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Abstract 
Background and Objective 

Large, uniformly spaced, complex and time varying datasets derived from high resolution medical image 

velocimetry can provide a wealth of information regarding small scale transient physiological flow phenomena 

and pulsation of anatomical boundaries. However, there remains a need for interpolation techniques to 

effectively reconstruct a fully 4-dimensional functional relationship from this data. This paper presents a 

preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm as a means of addressing 

this problem for laminar flows.  

Methods 

A 4D interpolation algorithm is proposed based on a Local Hermitian Interpolation (LHI) using a combination of 

multi-quadric RBF with a partition of unity scheme. The domain is divided into uniform sub-systems with size 

restricted to immediately neighbouring points.  The validity of the algorithm is first established on a known 4D 

analytical dataset. Application is then demonstrated through characterisation of a large 4D flow velocity dataset 

obtained from magnetic resonance imaging (MRI) measurements of cerebrospinal fluid flow in the brain.  

Results  

Performance of the algorithm is compared to that of a quad-linear interpolation, demonstrating favourable 

improvement in accuracy. The technique is shown to be robust, computationally efficient and capable of refined 

interpolation in Euclidean space and time. Application to MR velocimetry data is shown to produce promising 

results for the 4D reconstruction of the transient flow field and movement of the fluid boundaries at spatial and 

temporal locations intermediate to the original data.  

Conclusion 

This study has demonstrated feasibility of an accurate, stable and efficient 4-dimensional local RBF interpolation 

method for large, transient laminar flow velocimetry datasets. The proposed approach does not suffer from ill-

conditioning or high computational cost due to domain decomposition into local stencils where the RBF is only 

ever applied to a limited number of points. This work offers a potential tool to assist medical diagnoses and drug 

delivery through better understanding of physiological flow fields such as cerebrospinal fluid. Further work will 

evaluate the technique on a wider range of flow fields and against CFD simulation.  

Keywords: radial basis function, image reconstruction, cerebrospinal fluid,  

1 Introduction 
High-resolution magnetic resonance imaging (MRI) techniques can be used to acquire measurements 

of small-scale flow velocity data in the human body over a large number of spatio-temporal points at 

regularly spaced intervals. There is a need to develop a method of generating an interpolation field 



 
 
 
 

 
 
 

 

that allows a prediction of information lying between MRI voxels, and at times intermediate to the 

MRI image samples, which are described for example, in [1], [2], [3], [4], [5] in which the challenge of 

analysing the fluid motion in cerebrospinal fluid is considered. These flow fields are typically slow 

moving, highly non-linear, pulsatile and can vary strongly on length-scales of just a few voxels. 

However, understanding this behaviour is critical to the treatment of severe pathologies such as 

hydrocephalus. This therefore motivates the employment of a high-order image interpolation 

approach. 

Reviews by [6] and [7] evaluated the majority of 2 and 3-dimensional scattered data interpolation 

methods available in terms of storage, accuracy, visual pleasantness and ease of implementation, 

concluding that methods based on radial basis function (RBF) collocation, in particular the 

multiquadric RBF developed by [8], represent the most effective approach in most cases. These 

methods are particularly attractive for interpolation of higher-dimensional datasets and are also well 

suited to handling irregular datasets. An RBF can be defined as a real-valued function depending only 

on distance from a fixed location.  The use of RBF collocation methods is commonplace in several 

industrial and academic disciplines including surface reconstruction [8], image processing [9], [10], 

[11] and neural networks [12], [13]. 

Since radial basis functions depend only on separation distance between data centres and 

reconstruction locations, the procedure remains identical in any number of dimensions; only 

computation of the separation distance changes. By contrast, high-order polynomial interpolation 

becomes increasingly complex the higher the dimension. Interpolation schemes for datasets in more 

than 2 dimensions therefore typically rely on linear interpolation of each spatial dimension. Full-

domain RBF methods exhibit flexibility and high order convergence rates. However, there are 

problems with poor numerical conditioning and high computational cost [7], [14]. [15] described this 

as the uncertainty relation: better conditioning is associated with worse accuracy, and worse 

conditioning is associated with improved accuracy. This problem becomes more apparent the greater 

the size of the system and has restricted applications to smaller and/or lower dimensional order 

datasets. 

Scalable alternatives to the multiquadric RBF have been developed; for example, the compact support 

approach [16], [17]. However, the support size and the functions employed vary depending on the 

number of dimensions since the method is based on a polynomial approximation to truncated RBFs. 

Therefore, the computational cost and complexity of the method are significantly increased when 

applied in higher dimensions. In contrast, the multiquadric RBF can be scaled naturally to higher 

dimensions without alteration, although the uncertainty relation remains a problem. In order to 

address this, several methods have been developed. For example, RBF-specific preconditioners [18] 

and adaptive selection of data centres [19]. However, the only reliable method currently available is 

domain decomposition [19], [20], [21], [22], [23].  

Localised RBF collocation methods such as those of [24] and [25] have since been developed. These 

methods allow significantly more efficient interpolation of large scattered datasets by employing 

domain decomposition to divide the domain into a series of small and overlapping sub-systems 

centred around each collocation point.  For each point, the interpolation function is evaluated only on 

the associated sub-domain, instead of the global domain. A global function characterising the overall 

domain is then generated as the weighted sum of the locally interpolated functions. As each individual 

RBF sub-system never grows too large, these methods can be scaled to arbitrarily large datasets 



 
 
 

 
 

 

without numerical conditioning issues, and without losing the natural scalability to higher dimensions 

inherent in full-domain RBF collocation. At the expense of creating some localised connectivity, the 

flexibility of working with a scattered dataset can be retained.   

Localised methods have also been used in the solution of partial differential equations [26]. In [27] 

[28], [29], [30], a Local Hermitian Interpolation (LHI) method is described which is capable of operating 

on a variety of 2 and 3D scattered data-sets with arbitrary boundary conditions. More recently, [31] 

applied a local RBF method to 2-dimensional inverse Cauchy problems, and [32] to the solution of 2-

dimensional incompressible Navier-Stokes equations. 

The fundamentals of these local RBF collocation methods may be adapted for the interpolation of 
higher-dimension data fields. Recent work [33], [34] demonstrates that by using a k-d tree based 
search algorithm to assign scattered points to local systems based on a combination of the 
compactly supported Wendland RBFs with a partition of unity weighting scheme (PUM), an effective 
interpolation can be achieved for D > 3. Stable and accurate results are presented up to 5D. 
Capability to deal with scattered data of varying density has since been developed using an 
algorithm to adaptively vary the sizes of each local system [35]. 
 
In this work we consider the development of an alternative 4-dimensional local multiquadric RBF 

interpolation algorithm for large datasets, first described in [36]. Motivated by the interpolation of 

MRI velocimetric data, which is highly regular, we describe an approach optimised for computational 

efficiency on regularly spaced datasets; however, the method itself is equally applicable to the 

interpolation of irregular data. We use an algorithm based on division of the domain into uniform local 

stencils, in combination with a local partition of unity scheme. Search size is restricted to immediately 

neighbouring points to control ill conditioning. We can then take advantage of the scalability of the 

multiquadric RBF to higher dimensions. 

There is only limited precedent for application of higher order RBF interpolation to flow velocity and 

or geometric based medical image data. [37] uses a 3D Gaussian global RBF interpolation on a 

relatively small unstructured particle image velocimetry dataset. [9] used an RBF technique to 

interpolate a localised velocity field resulting from sparse MRI data in the arch of the aorta. [10] uses 

a method of variational implicit surfaces using thin plate spline RBFs to perform 3D interpolation of 

cardiac geometry from coarse MR images. [11] uses a combination of level set method with RBF for 

segmentation and interpolation of structural contours from 3D MRI contrast images over a cardiac 

cycle.  This method can produce refined images of anatomical boundaries in 4D.  However, each of 

the above cases is limited by the use of global RBFs. The techniques have largely been demonstrated 

on relatively small, lower order datasets and the size of datasets that can be handled may be limited 

by ill conditioning and computational cost.   

[38] and [39] have used alternative 2 and 3D spatial RBF based methods for interpolation of sparse 

haemodynamic MRI data, imposing a divergence free fluid mechanics limitation to remove wall effects 

and imaging noise prior to interpolation.  However, this approach has again been based on globally 

applied, lower order RBFs. The divergence free criterion has not been considered for our application, 

since due to the influence of porous sub-pixel structures, i.e. subarachnoid granulations or choroid 

plexus, CSF flow cannot be considered strictly divergence free at the wall boundary. Divergence free 

constraints may also be affected by small-scale variation in position of the ventricle boundaries. We 

have instead accounted for noise at the fluid boundaries through a standard least squares rigid body 

motion removal algorithm.  



 
 
 
 

 
 
 

 

Recent approaches have focussed around use of machine learning techniques to predict missing 

information from sparse or incomplete medical image data, with the aim of reducing scan times. Some 

examples exist of the use of global RBF interpolation within these methods, such as [12] where a FCM 

(fuzzy C-means) neural network approach is used in conjunction with RBF interpolation to segment 

brain structures on 2D planes.  In [13], RBFs are used as a component within an enhanced fuzzy neural 

network to enable improved MRI image interpolation from 2D slices and interpret ambiguities caused 

by noise. However, the application of the RBF in these methods is on the hidden nodes of the neural 

network and not the velocity field in the images.  Methods not involving RBF interpolation include 

[40], where a bidirectional recurrent convolutional neural network with a refine network of 2D 

convolutions in-plane has been used to reconstruct image data of the knee and brain with high 

accuracy.  

In general, a large amount of historic image data is required to train neural networks and the authors 

acknowledge a significant computational cost to this training phase and subsequent running of their 

algorithm. More recently, [41] has demonstrated an alternative deep neural network based solution 

involving using 4D MR velocimetry data as a direct input to the solution of the 4D PDEs of the Navier 

Stokes equations using automatic differentiation, enabling direct characterisation of the pressure field 

without a separate numerical model and significantly reduced computational cost. 

These methods provide powerful tools to enable comprehensive interpretation of internal structures 

and flow fields from incomplete image datasets but rely on the availability of a significant quantity of 

good quality historic data for their training. We believe our 4D method offers an alternative, highly 

accurate reconstruction from small scale refined data that can easily be scaled to higher dimensions 

at low computational cost, without loss of stability and without the need for training or prior 

knowledge of the dataset.   

2 4D Local RBF collocation method for uniformly spaced data 
 

Data connectivity based on a regular rectilinear 4D Cartesian grid x, y, z, t structure, such as the 
pixel-based form taken by medical image data, lends itself well to a stencil based local RBF 
formulation. Stencils are formed by connecting each node at which functional values are known to 
its immediate neighbours within the Cartesian grid structure. Each stencil therefore consists of 81 
nodes for a four-dimensional dataset, and the entire solution domain is covered by overlapping 
stencils. Stencils are not formed at boundary nodes, in order to maintain a consistent stencil size and 
shape throughout the domain. The method does not require that the dataset be uniform, only that 
the dataset be regular. However, if the nodal separation in any one direction differs substantially, 
scaling is applied in order to keep the aspect ratio of the local stencils close to 1. For data with a 
spatial and temporal aspect, this will typically require scaling of the time variable such that the time 
step size is of the same order as the spatial separations. To determine points associated with each 
stencil, a search algorithm is used whereby the domain is divided into evenly spaced boxes equal to 
the total number of stencils. Points are allocated boxes based on their fraction of the overall range 
of data in each dimension. The number of points in each box is counted and these values along with 
the array indices of each point are stored for later use in constructing the local RBF collocations. 
 
The RBF interpolation is evaluated only on the points in a local stencil rather than across the entire 

domain. Since the domain is covered by overlapping RBF systems, each reconstruction location can be 

expected to lie within the domain of several neighbouring collocation systems. In order to produce a 



 
 
 

 
 

 

smoothly varying and consistent global reconstruction of the data field it is therefore necessary to 

assign a relative weight to the estimate from each contributing system, i.e. a standard "partition of 

unity" reconstruction [33]. The effect of choosing different weighting schemes is considered in section 

2.1.  

We consider the multiquadric radial basis function, 

𝜓(𝑟) = (𝑟2 + 𝑐2)
1

2⁄  

Equation 1 

Here r is a length scale representing radial separation distance between points found in a given local 

stencil. Since 4 dimensions are considered, r2=rx
2+ ry

2+ rz
2+ rt

2. The c term is the RBF shape parameter, 

which controls the relative flatness of the basis function. This parameter is a length scale which may 

be tuned to optimise the interpolation function based on the size of the domain and the shape of the 

interpolating function. Variation of this parameter is considered in section 2.1. 

For each local system, the multiquadric RBF collocation procedure builds an interpolation function 

∅(𝑥) for a given data centre, 𝑥 as a weighted sum of radial basis functions evaluated at a set of N 

chosen neighbouring functional centres, 𝜉𝑗, that are distributed over the local interpolation domain, 

plus a polynomial term of order 0 (Equation 2), with NP the number of terms in the polynomial, (here 

NP=1):  

∅(𝑥) = ∑ 𝛼𝑗𝜓(‖𝑥 − 𝜉𝑗‖) + ∑ 𝛼𝑗+𝑁𝑃𝑗
0(𝑥)

𝑁𝑃

𝑗=1

𝑁

𝑗=1

 

Equation 2 

By enforcing the interpolation function, Equation 1, at all locations where the solution is known, 𝑥𝑖, 

we obtain a linear system of equations which may be solved to obtain the functional coefficients 𝛼𝑗: 

𝜙(𝑥𝑖) = ∑ 𝛼𝑗𝜓(‖𝑥𝑖 − 𝜉𝑗‖) + ∑ 𝛼𝑗+𝑁𝑃𝑗
0(𝑥𝑖)

𝑁𝑃

𝑗=1

𝑁

𝑗=1

 

Equation 3 

Along with the constant polynomial constraint condition (Equation 4), i.e.: 

∑ 𝛼𝑗𝑃𝑘
0(𝑥𝑗) = 0            𝑘 = 1,

𝑁

𝑗=1

… , NP 

Equation 4 

The full formulation of this problem can be expressed in the form [𝐴][𝛼]  =  [𝑏], where: 

[𝐴] = (
𝜓 𝑃0

𝑃0𝑇
0

) 

[𝑏]𝑇 = ([𝜙(𝑥𝑖)], [0]) 

Equation 5 



 
 
 
 

 
 
 

 

Here ∅(𝑥𝑖) are the known values of the field variable ∅ at the data centres 𝑥𝑖. We identify this as the 

data vector for the local collocation system.  𝜓𝑖𝑗 is identified as the collocation matrix for the local RBF 

system and defines the relationship, in terms of the chosen RBF (Equation 1), between each data 

centre 𝑥𝑖, and each of the chosen neighbouring functional centres in the local system, 𝜉𝑗. If the number 

of data centres 𝑥𝑖 is of the same size as the number of functional centres, 𝜉𝑗, (N), then Equation 5 

represents a square system that can be solved directly. Furthermore, if {𝑥𝑖} = {𝜉𝑖}, i.e. the functional 

centres are placed only at locations where the field variable is known, then the collocation matrix is 

symmetric. This is the case for all interpolation systems used in this work since the input image data 

is uniformly populated and is the most used formulation within the literature. The ability to define the 

functional centres in locations within the local domain other than the known data centres can be of 

benefit in evaluating scattered input data, where points maybe unevenly distributed. However, this is 

not considered here.  

Having obtained the functional coefficients 𝛼𝑗 via the solution of Equation , the value of the 

interpolation function at any reconstruction location �̅� within the local interpolation domain may be 

obtained by applying the RBF reconstruction formula Equation 2. Writing this as a vector product we 

have: 

𝜙(�̅�) = 𝑅𝑗(�̅�)𝛼𝑗 

Equation 6 

where the vector 𝑅𝑗(�̅�) is defined by: 

𝑅𝑗(�̅�) = 𝜓(‖�̅� − 𝜉𝑗‖) 

Equation 7 

The procedure to obtain the functional coefficients 𝛼𝑗 requires the solution of a linear system of 

equations with local data values on the right hand side; see Equation . However, for our application it 

is more computationally efficient to use instead a reconstruction weights vector that can multiply 

directly with the data vector 𝜙𝑖. To do this we solve the matrix system 

𝜓𝑖𝑗𝑊𝑖(�̅�) = 𝑅𝑗(�̅�) 

Equation 8 

in order to obtain the vector 𝑊𝑖(�̅�), which we identify as the reconstruction weights vector for 

position �̅�.  With this vector 𝑊𝑖(�̅�) we may obtain the value of the interpolation function at �̅� via 

simple multiplication with the data vector: 

𝜙(�̅�) = 𝑊𝑖(�̅�)𝜙𝑖 

Equation 9 

An RBF collocation system is defined for each local stencil. However, since the RBF method relies 
only on relative nodal separations, we may exploit the regular Cartesian grid structure to enhance 
computational efficiency by forming only a single RBF collocation system over a template stencil 
centred at the origin. Operating in this way the individual RBF collocation matrices 𝜓 become 
identical, and formation of the RBF collocation systems becomes a pre-processing operation. 
Similarly, reconstruction weights 𝑊 determined by the RBF collocation may be stored for every 
potential interpolation location within the template system and reused many times. A multiplication 



 
 
 

 
 

 

of the stencil weights with a local data-vector is all that is then required in order to reconstruct the 
field-values at each interpolation location, as defined by Equation .  Solution of the RBF matrix 
system is only necessary in order to obtain the template reconstruction weights vectors via Equation 

, again as a pre-processing operation.  

 

2.1 Numerical Validation 
In this section we compare the proposed 4D RBF collocation to a polynomial interpolation approach 

using a quad-linear interpolation, i.e. an extension of the well-known bilinear/trilinear interpolation 

method to four dimensions. We consider the 4-dimensional test function Equation 3, over the 

domain (𝑥, 𝑦, 𝑧, 𝑡) ∈ [−1, 1], which represents a well behaved continuous transient function with 

similar characteristics to that of creeping/slow laminar flow.  We form a regular Cartesian grid using 

N+1 nodes in each direction, such that the separation between adjacent nodes is 2 𝑛⁄ , i.e. forming N4 

voxels within the domain. The data-field is then interpolated to produce an additional four 

subdivisions in each direction, i.e. to generate an additional 256 sub-voxels within each of the 

original voxels. 

∅𝑒(𝑟) = 𝑒−𝑟2
+ 0.1𝑐𝑜𝑠(4𝜋𝑟) 

𝑟 = (𝑥2 + 𝑦2 + 𝑧2 + 𝑡2)
1

2⁄  

Equation 3 

Figure 1 demonstrates the effect of varying the RBF shape parameter (see Equation 1), using the N = 

20 dataset. As the shape parameter c is a length scale it is more convenient to consider the non-

dimensional equivalent c* =c/, where  is the local nodal separation.  The behaviour shown here is 

typical of RBF collocation methods; the solution accuracy improves as the shape parameter is 

increased (i.e. as the basis functions are made increasingly flat) until a maximum accuracy is 

achieved; in this case at around c* = 0.3. As the shape parameter is increased further the solution 

accuracy is reduced.  While the precise optimal value of c* will vary depending on the characteristics 

of the dataset, c* values in the range 0.1 to 1.0 typically provide close to optimal accuracy for the 

purposes of 4D interpolation, across a wide variety of interpolation fields. 

The shape parameter does not have to take a constant value. Kansa [42] found that a variable shape 

parameter with a given expansion produced the best results for a multiquadric interpolation. 

Furthermore, each function in an interpolation formula may be assigned a different value [43]. More 

recently, strategies for the selection and formulation of variable shape parameters have been 

investigated [44], [45]. However, although they may be applied to such problems, for a 

computational domain with a uniform discretisation with little variation, it is appropriate to use a 

constant shape parameter for each local system [46]. Hence here a sensible value has been selected 

empirically based on the domain geometry.  



 
 
 
 

 
 
 

 

 

Figure 1 Variation of error with shape parameter: N=20 dataset. 

Figure 2 shows the spatial convergence of the proposed RBF approach in comparison to the quad-

linear polynomial interpolation, for datasets varying in density between N = 10 and N = 50. The RBF 

approach offers a clear improvement in accuracy over the polynomial interpolation, which increases 

as the dataset density is refined; on the finest dataset tested the RBF offers around thirty times the 

accuracy of the polynomial approach. Examining the rate of spatial convergence numerically, we see 

a convergence rate of 1.87 for the polynomial, in comparison to a convergence rate of 3.47 for the 

RBF approach. 



 
 
 

 
 

 

 

Figure 2 Spatial convergence of RBF and quad-linear interpolation schemes (c* = 0.5) 

Figure 3 a) plots the quad linear interpolated value of ∅ against the exact solution, along a diagonal 

extending from the centre of the domain to the outermost corner of the domain at x = y = z = t = 1, 

for the N = 10 dataset. Locations along this line where the solution is known are marked with circles. 

The RBF interpolation Figure 3 b) shows that the exact solution is represented more accurately when 

using an RBF interpolation; in particular at peaks and troughs of the function that are far from any 

"fixing" node.  Figure 3 c) and d) show the corresponding results for the N = 20 dataset. Here the RBF 

interpolation function is virtually indistinguishable from the exact solution, whereas the quad-linear 

interpolation offers a reconstruction quality like that of the RBF case on the coarser dataset. 

As discussed in Section 3, when reconstructing at a location that exists within the interpolation domain 

of several overlapping interpolation systems, it is necessary to construct the final interpolation value 

as a weighted average of the estimates from the various overlapping systems; i.e. build a partition of 

unity function [33]. We consider here four weighting approaches for the partition of unity function. 

The 'uniform weighting' scheme assigns an equal weight to each contributing system. The 'linear 

decay' and 'quadratic decay' functions consider weights that decay (linearly or quadratically) towards 

zero at the farthest extent of the stencil.  The 'closest node only' scheme assigns a non-zero weight 

only to the interpolation system that is formed around the closest interior node (if multiple nodes are 

equidistant from the reconstruction location then both are considered with equal weight). Note that 

all preceding results in this section have used a uniform weighting approach. Table 1 shows the L2 

errors obtained for these different weighting schemes, using two different datasets (N = 10 and N = 

20), at two different shape parameters (c* = 0.1 and c* = 1).  The choice of weighting scheme has only 

minimal impact on the solution accuracy; in each case the accuracy of the predicted solution is within 

a few percent between the various reconstruction schemes. The 'closest node only' scheme is of 

interest, since the vastly reduced number of reconstructions leads to a correspondingly reduced 



 
 
 
 

 
 
 

 

computational cost. It is important to note, however, that using this scheme will lead to very small 

'jumps' in the interpolation function as it moves from the domain of one interpolation stencil to 

another. Whether or not such jumps in the reconstructed solution field are acceptable will be a 

problem dependent issue. 

 

Figure 3 Interpolation function along positive diagonal: N = 10 dataset a) Quad-linear interpolation, N = 10, b) RBF 
interpolation, N = 10, c) Quad-linear interpolation, N = 20, d) RBF interpolation, N = 20. 

Table 1 Comparison of various partition of unity weighting schemes (L2 error norms shown) 

Test case Uniform 
weighting 

Linear decay Quadratic decay Closest node only 

N = 10, c* = 0.1 1.55310-2 1.54010-2 1.53010-2 1.51210-2 

N = 10, c* = 1 1.48910-2 1.47810-2 1.47010-2 1.47310-2 

N = 20, c* = 0.1 1.48410-3 1.38210-3 1.32410-3 1.54610-3 



 
 
 

 
 

 

N = 20, c* = 1 1.46410-3 1.44210-3 1.43410-3 1.57610-3 

 

2.2 4D CFD Flow Phantom Model 
Prior to evaluating the algorithm on real world physiological CSF flow data , we first validate its 

effectiveness on a 4D CFD flow phantom representing transient laminar flow in a square duct, using 

the Ansys Fluent CFD solver. Water was chosen as the fluid medium due to its similarity in properties 

to CSF. A duct of height 10mm and length 200mm was selected to enable full development of the 

flow. To simulate MR data, a uniformly spaced hexahedral mesh was used without boundary layer 

growth functions. An initial steady state mesh sensitivity study was conducted, with inlet velocity of 

0.1ms-1 and zero-gauge outlet pressure, resulting in an optimal element size of 0.5mm.  

A sinusoidally varying transient inlet function was formulated to ensure initial values of zero velocity, 

solely positive values over the cycle and an entirely laminar flow regime.  

𝑢(𝑡) = 0.05 (𝑠𝑖𝑛 (
3𝜋

2
+ 2𝑡) + 1) 

The duct flow was then solved transiently over a period of 10s with a time step of 0.01s, covering 3 

cycles to allow full development of the flow, again using a zero-gauge outlet pressure condition. 

Velocity data from this case was collected from cell centres at 20 uniformly spaced planes parallel to 

the outlet at 20 time intervals of 0.5s to form a 4-dimensional input dataset to test the RBF 

interpolation. Time data was scaled by 10-3 to ensure uniform local systems. This dataset was then 

interpolated to the inlet boundary of a second laminar duct flow model, identical except for an 

inclined inlet plane. This case was again solved transiently over a period of 10s and the development 

of the flow compared to that in the initial model, as shown in Figure 4. Flow at several cross-

sectional planes along the duct over the 3rd flow cycle is shown for the initial model and the inclined 

duct interpolated case. The flow development in the inclined inlet duct shows good agreement with 

the initial case. Variation of average flow at the duct outlet is plotted in Figure 5 for both cases. 

Although input data were relatively sparsely located in time, the transient outflow profile is still 

reconstructed accurately.  

  



 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Contours of velocity at several cross sections of full duct, and truncated inclined entrance duct simulation over cycle 
at times 7.1 s, 7.9 s, 8.3 s, 8.7 s, 9.4 s and 9.8 s.  Images are in pairs comparing the value at each time in the cycle between 
the initial duct and the duct with coarse interpolated inclined duct entry boundary condition. 
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Figure 5 Variation of average velocity at outlet of original pipe and inclined pipe demonstrating that the boundary velocity 
interpolated from the initial model from sparse data is consistent with the solution original model driven by the source 
boundary condition function. 

3 Application of 4D Local RBF Algorithm to Medical Imaging Data 
Following validation on an analytical function, we now apply the 4D local RBF technique to uniformly 

spaced, 4-dimensional voxel-based MR measurements of cerebrospinal fluid (CSF) flow velocity in the 

cerebral lateral ventricles of the brain, acquired at consistent time intervals over the cardiac cycle.   

Representative MRI data was acquired through the University of Nottingham Centre for Magnetic 

Resonance Imaging consisting of measurements of CSF flow velocity in all 3 component directions (u, 

v, w) at 62 horizontal slices through the brain of a healthy 25-year-old over a cardiac cycle. Image 

acquisition was configured to give the best available spatial and temporal resolution of the flow field, 

using a hybrid fast field echo sequence.  Pulse oximetry gating was used to acquire 12 image sets over 

the cardiac cycle, (~1s) at 0.083s intervals.  An in-plane voxel size of 1.79 by 1.79 mm with 2.4mm 

spacing between planes was used, with a field of view of 200mm x 200mm, giving a total dataset of 

9,332,736 points. An initial acquisition with 50 mms-1 velocity encoding indicated peak lateral 

ventricular velocities of ~1-3 mms-1. Therefore, to capture the flow field with adequate resolution and 

high signal to noise whilst avoiding aliasing, a velocity encoding of 5mms-1 was selected. Limitations 

of the technology mean that it is inevitable that some information lying between pixels is lost.  Despite 

this, the speed of CSF flow (in the order of mm/s) relative to the pixel size means interpolation will 

give a reasonably accurate representation of the flow behaviour given a suitable number of input 

points. To avoid errors arising due to bulk movements of the human subject in the scanner over time, 

a linear least-square approximation of this rigid body motion was used. This enabled successful 

removal of erroneous velocities.  Rigid body velocities were generally an order of magnitude less than 

that registered in the main body of fluid.  Prior to rigid body motion removal, to investigate the 

sensitivity of the MRI velocity measurements to noise, several regions of expected zero velocity in the 

brain tissue where there is no flow other than diffusion (subject to rigid body motion) were captured 

in regions of approximately 10 by 10 voxels on a number of planes of interest.  The standard deviation 

of the velocity data was 0.06 mm/s, 0.06 mm/s on the x- and y-directions on a sample of 2304 voxels.  

For the data reported in our results we estimate that the x-and y-velocities reported have an accuracy 

of 0.06 mm/s.  We do not report the z-direction velocities here. 
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To demonstrate the interpolation, the number of output locations was increased to double the 

number of original datapoints, proportionally distributed in each direction (x,y,z,t). Figure 6 and Figure 

7 show the application of the 4D RBF algorithm to the MRI dataset. In Figure 6, spatial interpolation is 

shown at a single point in the cardiac cycle. Two original planes are shown alongside a third 

intermediate location, which is not part of the original dataset. The number of pixel locations in the 

new, interpolated plane is increased fourfold. The complex variation of the flow field is reconstructed 

by the interpolation function and a clear smoothing between pixels is visible relative to the baseline 

images. The additional vectors and refined volume elements in Figure 6b) are consistent with the 

original images a) and c) producing a gradient of the velocity dependent on the RBF.   

Application of the local 4-dimensional interpolation enables a prediction of the flow velocity 

magnitude and direction to be made at any location within the field over a cardiac cycle. Figure 7 

demonstrates the effect of the interpolation in the temporal dimension. The original time steps of the 

MRI scan are reproduced on the left-hand column of images, but also including the spatial 

interpolation.  The column of images on the right is not available in the original MRI data.  The RBF 

interpolation produces intermediate time images which improve the visualisation of the temporal 

evolution of the flow field as it develops in the cardiac cycle.  The improvement in the image rate from 

12 per second to 24 per second provides a video rate observation of the cardiac cycle.  The pattern of 

the velocity vectors is seen to vary in magnitude and direction during the cycle indicating pulsation of 

the flow.  This refined dataset can improve understanding and visualisation of the physical interaction 

between the CSF and the cardiac rhythm. 

 

 



 
 
 

 
 

 

 

Figure 6 Interpolation of velocity magnitude (colour bar from 0 to 0.003 m/s) of cerebrospinal fluid in voxels from MRI scan 
with 3 Tesla machine, and 1.79mm voxels.  The result of the interpolation is shown by comparing the original data with the 
interpolated image; a) original, at arbitrary height z which shows a section of the cerebral lateral ventricles, c) original data, 

at z – 1.79 mm and b) interpolated, at 𝑧 −
1.79

2
 mm. In this case the RBF interpolation has doubled the number of voxels in 

all 4 dimensions, i.e. 24 = 16 times the number of voxels in the original (x, y, z, t) data set. 

 



 
 
 
 

 
 
 

 

 

Figure 7 6 interpolated images from MRI scan with 3 Tesla machine, and  t=0.083 s.  Left hand images are at original time 
points and right-hand images are interpolated.  The images are interpolated spatially and where there were only 12 time 

frames in the MRI, there are 24 time frames in the interpolated data, with  t = 0.083/2 s.  The colour bar from Figure 4 
again applies to the velocity magnitude. 

4 Discussion 
The results of Section 2 demonstrate that the use of the 4D local multiquadric RBF formulation can 

provide a more computationally efficient, accurate and stable reconstruction of a known 4D function 

from a large dataset (of the order several hundred thousand points) when compared with a higher 

order polynomial based approach. This has not previously been achieved due to the tendency towards 

high computational cost and ill conditioning using global multiquadric RBF techniques. Restriction of 

the local stencil sizes in our method means that the number of data points never gets large enough 

for ill conditioning to become a problem. The partition of unity weighting applied to the local 

templates reduces the effect of heavily skewed outliers in the data. The algorithm ran on a 2 GHz dual 

core processor in the order of seconds, enabling rapid processing of results.  

Having demonstrated the efficacy of the technique on a known function, we then showed that it could 

be used in real world applications for interpolation of complex, large scale (~several million points), 



 
 
 

 
 

 

multidimensional physiological imaging datasets. The results in Section 3 show the 4D local RBF image 

interpolation offers a means of reconstructing velocities within a volume of CSF at data points 

intermediate to those available from the spatial resolution of the MRI scan and temporal resolution 

of cardiac gating, or which cannot be acquired without significantly increased scan times, causing 

stress on the subject and the MRI resource. It is also independent of the plane orientation of the image 

stack. Interpretation of anatomical definition of for example, tissue boundaries is a further possibility. 

4D prediction of the entire velocity field could in future assist in determining medical diagnoses and 

optimal timing of drug delivery into the cerebrospinal fluid [1], [2], [3], [4], [5]. The efficient run times 

and lack of need for training on or knowledge of prior datasets may facilitate use of the algorithm in 

clinical settings, where rapid interpretation of results is important.  

It would be of interest to further verify the robustness and applicability of the technique to a wider 

variety of MR Velocimetry data from both healthy and pathological cases and different locations 

within the CSF, such as the spinal cavity. Similarly, this work has not considered haemodynamic flows, 

which would typically require a divergence free condition to be applied, such as in [34]. It is not yet 

clear if the local RBF method described can predict haemodynamic flows without significant noise or 

be made compatible with the divergence free approach without loss of efficiency or stability. To 

facilitate this, future work will aim to expand the range of known analytical functions the technique is 

evaluated on to those representing transient turbulent flows, for example, the unsteady Hill's 

spherical vortex [Arzani]. The effect of varying the amount of random Gaussian noise on the raw 

dataset will also be investigated.  

As for any interpolation, accuracy of the reconstruction produced is limited by the resolution of the 

original image data. Overly coarse MR velocimetry data can contain partial volume errors, whereby 

velocity recorded at a given spatial location contains signal from both stationary and moving tissues, 

for example, at fluid-tissue boundaries. In each application, care is needed to ensure an adequate 

balance between the increased data acquisition time required to achieve greater pixel resolution and 

accuracy of the interpolated 4D flow field. As a result, our method may not currently allow for accurate 

prediction from sparse or incomplete datasets such as maybe achieved using a machine learning 

approach. More work is required to determine the limitations of the technique in this respect, that is, 

at what sparsity of data does the level of accuracy of the interpolation appreciably deteriorate? An 

additional subject of future work may also be to harness the benefits of the multidimensional local 

RBF approach as part of, or in combination with a neural network algorithm to predict flow distribution 

of sparse datasets based on historical records and further reduce overall imaging time.  

Comparison of the 4D RBF technique with results from a numerical model of the CSF flow region would 

provide further validation that it outperforms other potential multidimensional interpolation methods 

for this application. An alternative would be to create a synthetic 4D flow dataset from this CFD model 

to test the interpolation, similar to prior studies [38]. This would involve superimposing voxels from 

the MRI dataset onto the CFD mesh, then spatially averaging the data inside each voxel and adding 

Gaussian noise. However, the complexity of accurately modelling the influence of the pulsatile wall 

boundaries, due to the microscopic flow pulsations driving the flow, means a direct simulation of the 

CSF flow field has been discounted at this preliminary stage. Previous investigation of cerebrospinal 

fluid highlighted that flow passages in the cerebral ventricles are narrow (~1 cm) and the boundaries 

strongly influence flow behaviour. [5] suggested a method for estimating this pulsatile motion using 

spline interpolation of 2D MRI slices to predict volumetric change over the cardiac cycle. However, to 

accurately capture the magnitude of pulsation driving the flow at the flexible fluid-tissue ventricle wall 

boundary requires the application of a transiently and spatially varying velocity profile derived from 

the MR data. Therefore, an accurate derivation of boundary conditions in itself necessitates the use 



 
 
 
 

 
 
 

 

of a 4D interpolation technique to map the wall boundary location and fluid and tissue motion at any 

point over the cardiac cycle. Figure 6 b) shows example locations on the boundary at close to zero 

flow velocity, indicating the most likely position of the ventricle wall at that cycle point can be 

predicted from the RBF interpolation. However, due to the small-scale movements involved, signal 

from these regions is particularly sensitive to partial volume effects and further work is needed to 

optimise the image acquisition procedure to achieve higher resolution at the wall boundaries. 

Fluid mechanics can also be directly applied to analysis of an MR velocimetry dataset.  In [48], the curl 

of a 4D MR velocity vector field is calculated, enabling the pressure field to be determined through 

the Navier-Stokes equations.  However, the result of this manipulation is still a discrete rather than 

continuous dataset. [41] has significantly improved on this idea with a machine learning technique. 

Coupling our interpolation routine with this type of approach would be of significant interest as it 

would enable prediction of fluid pressure as well as velocity throughout the domain without the need 

for a numerical model, paving the way towards a complete, real-time prediction of pathological or 

healthy flow behaviour.  

5 Conclusions 
A preliminary evaluation of a 4-dimensional local radial basis function (RBF) algorithm for the 

interpolation of uniformly spaced, small-scale data, such as that derived from medical imaging has 

been presented. The validity of the subroutine has been demonstrated through interpolation of a 

known 4D function. The performance of the algorithm has been shown to be highly favourable in 

comparison with a quad-linear interpolation of the same dataset, demonstrating a significant 

improvement in accuracy and convergence rate.  

The application of the interpolation tool has been demonstrated through reconstruction of a complex 

spatially and temporally varying 4-dimensional flow field derived from medical imaging data of 

cerebrospinal fluid flow in the brain. The results demonstrate that the technique offers an effective 

reconstruction of the flow field and could serve as a useful tool in the analysis of such datasets. 

The 4-dimensional interpolation technique will be further validated through application to a greater 

range of analytical and medical imaging velocimetry problems such as turbulent haemodynamic flows. 

Use of the tool for the development of improved 4-dimensional boundary conditions for numerical 

models will be investigated. Coupling of the algorithm with a neural network-based approach will also 

be explored. This technique could then assist in the development of more physically realistic models 

of biological flow fields based on medical image data and hence improve understanding of the 

differences between healthy and pathological states.  
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