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Abstract
This paper provides a systematic study of gauge symmetries in the dynamical
fuzzy spectral triple models for quantum gravity that have been proposed by
Barrett and collaborators. We develop both the classical and the perturbative
quantum BV formalism for these models, which in particular leads to an expli-
cit homological construction of the perturbative quantum correlation functions.
We show that the relevance of ghost and antifield contributions to such correl-
ation functions depends strongly on the background Dirac operator D0 around
which one perturbs, and in particular on the amount of gauge symmetry that it
breaks. This will be illustrated by studying quantum perturbations around (a)
the gauge-invariant zero Dirac operator D0 = 0 in a general (p,q)-model, and
(b) a simple example of a non-trivial D0 in the quartic (0,1)-model.

Keywords: noncommutative geometry, BV quantization, spectral triple,
Dirac operator

1. Introduction and summary

Noncommutative geometry provides a powerful and versatile mathematical framework that
allows one to incorporate quantum effects into the small-scale structure of spacetime. Through-
out the past two decades, we have witnessed the development of different, but related,
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approaches to the problem of describing generalizations of Riemannian geometry, and hence
of gravity, to noncommutative spaces. The main difference in these approaches lies in how
they attempt to encode the geometry/gravitational field on a noncommutative space. The most
common options are metric approaches [ADMW06, BM20], vielbein approaches [AC09] and
more radical approaches such as Connes’ spectral triples [Con94].

This paper is a contribution to the spectral triple approach to noncommutative (quantum)
gravity.More precisely, we shall work within the framework of fuzzy spectral triples developed
by Barrett [Bar15], which can be thought of as finite dimensional approximations of Euclidean
spacetime. Very informally speaking, a spectral triple (A,H,D) consists of a possibly noncom-
mutative algebra A that is represented on a Hilbert space H, together with a Dirac operator
D on H. (Further data is required for a real spectral triple, namely a chirality operator Γ and
a real structure J, see section 2 for more details.) The physical interpretation is that A is the
‘algebra of functions’ on a noncommutative space,H is the space of spinor fields and the Dirac
operatorD encodes the noncommutative Riemannian geometry. Fuzzy spectral triples are par-
ticular examples of real spectral triples withA=MatN(C) a finite-dimensional matrix algebra
and H=A⊗V determined by a module V over some Clifford algebra Clp,q. See [Bar15] for
the description of the fuzzy sphere in this framework and [BG19] for the fuzzy tori.

Fuzzy spectral triples can be used to develop and study (toy-)models for quantum gravity
theories on noncommutative spaces [BG16]. The basic idea is to consider the Dirac operatorD
as a dynamical variable that gets quantized through performing path-integrals over the space
D of Dirac operators. More precisely, given a suitable action S :D→ R on the space of Dirac
operators, one defines the partition function of such quantum gravity model as the integral

Z :=

ˆ
D
e−S(D) dD (1.1a)

and the expectation value of an observable O :D→ C by

〈O〉 := 1
Z

ˆ
D
O(D)e−S(D) dD. (1.1b)

It is important to stress that, for fuzzy spectral triples, the space of Dirac operators D is
finite-dimensional. Hence, such integrals exist rigorously, subject to suitable conditions on the
action S. Furthermore, using the classification of finite spectral triples [Kra98], together with
the explicit characterization of Dirac operators in terms of (anti-)Hermitian matrices [Bar15],
the path-integrals in (1.1) may be reformulated in terms random multi-matrix models. The
original study in [BG16] was through numerical Monte Carlo simulations, however some
later works made considerable progress in analyzing such models with a variety of analytical
methods, see e.g. [BDG19, AK19, HKP22, KP21, KP22, PS19, PS21, PS22] and the review
[HKPV22].

The present paper is about a gauge-theoretic study of the dynamical fuzzy spectral triple
models that we have outlined above. Note that such models carry an obvious notion of gauge
symmetry, described by certain unitary operators U on the Hilbert space H, which act via the
adjoint action D 7→ UDU∗ on the space of Dirac operators D. These gauge transformations
can be interpreted as noncommutative analogs of the diffeomorphism gauge symmetries in
ordinary gravity. Taking into account such gauge symmetries in the definition of the path-
integrals (1.1) is an important and non-trivial task which, to the best of our knowledge, has
not been studied in the literature yet. The standard approach to define gauge-theoretic path-
integrals is through homological methods, such as the Batalin–Vilkovisky (BV) formalism
[BV81] and its modern incarnation developed by Costello and Gwilliam [CG16, CG21]. In the
context of noncommutative geometry, the BV quantization of field theories on fuzzy spaces
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has been studied in [NSS21] and the classical BV formalism for a certain type of matrix model
arising from spectral triples in [IvS17, Ise19a, Ise19b].

The main achievement of the present paper is an explicit and computationally accessible
description of both the classical and the perturbative quantum BV formalism for the dynamical
fuzzy spectral triple models introduced in [BG16]. At the classical level, we shall construct in
particular the extended BV action (involving ghosts and antifields) for suchmodels by employ-
ing systematic techniques from derived algebraic geometry [BSS21]. At the quantum level, we
provide a rigorous construction of the perturbative quantum correlation functions (including
possible ghost and antifield contributions) for quantum perturbations around any background
Dirac operator D0 ∈ D that solves the classical equations of motion associated with the action
S. We then analyze such quantum correlation functions in more detail in order to understand
if the ordinary path-integrals in (1.1) receive gauge-theoretic modifications through the ghosts
and antifields. We observe that this depends strongly on the choice of background solution
D0 ∈ D one uses to perturb around, or more precisely on the amount of gauge symmetry that it
breaks. In the special case one perturbs around the zero Dirac operatorD0 = 0, which is gauge
invariant, we prove in proposition 5.2 that the ghosts and antifields for ghosts decouple from the
correlation functions, hence there are no gauge-theoretic modifications to the ordinary path-
integrals in (1.1). In stark contrast, for the generic case of perturbations around a non-trivial
Dirac operator D0 6= 0 that breaks some of the gauge symmetries, there are non-trivial gauge-
theoretic modifications to the quantum correlation functions. In section 6, we shall illustrate
this concretely by studying a simple example, the so-called quartic (0,1)-model from [BG16].
We observe that this model exhibits a Higgs-like mechanism due to its ‘symmetry-breaking
potential’, which is identified as the origin of the non-trivial ghost and antifield contributions.
Hence, our results indicate that taking gauge symmetries properly into account alters the path-
integrals in (1.1), in particular in semi-classical situations where the quantum fluctuations are
localized around a non-trivial classical solution D0 6= 0. An interesting problem for future
research would be to understand the physical effects associated with these gauge-theoretic
modifications and their interpretation in the context of quantum gravity.

We would like to state very clearly that our present paper studies gauge-theoretic aspects
of fuzzy spectral triple models for a fixed matrix size N. Given the highly interesting beha-
vior of such models in the large N limit, see e.g. the recent review [HKPV22] for an excellent
overview, it is natural to ask whether gauge symmetries and BV quantization could have an
impact on large N phenomena such as phase transitions. While this certainly should be expec-
ted, given the gauge-theoretic modifications to finite N correlation functions that we find in
this paper, making mathematically precise statements about the large N limit in the BV form-
alism has been explored very little. In a recent series of papers [GGHZ22, GHZ22], the authors
provide a very interesting homological perspective on the large N limit of the Gaussian unitary
ensemble from random matrix theory by establishing a generalization of the Loday–Quillen–
Tsygan theorem that links ordinary BV quantization (as used in the present paper) to a non-
commutative/cyclic analog. An interesting problem for future research would be to adapt these
techniques to fuzzy spectral triple models, with the hope to obtain a homological perspective
on the results by the Western University group [HKPV22]. In this way it might be possible
to determine the effect of gauge symmetries in the large N limit on phenomena such as phase
transitions.

The outline of the remainder of this paper is as follows: In section 2, we provide a brief
review of the framework of fuzzy spectral triples from [Bar15], their gauge symmetries and
also their perturbative treatment. The classical BV formalism for such models is studied in
section 3, culminating in an explicit description of the relevant antibracket and BV action,
see remark 3.1. In section 4, we describe the BV quantization of these models and provide a

3



J. Phys. A: Math. Theor. 55 (2022) 474004 J Gaunt et al

homological approach to compute their quantum correlation functions (4.15). The special case
of perturbations around the trivial Dirac operatorD0 = 0 is investigated in detail in section 5. In
particular, we prove that in this case both the ghosts and the antifields for ghosts decouple from
the quantum correlation functions for observables for the Dirac operator, see proposition 5.2.
In section 6, we shall explain and explicitly show that such decoupling is not a generic feature
of dynamical fuzzy spectral triples by studying quantum perturbations around a non-trivial
Dirac operator D0 6= 0 in the quartic (0,1)-model from [BG16]. In particular, we identify and
compute to leading order the ghost and antifield contributions to the 1-point and the 2-point
correlation functions of this model, see examples 6.1 and 6.2.

2. Fuzzy spectral triples

The aim of this section is to briefly recall the concept of fuzzy spectral triples from [Bar15],
which are finite-dimensional variants of Connes’ real spectral triples [Con94]. A real spectral
triple (A,H,π,D,Γ,J) consists of a ∗-algebra A with a ∗-representation π :A→ End(H) on
a Hilbert space H, a self-adjoint operator D :H→H (called Dirac operator), a self-adjoint
operator Γ :H→H (called chirality operator) and an anti-unitary operator J :H→H (called
real structure), which have to satisfy various axioms and compatibility conditions, see e.g.
[Con94, vS15, Bar15] for details. Fuzzy spectral triples are a particularly simple class of finite-
dimensional real spectral triples, for which these data are very explicit: For the ∗-algebra, we
fix a natural number N ∈ Z>0 and take the N×N-matrices with complex entries

A := MatN(C), (2.1)

where the ∗-involution is given by Hermitian conjugation. For the Hilbert space, we choose
two non-negative integers p,q ∈ Z⩾0, pick a (p,q)-Clifford module V= Ck and define

H :=A⊗V (2.2a)

together with the Hermitian inner product

〈〈a⊗ v,a ′ ⊗ v ′〉〉 := TrA(a
∗a ′) 〈v,v ′〉, (2.2b)

where TrA denotes the trace on the matrix algebra and 〈 · , · 〉 is the standard inner product on
V= Ck. The ∗-representationπ :A→ End(H) ofA onH is given by left matrixmultiplication

π(a ′)
(
a⊗ v

)
:= (a ′a)⊗ v. (2.3)

Using the C-linear chirality γ : V→ V and the C-anti-linear real structure C : V→ V of the
Clifford module V, we further define a chirality operator Γ :H→H and a real structure J :
H→H on the Hilbert space H by setting

Γ(a⊗ v) := a⊗ γ(v), J(a⊗ v) := a∗ ⊗C(v). (2.4)

These two operators satisfy the properties listed in [Bar15, definition 1], which depend on the
KO-dimension s= q− pmod 8. In particular, it follows that H is an A-bimodule with right
action given by

Jπ(a ′)∗ J−1
(
a⊗ v

)
= (aa ′)⊗ v. (2.5)

We call the tuple (A,H,π,Γ,J) defined above the (p,q)-fermion space over the N×N-matrix
algebra A=MatN(C).

Definition 2.1. ADirac operator on the (p,q)-fermion space overA=MatN(C) is an operator
D ∈ End(H) that satisfies the following properties (with s= q− pmod 8 the KO-dimension):
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(a) D∗ = D;
(b) DΓ =−(−1)sΓD;
(c) DJ= ϵ ′ JD, where ϵ ′ = 1 for s= 0,2,3,4,6,7 and ϵ ′ =−1 for s= 1,5;
(d)

[
[D,π(a)],Jπ(b)J−1

]
= 0, for all a,b ∈ A.

We denote the real vector space of Dirac operators by

D :=
{
D ∈ End(H) : (a)–(d) are satisfied

}
⊆ End(H). (2.6)

As the next step we discuss the group of automorphisms of the (p,q)-fermion space and
its action on the space of Dirac operators. An automorphism of (A,H,π,Γ,J) is a pair
(φ,Φ) consisting of a ∗-algebra automorphism φ :A→A and a left A-module automorph-
ism Φ :H→H relative to φ, i.e. Φ(ah) = φ(a)Φ(h) for all a ∈ A and h ∈H. The latter has
to preserve the inner product 〈〈Φ( ·),Φ( ·)〉〉= 〈〈 · , · 〉〉, the chirality operator ΓΦ = ΦΓ and
the real structure JΦ= ΦJ. Using that H=A⊗V is a free module and that the center of
A=MatN(C) consists of complex multiples of the unit 1, one easily checks that Φ must be
of the form

Φ(a⊗ v) = φ(a)⊗T(v), (2.7)

for all a⊗ v ∈H, where T ∈ Aut(V) is an automorphism of the Clifford module V that has to
preserve the inner product 〈T( ·),T( ·)〉= 〈 · , · 〉, the chirality γT= Tγ and the real structure
CT= TC. Denoting by K⊆ Aut(V) the group of all such automorphisms T of V, we find
that the automorphism group of the (p,q)-fermion space is isomorphic to the product group
Aut(A)×K. Note that the two factors play different roles: The group Aut(A) acts on the
underlying ∗-algebra and thus plays the same role as the diffeomorphism group in commutative
differential geometry, whilst the groupK⊆ Aut(V) acts only on the Cliffordmodule V and thus
may be interpreted as global, i.e. A-independent, transformations of spinors.

Definition 2.2. We call G := Aut(A)×K the gauge group of the (p,q)-fermion space over
A=MatN(C). This group acts from the left as automorphisms of the (p,q)-fermion space

ρA : G ×A −→ A , (φ,T,a) 7−→ ρA(φ,T)(a) = φ(a), (2.8a)

ρH : G ×H −→ H , (φ,T,a⊗ v) 7−→ ρH(φ,T)(a⊗ v) = φ(a)⊗T(v).

(2.8b)

The induced left adjoint action on the space of Dirac operators is given by

ρD : G ×D −→D , (φ,T,D) 7−→ ρH(φ,T) ◦D ◦ ρH(φ−1,T−1), (2.9)

where ◦ denotes composition of maps.

Remark 2.3. It is well known that Aut(A)∼= PU(N) := U(N)/U(1) is isomorphic to the pro-
jective unitary group, see e.g. [vS15, Example 6.3]. The relevant isomorphism assigns to an
element [u] ∈ PU(N) the automorphism φ[u] ∈ Aut(A) that is defined by φ[u](a) = uau∗, for
all a ∈ A. One may use this isomorphism in order to write the G-actions from definition 2.2
more explicitly as ρA(φ[u],T)(a) = uau∗ and ρH(φ[u],T)(a⊗ v) = (uau∗)⊗T(v).

From this isomorphic perspective, it is easy to describe the infinitesimal gauge transform-
ations. The Lie algebra g of the gauge group G is given by a direct sum

g= su(N)⊕ k, (2.10)

where su(N)∼= pu(N) is the Lie algebra of the projective unitary group and k denotes the
Lie algebra of K⊆ Aut(V). (Recall that elements ϵ ∈ su(N)⊆MatN(C) are anti-Hermitian
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and trace-free N×N-matrices.) The Lie algebra actions induced by the G-actions from
definition 2.2 then read explicitly as

ρA(ϵ⊕ k)(a) = [ϵ,a]A, (2.11a)

ρH(ϵ⊕ k)(a⊗ v) = [ϵ,a]A ⊗ v+ a⊗ k(v), (2.11b)

ρD(ϵ⊕ k)(D) = [ρH(ϵ⊕ k),D]End(H), (2.11c)

for all ϵ⊕ k ∈ g, where [ · , · ]A denotes the commutator on A and [ · , · ]End(H) the commutator
on End(H).

The last ingredient is a choice of action S :D→ R on the space of Dirac operators, which
is typically taken to be a spectral action in the sense of [Con96, CC97]. The original choice
in [BG16], which was motivated by simplicity, is given by S(D) = TrEnd(H)(

g2
2 D

2 + g4
4! D

4),
where g2,g4 ∈ R are constants and TrEnd(H) is the trace on the endomorphisms of the Hil-
bert space H. This choice was also used in [BDG19, KP21]. More general choices of the
form S(D) = TrEnd(H)( f(D)), where f is a real-valued polynomial, were studied later in [PS19,
HKP22, KP22] and even more general multi-trace actions appeared in [AK19]. For most parts
of our paper, we do not have to make any explicit choice for the action and can work with the
following general definition. We denote by D∨ the dual of the real vector space D of Dirac
operators and by SymD∨ its symmetric algebra. Note that SymD∨ is (isomorphic to) the
algebra of polynomial functions on D.

Definition 2.4. An action S :D→ R is a gauge-invariant and real-valued polynomial function
on the space of Dirac operators, or equivalently a G-invariant element S ∈ SymD∨.

To conclude this section, we shall briefly discuss the perturbative treatment of dynamical
fuzzy spectral triples. Let us fix any action S ∈ SymD∨ and an exact solution D0 ∈ D of its
Euler–Lagrange equations. We can then study formal perturbations

D= D0 +λ D̃ (2.12)

of the Dirac operator, where λ is a formal parameter and the perturbation D̃ ∈ D is an element
of the same vector space D. The latter is considered as the dynamical field in the perturbative
approach. The infinitesimal gauge transformations (2.11) of the perturbation then take the form

ρ̃D(ϵ⊕ k)(D̃) = [ρH(ϵ⊕ k),D0]End(H) +λ [ρH(ϵ⊕ k), D̃]End(H), (2.13)

i.e. they act through a combination of a linear transformation [ρH(ϵ⊕ k), D̃]End(H) and an
inhomogeneous one [ρH(ϵ⊕ k),D0]End(H) that depends on the background solution D0. (Note
that this is of the same form as inYang–Mills theory, where infinitesimal gauge transformations
χ ∈ C∞(M,g) act on connection one-forms A ∈ Ω1(M,g) according to δχ(A) = dχ+ [χ,A],
with d the de Rham differential.) The induced action for the perturbation D̃ is then defined as

S̃(D̃) :=
1
λ2

(
S(D0 +λ D̃)− S(D0)

)
, (2.14)

where the subtraction of the constant term S(D0) is convenient as it implies that S̃ is a sum
of monomials of degree ⩾ 2. (The degree 1 monomial vanishes because D0 is a solution of

the Euler–Lagrange equations for the original action S.) The normalization
1
λ2

is chosen such

that the quadratic term in the action is of order λ0. By construction, this defines an element
S̃ ∈ SymD∨ that is invariant under the infinitesimal gauge transformations (2.13).

6



J. Phys. A: Math. Theor. 55 (2022) 474004 J Gaunt et al

3. Classical BV formalism

The BV formalism is a powerful construction that allows one to assign a commutative differen-
tial graded algebra (dg-algebra) of classical observables to every gauge-invariant action. Cru-
cially, this dg-algebra comes endowed with a canonical shifted Poisson structure, the so-called
antibracket, whose perturbative quantization captures the quantum correlation functions of the
theory. A modern mathematical perspective on the BV formalism is presented in the books by
Costello and Gwilliam [CG16, CG21]. We also refer the reader to [NSS21] for a specialization
of these techniques to finite-dimensional systems, including fuzzy field theories.

The goal of this section is to spell out in detail the dg-algebra of classical observables for
the perturbative dynamical fuzzy spectral triple model from section 2. This goal can be easily
achieved by specializing the general construction in [BSS21] to the following input data:

• the space of fields is the vector space D of perturbations D̃ of a background Dirac operator
D0 (see (2.12)) that is an exact solution to the Euler–Lagrange equations of an action S.

• The infinitesimal gauge symmetries are given by the Lie algebra g= su(N)⊕ k of the gauge
group from definition 2.2. They act on the fields according to (2.13).

• The perturbative dynamics is determined by the g-invariant action S̃ defined in (2.14).

Applying the general result in [BSS21, section 7], one finds that the underlying Z-graded
commutative algebra of the BV formalism for this model is given by the graded symmetric
algebra

Obscl := Sym(L), L := g[2]⊕D[1]⊕D∨ ⊕ g∨[−1], (3.1)

where W∨ denotes the dual of a vector space W and the square brackets indicate shifts of the
cohomological degree. (Our convention is that, for W a vector space, elements in W[p] are of
degree −p.) We can describe this graded commutative algebra more explicitly by choosing a
dual pair of vector space bases{

ea ∈ D
}dimD
a=1

,
{
f a ∈ D∨}dimD

a=1
,

{
ti ∈ g

}dimg

i=1
,

{
θi ∈ g∨

}dimg

i=1
(3.2)

for D and D∨ and for g and g∨. Then Obscl is the graded commutative algebra generated by
the generators ti in degree−2, ea in degree−1, f a in degree 0 and θi in degree 1. The physical
interpretation of these generators is as follows: θi are linear observables for the ghost field
c ∈ g, f a are linear observables for the field D̃ ∈ D, ea are linear observables for the antifield
D̃+ ∈ D∨, and ti are linear observables for the antifield for the ghost c+ ∈ g∨.

In order to describe the differential on (3.1), which is given abstractly as the totalization of
an internal differential and the Chevalley–Eilenberg differential (see [BSS21, section 7]), it is
convenient to work with these generators. Let us first recall that, with respect to our choice of
bases, the Lie bracket on g and the Lie algebra action (2.13) are encoded by structure constants
that we denote by

[ti, tj] = λ fkij tk, ρ̃D(ti)(ea) = βbi eb+λgbia eb, (3.3)

where βbi describes the inhomogeneous term (depending on D0) in (2.13) and gbia the linear
term. Here, and throughout thewhole paper, we use the standard summation convention, i.e. we
suppress summations over repeated indices. The action S̃ given in (2.14) also admits a basis
expansion of the form

S̃=
∑
n⩾2

λn−2

n!
Sa1···an f

a1 · · · fan ∈ SymD∨, (3.4)
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which starts at n= 2 because the background Dirac operator D0 is assumed to be an exact
solution of the Euler–Lagrange equations of the given action S. The coefficients Sa1···an vanish
for n greater than the polynomial degree of S̃. The differential on (3.1) is then determined by
the graded Leibniz rule and the following action on the generators

dti = βai ea+λgaib ea f
b−λ fkij tk θ

j, (3.5a)

dea =
∑
n⩾2

λn−2

(n− 1)!
Saa2···an f

a2 · · · fan −λgbja eb θ
j, (3.5b)

df a =−βaj θ j−λgajb f
b θ j, (3.5c)

dθi =−λ
2
f ijk θ

j θ k. (3.5d)

Observe that the differential encodes both the equation of motion and the gauge symmetries,
as typical for the BV formalism. The square-zero condition d2 = 0 follows from the Lie algebra
representation identities for the structure constants fkij, g

b
ia and β

a
i and from the fact that the

action S̃ is gauge-invariant.
The dg-algebra Obscl comes endowed with a canonical (−1)-shifted symplectic structure,

which in our example reads concretely as

ω = ddRea ∧ ddRf a− ddRti ∧ ddRθi, (3.6)

where ddR denotes the de Rham differential. The antibracket is the shifted Poisson bracket dual
to ω, which is concretely defined by {a,b} := ιaHιbHω, for all a,b ∈ Obscl, where ι denotes the
contraction between vector fields and forms, and aH is the shifted Hamiltonian vector field
defined by ddRa= ιaHω. By construction, the antibracket satisfies the graded antisymmetry
property

{a,b} = −(−1)(|a|+1)(|b|+1) {b,a}, (3.7a)

the graded Jacobi identity

(−1)(|a|+1)(|c|+1) {a,{b,c}}+(−1)(|b|+1)(|a|+1) {b,{c,a}}
+(−1)(|c|+1)(|b|+1) {c,{a,b}}= 0, (3.7b)

the derivation property

{a,bc}= {a,b}c+(−1)(|a|+1) |b| b{a,c}, (3.7c)

as well as the compatibility condition

d{a,b}= {da,b}+(−1)|a|+1{a,db} (3.7d)

with the differential on Obscl. As a consequence of these properties, the antibracket is com-
pletely determined by its value on the generators, which is given by

{ti,θ j}= δ ji =−{θ j, ti}, {ea, f b}=−δba =−{f b,ea}, (3.8)

and zero otherwise.

Remark 3.1. The differential (3.5) on Obscl admits an equivalent description in terms of a
concept that may be more familiar to some readers, namely that of a BV action. The BV exten-
sion of our action in (3.4) reads explicitly as

SBV =
∑
n⩾2

λn−2

n!
Sa1···an f

a1 · · · fan −λgaib ea f
b θi− λ

2
fkij tk θ

i θj−βai ea θ
i. (3.9)

8
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Using the properties (3.7) of the antibracket, it is easy to show that the differential (3.5) is
given by

d= {SBV, ·}. (3.10)

The square-zero condition d2 = 0 for the differential is equivalent to the classical master
equation

{SBV,SBV}= 0 (3.11)

for the BV action.

4. Quantization and correlation functions

BV quantization consists of deforming the differential (3.5) on Obscl along the BV Laplacian,
see e.g. [CG16, CG21, NSS21]. The latter is a linear map∆BV : Obscl → Obscl of cohomolo-
gical degree +1 that is defined on the symmetric powers 0, 1 and 2 by

∆BV(1) = 0, ∆BV(φ) = 0, ∆BV(φψ) = (−1)|φ| {φ,ψ}, (4.1a)

for all generators φ,ψ ∈ L, and extended to all of Obscl according to the rule

∆BV(ab) = ∆BV(a)b+(−1)|a| a∆BV(b)+ (−1)|a| {a,b}, (4.1b)

for all a,b ∈ Obscl. Using the algebraic properties (3.7) of the antibracket, one derives the
closed expression

∆BV(φ1 · · ·φn)=
∑
i<j

(−1)
∑i

k=1 |φk|+|φj|
∑j−1

k=i+1 |φk|{φi,φj} φ1 · · · φ̌i · · · φ̌j · · ·φn

(4.1c)

for the action of the BV Laplacian on the nth symmetric power of Obscl, where ·̌ means to
omit the corresponding factor. From this explicit form one easily checks that the BV Laplacian
is square-zero and that it anti-commutes with the differential d on Obscl, i.e.

∆2
BV = 0, d∆BV +∆BV d= 0. (4.2)

The cochain complex of quantum observables is then defined as the deformation

Obsqu :=
(
Sym(L),dqu := d+ ℏ∆BV

)
(4.3)

of the one of classical observables given in (3.1) and (3.5), where ℏ is a formal parameter
playing the role of Planck’s constant.

The quantum correlation functions are determined by the cohomology of the cochain com-
plex (4.3) and they can be computed perturbatively via homological perturbation theory, see
e.g. [Gwi12] and also [NSS21] for a review. For this we split the quantum differential

dqu = dfree +λdint + ℏ∆BV (4.4)

into the free part dfree, which is obtained by setting λ= 0 in (3.5), the interaction part dint and
the quantum part∆BV. Since the free differential dfree is by definition linear in the generators,
the classical free observables

Obsfree :=
(
Sym(L),dfree

)
= Sym

(
L,dfree

)
(4.5a)

are given by the symmetric algebra of the cochain complex

(L,dfree) =
(
g[2]

dfree−−→D[1]
dfree−−→D∨ dfree−−→ g∨[−1]

)
. (4.5b)

9
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Explicitly,the action of the differential on our choice of vector space bases reads as

dfreeti = βai ea, dfreeea = Sab f
b, dfreef a =−βaj θ j, dfreeθi = 0. (4.5c)

To apply the homological perturbation lemma, we choose any strong deformation retract

of the cochain complex (L,dfree) onto its cohomology. Recall that the latter consists of two
cochain maps, denoted by ι and π, and a cochain homotopy h satisfying the following proper-
ties

π ι = id, ιπ− id= dfree h+ hdfree, h ι = πh= h2 = 0. (4.7)

It was shown in [Gwi12, proposition 2.5.5] that strong deformation retracts extend to the
symmetric algebras

Explicitly, the cochain maps I and Π are given by extending ι and π to dg-algebra maps via
the usual formulas

I
(
[ψ1] · · · [ψn]

)
:= ι([ψ1]) · · · ι([ψn]), Π

(
φ1 · · ·φn

)
:= π(φ1) · · ·π(φn), (4.9)

for all [ψ1], . . . , [ψn] ∈ H•(L,dfree) and φ1, . . . ,φn ∈ L. The extended cochain homotopy H is
slightly more complicated to describe: from the definition of strong deformation retract, it
follows that ιπ : L→L defines a projector, i.e. (ιπ)2 = ιπ, which allows us to decompose

L ∼= L⊥ ⊕H•(L,dfree) (4.10a)

and consequently

Sym(L)∼= Sym(L⊥)⊗SymH•(L,dfree)=
⊕
n⩾0

Symn(L⊥)⊗SymH•(L,dfree),

(4.10b)

where Symn denotes the nth symmetric power. The cochain homotopy H is then defined as

H
(
φ⊥
1 · · · φ⊥

n ⊗ a
)
:=

1
n

n∑
i=0

(−1)
∑i−1

j=1 |φj| φ⊥
1 · · · φ⊥

i−1 h(φ
⊥
i ) φ

⊥
i+1 · · · φ⊥

n ⊗ a

(4.11)

on the homogeneous elements φ⊥
1 · · · φ⊥

n ⊗ a ∈ Symn(L⊥)⊗SymH•(L,dfree) in this decom-
position. The case n= 0 should be read as H(a) = 0, for all a ∈ SymH•(L,dfree). The homo-
logical perturbation lemma (see e.g. [Cra04]) then provides a strong deformation retract for
the quantum observables.

Proposition 4.1. Denote by

δ := λdint + ℏ∆BV (4.12)

the formal perturbation of the free differential dfree into the quantum differential dqu, see (4.4).
There exists a deformation of the strong deformation retract (4.8) into the strong deformation
retract

10
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for the quantum observables (4.3), where

δ̃ =Π(id− δH)−1 δ I, (4.14a)

Ĩ= I+H(id− δH)−1 δ I, (4.14b)

Π̃ = Π+Π(id− δH)−1 δH, (4.14c)

H̃= H+H(id− δH)−1 δH. (4.14d)

The expression (id− δH)−1 :=
∑∞

k=0(δH)
k is defined as a formal power series in both λ

and ℏ.

The quantum correlation functions are defined by

〈φ1 · · ·φn〉 := Π̃(φ1 · · ·φn) =
∞∑
k=0

Π
(
(δH)k

(
φ1 · · ·φn

))
∈ SymH•(L,dfree),

(4.15)

for allφ1, . . . ,φn ∈ L. Note that these are elements of the symmetric algebra of the cohomology
H•(L,dfree), i.e. they are polynomial functions on the space of vacua of the theory, see e.g.
[NSS21, section 3.1] for an illustration. As we shall illustrate in the next section, one can use
graphical tools to facilitate the computation of the correlation functions (4.15).

5. Perturbations around D0 = 0

In this section we prove some general results about the quantum correlation functions for
perturbations around the zero Dirac operator D0 = 0. We fix an arbitrary (p,q)-fermion space
over A=MatN(C) and consider any gauge-invariant polynomial action of the form

S(D) =
g2
2
TrEnd(H)

(
D2

)
+ Sint(D), (5.1)

where g2 6= 0 is a non-zero constant and the interaction term Sint is a sum of monomials
of degree ⩾ 3. The zero Dirac operator D0 = 0 is an exact solution of the Euler–Lagrange
equation of this action, hence it is an admissible choice for the background Dirac operator D0

in our perturbative approach. Our motivation for using the standard choice for the quadratic
term in the action (5.1) is as follows: The complex vector space End(H) can be endowed with
the Hermitian inner product 〈B,B ′〉 := TrEnd(H)(B∗B ′), for all B,B ′ ∈ End(H). This restricts
to a real inner product on the subspace D ⊆ End(H) of Dirac operators defined in definition
2.1, which implies that the quadratic term of the action (5.1) is non-degenerate. Hence, as we
will see below, it will lead to a particularly simple propagator.

Let us focus now on the free theory underlying this model (4.5). Recalling the definition
of the structure constants (3.3), we observe that for D0 = 0 the constants βai = 0 vanish, hence
the cochain complex of linear observables simplifies to

11
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(L,dfree) =
(
g[2]

0−→D[1]
dfree−−→D∨ 0−→ g∨[−1]

)
, (5.2)

where we recall that dfreeea = Sab f b is controlled by the quadratic term of the action. Because
Sab is invertible, one easily checks that the cohomology of this complex is

H•(L,dfree) = g[2]⊕ g∨[−1]. (5.3)

For the strong deformation retract (4.6), we can choose

π :


ti 7→ ti
ea 7→ 0

f a 7→ 0

θi 7→ θi

, ι :

{
ti 7→ ti
θi 7→ θi

, h :


ti 7→ 0

ea 7→ 0

f a 7→ −Sab eb
θi 7→ 0

, (5.4)

where Sab denotes the inverse of Sab, i.e. SabSbc = δac = ScbSba. (The relevant properties (4.7)
are easy to confirm.)

These are all the necessary ingredients to compute the quantum correlation functions for
our model. Indeed, all maps entering (4.15) have been completely defined:

(a) the cochain homotopyH is defined by (4.11) and its action on generators (5.4). The relevant
direct sum decomposition (4.10) in the present case is given by

L= L⊥ ⊕H•(L,dfree) =
(
D[1]

dfree−−→D∨
)
⊕
(
g[2]⊕ g∨[−1]

)
. (5.5)

(b) The perturbation of the differential is given by δ = λdint + ℏ∆BV. The interaction part dint

is defined by the graded Leibniz rule and the order λ⩾1 terms in (3.5). The BV Laplacian
∆BV is defined by (3.8) and (4.1).

(c) The dg-algebra map Π is defined by (4.9) and its action on generators (5.4).

To facilitate the computation of correlation functions (4.15), we introduce a conveni-
ent graphical notation. We denote elements φ1 · · ·φn ∈ Sym(L) by n vertical lines. Because
there are four different species of fields (fields, ghosts, antifields and antifields for ghosts),
which are distinguished by their cohomological degree in L, we require four different
types of lines

The action of the cochain homotopy H on n lines can be expressed via (4.11) as a sum of
actions on the individual lines. (We would like to emphasize that, because of (5.5), the number
n in (4.11) counts only the number of wiggly and straight lines, i.e. dashed and dotted lines
do not contribute to n). Using (5.4), we observe that the cochain homotopy H is only non-zero
when acting on f a, which we depict as

12
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The action of the interaction part dint of the differential on n lines can be expressed via the
graded Leibniz rule as a sum of actions on the individual lines. The latter may be visualized
in terms of interaction vertices

which should be read from bottom to top and whose numerical values are given in (3.5). In
these pictures, any two neighboring lines can be permuted (up to a Koszul sign determined
by their cohomological degrees) because they represent elements in the graded symmetric
algebra Sym(L). The action of the BV Laplacian on n lines can be reduced via its algebraic
properties (4.1) to a sum of pairings between two lines. Using (3.8), we observe that the latter
is only non-zero when pairing between ti and θj and when pairing between ea and f b, which
we depict as

Again, the ingoing lines can be permuted (up to Koszul signs that are trivial in the present case)
because they represent elements in the graded symmetric algebra Sym(L). Finally, the action
of the dg-algebra map Π on n lines reduces via (4.9) to a product of actions on the individual
lines, evaluating them to their cohomology classes (5.4). This is only non-zero for ti and θi,
which we will depict by

Example 5.1. To illustrate the diagrammatic calculus, let us consider a quartic interaction
term (i.e. the n= 4n term is the only non-trivial summand in (5.8b)) and compute the 2-point
correlation function

〈φ1φ2〉=
∞∑
k=0

Π
(
(δH)k

(
φ1φ2

))
, φ1,φ2 ∈ L0 =D∨, (5.11)

for two generators in degree 0 to the lowest non-trivial order in the formal parameter λ. The
first step of this iterative process is computing

13
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The negative sign in the second equality is a Koszul sign arising from the fact that δ = λdint +
ℏ∆BV is of cohomological degree 1. In the third equality, we have collected the interaction
terms according to their power in λ. The simplification of the ℏ-term is a consequence of the
fact that

where the middle step is easily checked on basis elements

−{h( f a), f b}= Sac {ec, f b} = −Sab =−Sba =−Sbc{f a,ec} = {f a,h( fb)}
(5.13b)

by using (3.8), (5.4) and symmetry of Sab.
Using similar arguments and the fact that the interaction term Sa1a2a3a4 is symmetric under

the exchange of indices, the second iteration is given by

and the third by

Applying Π to these expressions, we obtain that the 2-point function to order λ2 is given
by

14
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Observe that neither the ghosts nor the antifields for ghosts contribute to the 2-point function at
order λ2. We will prove below that, for the present case of perturbations around the zero Dirac
operator D0 = 0, this statement is true for all n-point functions of degree zero observables, all
interaction terms and to all orders of the perturbation series.

Proposition 5.2. Consider an arbitrary (p,q)-fermion space over A=MatN(C) and any
gauge-invariant action of the form (5.1). Then, for perturbations around the zero Dirac oper-
ator D0 = 0, all n-point quantum correlation functions 〈φ1 · · ·φn〉 for degree 0 observables
φ1, . . . ,φn ∈ L0 =D∨ do not receive contributions from ghosts and antifields for ghosts.

Proof. The proof is a simple argument using our graphical calculus. Starting from n straight
lines, representing the element φ1 · · ·φn ∈ Sym(L), one observes by direct inspection that iter-
ated applications of δH do not include any dotted (antifield for ghost) lines due to the explicit
form of the interaction vertices (5.8) and of the cochain homotopy (5.7). Because δH is of
cohomological degree 0, the element (δH)k(φ1 · · ·φn) ∈ Sym(L) is of cohomological degree
0 too, hence together with the previous observation it must contain an equal number of dashed
(ghost) lines and wiggly (antifield) lines. Applying the dg-algebra homomorphismΠ and using
that it gives zero on every wiggly line, it follows that only those terms with no ghost lines con-
tribute to the correlation function 〈φ1 · · ·φn〉=

∑∞
k=0Π

(
(δH)k(φ1 · · ·φn)

)
. This completes the

proof.

6. Example for D0 6= 0: the quartic (0,1)-model

The aim of this section is to study quantized perturbations around non-zero Dirac operators
D0 6= 0 in the simplest dynamical fuzzy spectral triple model, the so-called (0,1)-model from
[Bar15]. From this we can show that, in contrast to the case of perturbations around D0 = 0 as
in proposition 5.2, the quantum correlation functions for perturbations around D0 6= 0 are in
general sensitive to the ghosts and the antifields for ghosts. By working through the computa-
tional details of this simple model, it will become evident that this behavior is not accidental,
but it will be present in any other model provided that one perturbs around a background Dirac
operator D0 that breaks some of the gauge symmetries. (Note that the zero Dirac operator
D0 = 0 is gauge invariant under (2.11).)

6.1. The (0,1)-model

Let us recall from [Bar15, BG16] that the (0,1)-fermion space overA=MatN(C) is given by
the Hilbert spaceH=A, on whichA acts via left multiplication, with inner product 〈〈a,a ′〉〉=
TrA(a

∗a ′), chirality operator Γ(a) = a and real structure Γ(a) = a∗. Furthermore, each Dirac
operator (in the sense of definition 2.1) is of the form

D=− i [L, · ], (6.1)

where L ∈MatN(C) is an anti-Hermitian and trace-free N×N-matrix. Hence, we can identify

D ∼= su(N) (6.2)
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the space of Dirac operators on the (0,1)-fermion space with (the underlying real vector space
of) the Lie algebra su(N) of anti-Hermitian and trace-free N×N-matrices. From remark 2.3,
we obtain that the Lie algebra of infinitesimal gauge transformations of this model is given by

g= su(N), (6.3)

which acts on the space of Dirac operators through the Lie bracket of su(N), i.e.

ρD : g×D −→ D , (ϵ,L) 7−→ ρD(ϵ)(L) = [ϵ,L]. (6.4)

We consider as in [BG16] the gauge-invariant quartic action S(D) = TrEnd(H)

( g2
2 D

2 + g4
4!D

4
)

and assume that g2 < 0 is negative and g4 > 0 is positive in order to obtain a ‘symmetry-
breaking potential’. Upon rescaling the Dirac operator D, one can assume without loss of
generality that g2 =−1. Inserting (6.1) in this action and using that L is trace-free, one can
express S as a function of L and finds

S(L) = NTrA(L
2)+

g4
4!

(
2NTrA(L

4)+ 6
(
TrA(L

2)
)2)

. (6.5)

The variation of this action reads as

δS(L) = TrA
[
δL

(
2NL+

g4
4!

(
8NL3 + 24LTrA(L

2)
))]

, (6.6a)

which yields the Euler–Lagrange equation

L+
g4
3!

(
L3 − 1

N
TrA(L

3)+
3
N
LTrA(L

2)
)
= 0. (6.6b)

Note that the term TrA(L
3) in (6.6b) arises due to the fact that the variation δL is trace-

free, hence the big round bracket in (6.6a) must be projected onto the space of trace-free and
anti-Hermitian matrices.

In order to illustrate the main features arising for perturbations around a non-zero Dirac
operator, we will consider the case where N is even and the following simple exact solution

L0 = i κ

(
1N/2 0
0 −1N/2

)
, κ :=

√
3
2g4

(6.7)

of (6.6b), which we have written in blockmatrix notation. The novel feature of this background
solution is that it breaks the g= su(N) gauge symmetry down to a Lie sub-algebra. Indeed,
using also a block matrix notation for Lie algebra elements

ϵ=

(
ϵ1 ϵ3
−ϵ∗3 ϵ2

)
∈ g= su(N), (6.8)

one finds for the Lie algebra action (6.4) on L0 that

ρD(ϵ)(L0) = [ϵ,L0] =−2 i κ

(
0 ϵ3
ϵ∗3 0

)
. (6.9)

Hence, the su(N) gauge symmetry is broken down to the Lie sub-algebra g0 ⊂ g= su(N)
whose elements are of the form

ϵ=

(
ϵ1 0
0 ϵ2

)
∈ g0 ⊂ g= su(N). (6.10)

For later use, let us note that the linearization around L0 of the Euler–Lagrange equation (6.6b)
reads as

P(L̃) :=−1
2
L̃+

g4
3!
L0 [L̃,L0] +

g4
N
L0TrA(L̃L0) = 0. (6.11a)
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In block matrix notation, we can write this more explicitly as

P(L̃) =−1
2

(
L̃1 0
0 L̃2

)
− 3

2N
Tr(L̃1 − L̃2)

(
1N/2 0
0 −1N/2

)
, (6.11b)

where the unadorned trace Tr is over N/2×N/2-matrices. Furthermore, the perturbative
action (2.14) around L0 reads as

S̃(L̃) =−N
4
TrA(L̃

2)+
g4
4!

(
4NTrA(L0L̃L0 L̃)+ 24

(
TrA(L0 L̃)

)2)
+
λg4
4!

(
8NTrA(L0 L̃

3)+ 24TrA(L0 L̃)TrA(L̃
2)
)

+
λ2g4
4!

(
2NTrA(L̃

4)+ 6
(
TrA(L̃

2)
)2)

. (6.12)

6.2. The complex of linear observables (4.5)

Recalling that D ∼= su(N) and g= su(N), we can use the Killing form 2NTrA(XY), for
X,Y ∈ su(N), to identify D∨ ∼= su(N) and g∨ ∼= su(N). The cochain complex (4.5) of linear
observables then takes for our (0,1)-model the form

L=
(
su(N)[2]

dfree−−→ su(N)[1]
dfree−−→ su(N)

dfree−−→ su(N)[−1]
)
. (6.13a)

To avoid confusing the different su(N)-components in this complex, we shall use the following
notations

β ∈ su(N)[2], α ∈ su(N)[1], φ ∈ su(N), χ ∈ su(N)[−1] (6.13b)

and recall that (in the presented order) they are interpreted as linear observables for the
antifield for the ghost c+, the antifield D̃+, the field D̃ and the ghost c. The free differential
can be expressed very efficiently by re-writing (4.5) in terms of our block matrix notation
(see (6.9) and (6.11)), which yields

dfreeβ = [β,L0] =−2 i κ

(
0 β3
β∗
3 0

)
, (6.14a)

dfreeα= P(α) =−1
2

(
α1 0
0 α2

)
− 3

2N
Tr(α1 −α2)

(
1N/2 0
0 −1N/2

)
, (6.14b)

dfreeφ= [φ,L0] =−2 i κ

(
0 φ3

φ∗
3 0

)
, (6.14c)

dfreeχ= 0. (6.14d)

Note that there is no relative sign between dfreeβ and dfreeφ because the minus sign in (4.5)
is compensated by the minus sign that comes from forming adjoints with respect to the Killing
form. (Explicitly, 2NTrA(X [Y, ϵ]) =−2NTrA([X, ϵ]Y).)

Recalling the Lie sub-algebra g0 ⊂ g= su(N) introduced in (6.10), we can further simplify
the description of the complex of linear observables given in (6.13) and (6.14). For this, let
us also introduce the orthogonal complement g⊥0 ⊂ g= su(N) of g0 ⊂ g= su(N) with respect
to the Killing form. Note that, in our block matrix notation, the elements of the orthogonal
complement are of the form

ϵ=

(
0 ϵ3

−ϵ∗3 0

)
∈ g⊥0 ⊂ g= su(N). (6.15)
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Decomposing all four su(N)-components in (6.13) according to su(N) = g0 ⊕ g⊥0 , we observe
that each component of the differential in (6.14) is only non-zero on one of the two summands.
This allows us to decompose the complex (6.13) as

The displayed non-trivial differentials are all injective and hence, via the rank nullity theorem,
also surjective on the corresponding summands. This implies that the cohomology of this com-
plex is given by

H•(L,dfree)= g0[2]⊕ g0[−1]. (6.17)

6.3. The strong deformation retract (4.6)

From (6.16), we obtain a direct sum decomposition

L= L⊥ ⊕H•(L,dfree) (6.18a)

into the acyclic complex

and the cohomology (6.17). The π-map of the desired strong deformation retract (4.6) is then
simply given by projecting onto H•(L,dfree) and the ι-map is given by inclusion. A choice of
a contracting homotopy h can be found by inverting (the non-trivial parts of) dfree, yielding

h(β) = 0, (6.19a)

h(α) =− i
2κ

(
0 α3

α∗
3 0

)
, (6.19b)

h(φ) = 2

(
φ1 0
0 φ2

)
− 3

2N
Tr(φ1 −φ2)

(
1N/2 0
0 −1N/2

)
, (6.19c)

h(χ) =− i
2κ

(
0 χ3

χ∗
3 0

)
. (6.19d)

The relevant properties in (4.7) are straightforward to verify.
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6.4. Quantum correlation functions

The diagrammatic approach from section 5 to compute the quantum correlation func-
tions (4.15) generalizes with slight adjustments to perturbations around non-zero Dirac oper-
ators. In analogy to (5.6), there are four types of lines, which we further decompose according
to (6.18) into their L⊥ and cohomology components. Graphically, we will write this as

The action of the cochain homotopy H on many lines can be expressed via (4.11) as a sum
of actions on the individual lines. Note that, by definition, the number n in this formula does
not count the cohomology components of the lines, i.e. it only counts the wiggly, straight,
⊥-dashed and ⊥-dotted lines. The homotopy on a single line is given in (6.19) and it is only
non-zero on the L⊥-components. We graphically represent the non-vanishing components of
the homotopy as

The interaction part dint of the differential for our model is given by specializing (5.8) to the
perturbative action (6.12). This yields cubic and quartic interaction vertices, which we visual-
ize as

The numerical values of these interaction vertices with respect to a choice of bases are given
in (3.5). The BV Laplacian is precisely the one from section 5, which we again visualize as
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and the Π-map acts only non-trivially on the cohomology components of the lines, i.e.

These are all the ingredients one needs to compute the quantum correlation functions.

Example 6.1. As a simple illustration of this diagrammatic calculus, let us compute the 1-point
function

〈φ〉=
∞∑
k=0

Π
(
(δH)k(φ)

)
, φ ∈ L0, (6.25)

for a generator in degree 0 to the lowest non-trivial order in the formal parameter λ. The first
step of this iterative process is computing

where in the second line we have decomposed the dashed line according to (6.18). Applying
Π to this expression gives 0, hence we have to go to the next perturbative order to see quantum
corrections. Using the algebraic property (4.11) of the homotopy H on many lines, we find

Note that the fourth term gives zero because the decomposition g= g⊥0 ⊕ g0 is orthogonal with
respect to the Killing form. By a similar identity as in (5.13), namely

one finds that the second and the third term coincide. Hence, the 1-point function is given by
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Using the explicit form of the interaction part of the differential (see (3.5)), one can compute
the numerical value of the ghost field contribution and one finds

where h are the components of the homotopy in (6.19), [ · , · ] is the Lie bracket on g= su(N)
and {ti ∈ g⊥0 } is an orthogonal basis with respect to the Killing form, i.e. 2NTrA(ti tj) =−δij
with the minus sign being a consequence of the Killing form being negative definite.

This ghost field contribution is in general non-zero, as one can simply show by setting N=
2. As orthogonal basis for g= su(2)we take the (appropriately normalized and anti-Hermitian)
Pauli matrices

ti =
i√
8
σi, for i= 1,2,3, (6.31)

which satisfy the Lie bracket relations [ti, tj] =− 1√
2
ϵijk tk. The Lie sub-algebra g0 ⊂ g is

spanned by t3 and its orthogonal complement g⊥0 is spanned by t1 and t2. Because the homo-
topy h(φ) in (6.30) maps surjectively onto g0, we can set without loss of generality h(φ) = t3
by choosing an appropriate φ. The second homotopy in (6.30) is of the type h(α) from (6.19)
and it acts on the basis of g⊥0 as

h(t1) =
1
2κ

t2, h(t2) =− 1
2κ

t1. (6.32)

This allows us to compute

(6.30)
N=2
= ℏλ4TrA

(
t1 h

(
[t1, t3]

)
+ t2 h

(
[t2, t3]

))
=

ℏλ√
2κ

= ℏλ
√
g4
3
, (6.33)

hence the ghost field contribution does not vanish.

Example 6.2. With some more computational efforts, one can also compute the 2-point cor-
relation function

〈φ1φ2〉=
∞∑
k=0

Π
(
(δH)k

(
φ1φ2

))
, φ1,φ2 ∈ L0 =D∨, (6.34)

for two generators in degree 0 to the lowest non-trivial order in the formal parameter λ. The
final result is
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As in the case of the 1-point function from the previous example 6.1, we observe that there
are non-trivial ghost field contributions that are not present for perturbations around the trivial
Dirac operator D0 = 0, see also example 5.1.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).
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