

rectangles represent the transmembrane helix region, as detected by the TMHMM v2.0 program. 616 
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 619 
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 621 

Fig. S2 The expression profiles of Toxoplasma gondii CBDPs. A The expression profile of 3 622 

CBDP genes of T. gondii RH strain presented by the cell cycle phases. B The expression profiles 623 

of 3 CBDP genes in Type I (RH and GT1), Type II (Pru and ME49), and Type III (CTG and 624 

VEG) strains. C The expression profiles of 3 CBDP genes related to the parasite life cycle 625 

stages (oocyst, tachyzoite and bradyzoite). Expression profile of 3 CBDP genes of the oocysts 626 

recovered from cat feces at 0 day (unsporulated), 4 days (4 days sporulated), and 10 days (10 627 

days sporulated), tachyzoites grown for 2 days in HFF cells (2 days in vitro), bradyzoites grown 628 

in HFF cells for 4 days and 8 days (4 day in vitro and 8 days in vitro), and 21 days tissue cyst-629 

containing bradyzoites harvested from infected mouse brains (21 days in vivo). Each line 630 

represents the expression value of the corresponding gene. 631 
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