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Abstract. In this article we classify additive operations in connective K-theory with
various torsion-free coefficients. We discover that the answer for the integral case re-

quires understanding of the Ẑ one. Moreover, although integral additive operations are
topologically generated by Adams operations, these are not reduced to infinite linear
combinations of the latter ones. We describe a topological basis for stable operations
and relate it to a basis of stable operations in graded K-theory. We classify multiplicative
operations in both theories and show that homogeneous additive stable operations with

Ẑ-coefficients are topologically generated by stable multiplicative operations. This is not
true for integral operations.

1. Introduction

Let k be a field of characteristic 0. An oriented cohomology theory A∗ over k is a functor
from the category Smop

k of smooth quasi-projective varieties over k to the category of Z-
graded commutative rings equipped with a push-forward structure and satisfying certain
axioms. In this article, we study the, so-called, small theories. For these, the appropriate
choice is [13, Definition 2.1] which employs a strong form of the localisation axiom and is
some breed of the axioms of Panin-Smirnov [10, Definition 1.1.7] and that of Levine-Morel
[8, Definition 1.1.2]. In particular, every oriented cohomology theory A∗ admits a theory
of Chern classes cAn of vector bundles. Among such theories there is the universal one
- the algebraic cobordism of Levine-Morel Ω∗ [8]. We will work with the free theories,
i.e. theories obtained from Ω∗ by change of coefficients. These are exactly the theories of
rational type for which the results of [13] apply.

Examples of free oriented cohomology theories are:

• Chow theory CH∗ that assigns to a smooth variety X over k the Chow ring CH∗(X);
• Graded K-theory K∗gr taking X to the Laurent polynomial ring K0(X)[t, t−1] (graded
by the powers of the Bott element t of degree −1) over the Grothendieck ring K0(X);
• Connective K-theory taking a smooth variety X to the ring CK∗(X) of X (see [3] and
[5]).

The connective K-theory is the “smallest” oriented cohomology theory “living” above
Chow theory and graded K-theory: there are natural graded morphisms

CK∗(X)

yy %%
CH∗(X) K∗gr(X)
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that yield graded isomorphisms

CK∗(X)/tCK∗+1(X)
∼→ CH∗(X) and CK∗(X)[t−1]

∼→ K∗gr(X).

Moreover, multiplication CKn+1(X)
t−→ CKn(X) by the Bott element t ∈ CK−1(k) is an

isomorphism if n < 0. The map CK0(X)→ K0
gr(X) = K0(X) is also an isomorphism, so

we can identify CKn(X) with K0(X) for all n 6 0.

For any n > 0 the image of CKn(X)
tn−→ CK0(X) = K0(X) is the subgroup K

(n)
0 (X) ⊂

K0(X) generated by the classes of coherent OX-modules with codimension of support at
least n. Note that the map tn may not be injective in general if n > 1.

Let A∗ and B∗ be two oriented cohomology theories. An additive operation G : A∗ → B∗

is a morphism between functors A∗ and B∗ considered as contravariant functors from
Smk to the category of abelian groups. Examples of additive operations are Adams
operations in algebraic K-theory and Steenrod operations in the Chow groups modulo a
prime integer.

If A∗ is an oriented cohomology theory and R is a commutative ring, we write AnR(X)
for An(X)⊗Z R and OPn,m

R (A) for the R-module of R-linear operations AnR → AmR .
It is proved in [13, §6.3] that every free oriented cohomology theory A∗ admits the

Adams operations ΨA
m ∈ OPn,n

R (A) for all n and m. The operation ΨA
m in OP1,1

R (A)
satisfies

ΨA
m(cA1 (L)) = cA1 (L⊗m)

for a line bundle L. Moreover, there is an R-linear map

Adn : R[[x]]→ OPn,n
R (A)

taking the power series (1− x)m to the Adams operation ΨA
m for all m ∈ Z.

In general, the map Adn is neither injective nor surjective - see below. But it is shown
in [13, §6.1] that Adn is an isomorphism if A∗ is the graded K-theory, thus,

OPn,n
R (Kgr) ' R[[x]].

Since the power series (1 − x)m generate R[[x]] as topological R-module in the x-adic
topology, we can say that the R-module OPn,n

R (Kgr) is topologically generated by the
Adams operations in the graded K-theory. Moreover, since multiplication by the Bott
element is an isomorphism in K∗gr, we have OPn,m

R (Kgr) = R[[x]] · tn−m.

In the present paper we study the groups OPn,m
R := OPn,m

R (CK) of operations in the
connective K-theory over R. We write for simplicity OPn,m for OPn,m

Z .
The groups CKn(X) for n 6 0 are identified with K0(X), hence translating the above

result on the operations in graded K-theory, we see that Adn : R[[x]] → OPn,n
R is an

isomorphism for n 6 0.
The Adams operation Ψ0 is trivial on CKn

R for n > 1, i.e. Adn(1) = 0, so we consider
the restriction Ad′n : xR[[x]] → OPn,n

R of the map Adn. The R-module CK1
R(X) is

a canonical direct summand via multiplication by t of CK0
R(X) = K0(X)R with the

complement R · 1. This leads to a ring isomorphism OP0,0
R ' R ×OP1,1

R . Moreover, the

map Ad′1 : xR[[x]]→ OP1,1
R is an isomorphism.
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The structure of the groups OPn,n
R with n > 1 is much more delicate and depends on

the base ring R. The homomorphisms Ad′n : xR[[x]]→ OPn,n
R for n > 2 are not surjective

in general.
It came as a surprise to us that the structure of OPn,n

R is very simple over the ring of

profinite integers Ẑ = lim(Z/nZ):

Theorem. The map Ad′n : xẐ[[x]] → OPn,n

Ẑ
is an isomorphism if n > 1. In particular,

the Ẑ-module OPn,n

Ẑ
is topologically generated by the Adams operations.

Over Z the map Ad′n is not surjective if n > 2.

Theorem. The group OPn,n of integral operations is isomorphic canonically to a subgroup
of OPn,n

Ẑ
. Moreover, there is an exact sequence

0→ xZ[[x]]
Ad′n−−→ OPn,n → (Ẑ/Z)n−1 → 0

if n > 1.

Thus, the group Ẑ also shows up in the computation of OPn,n over Z. For example,

OP2,2 as a subgroup of OP2,2

Ẑ
= xẐ[[x]] is generated by xZ[[x]] and the power series∑

i>0
c−ci
i
xi for all c ∈ Ẑ and integers ci such that c− ci is divisible by i for all i > 0, i.e.,

ci in Z represents congruence class of c modulo i.

We prove that the rings OPn,n and OPn,n

Ẑ
are commutative. Moreover, the rings OPn,n

are “almost” integral domains: the only zero divisors are the multiples of Ψ1 ±Ψ−1.

An operation G : A∗ → B∗ is called multiplicative if G is a morphism of functors

Smk → Rings. Examples are twisted Adams operations Ψc
b defined as follows. Let b ∈ Ẑ

and c ∈ Ẑ×. Then the operation Ψc
b is homogeneous and equal to c−n ·Ψbc on CKn

Ẑ
, where

Ψbc is the (generalized) Adams operation with the power series (1− x)bc. We classify all
multiplicative operations on CK∗

Ẑ
in Section 5.

The notion of “stability” in topology can be considered in algebraic setting as follows
(see [13, §3.1]). Let SmOp be a category whose objects are pairs (X,U), where X ∈ Smk

and U is an open subvariety of X. Any theory A∗ extends from Smk to SmOp by the
rule:

A∗((X,U)) := Ker(A∗(X)→ A∗(U)).

and every additive operation A∗ → B∗ on Smk extends uniquely to an operation on
SmOp. There is an identification

σAT : A∗((X,U))
∼=−→ A∗+1(ΣT (X,U)),

where ΣT (X,U) := (X,U) ∧ (P1,P1\0) = (X × P1, X × (P1\0) ∪ U × P1).
For any additive operation G : A∗ → B∗ we define its desuspension as the unique

operation Σ−1G : A∗ → B∗ such that

G ◦ σAT = σBT ◦ Σ−1G.

A stable additive operation G : A∗ → B∗ is the collection {G(n)|n > 0} of operations
A∗ → B∗ such that G(n) = Σ−1G(n+1).
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In Section 6 we classify stable operations in connective K-theory over Ẑ. We prove that
under the identification

OPn,n

Ẑ
=

{
Ẑ[[x]], if n 6 0;

xẐ[[x]], if n > 1

the desuspension map is given by the formula

Σ−1(G) =

{
Φ(G), if n 6 1;
Φ(G)− Φ(G)(0), if n > 1.

where G ∈ OPn,n

Ẑ
and Φ(G) = (x − 1)

dG

dx
. Thus, the desuspension map Σ−1 yields a

tower of injective maps

Ẑ[[x]] = OP0,0

Ẑ
←↩ OP1,1

Ẑ
←↩ . . .←↩ OPn,n

Ẑ
←↩ . . . .

The group of homogeneous degree 0 stable operations CK∗
Ẑ
→ CK∗

Ẑ
is canonically isomor-

phic to the group

S := ∩n Im(Φn) ⊂ Ẑ[[x]].

We identify this group in Section 6. In particular we prove that S is the closure in the

x-adic topology of Ẑ[[x]] of the set of all (finite) Ẑ-linear combinations of the Adams

power series Ar for r ∈ Ẑ×. The Ẑ-module S and its integral version S0 appear to be of
an uncountable rank. We describe a topological basis for them.

We call a multiplicative operation G stable if the constant sequence (G,G,G, . . .) is
stable. We prove that stable multiplicative operations CK∗

Ẑ
→ CK∗

Ẑ
are exactly operations

Ψc
1, for c ∈ Ẑ×. Thus, we obtain:

Theorem. Homogeneous degree 0 stable additive operations on CK∗
Ẑ

are topologically
generated by the stable multiplicative operations on it.

Similarly, stable multiplicative operations on CK∗ are Ψ±1
1 . This time though, they

don’t generate the group of stable additive operations which is of uncountable rank.
Recall that additive operations in (graded) K-theory were determined in [13, §6.1]. In

the present paper we determine stable and multiplicative operations in Kgr. We describe
a basis of the group of stable Kgr-operations and relate it to the basis of stable CK-
operations. The ring of stable operations is dual to the Hopf algebra of co-operations
defined over Z and therefore has a structure of (topological) Hopf algebra. The Hopf
algebra of co-operations coincides with K0(K) in topology and has been studied in [1],
[2], [4], [6] and [12]. The case of CK was investigated, in particular, in [7].

The main tool used in our proofs is the general result of the second author [13, Theorem
6.2] that asserts, when applied to the connective K-theory, that an operation G ∈ OPn,m

R

for n > 1 is given by a sequence of symmetric power series Gl ∈ R[[x1, . . . , xl]] for all l > n
satisfying certain conditions. In particular, Gl divisible by x1 · . . . ·xl and −Gl+1 = ∂(Gl),
the partial derivative of Gl (see Definition 2.1) for all l > n, i.e., all power series Gl are
determined by Gn. We show that if R is torsion free, then Gn can be integrated over
K = R ⊗ Q: there is a unique power series H ∈ xK[[x]] such that Gn = ∂n−1(H). Thus,
the operation G is determined by a power series H in one variable over K such that
∂n−1(H) ∈ R[[x1, . . . , xn]].
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The article is organized as follows. In Section 2 we prove general results which will
permit us to integrate the multivariate symmetric power series and reduce the classifica-
tion of operations to the description of power series in one variable with certain integrality
properties. These properties are then studied and the respective power series are classified
in Section 3. In Section 4 we apply the obtained results in combination with [13, Theorem

6.2] to produce a description of additive operations in CK with integral and Ẑ-coefficients.
We describe the ring structure on the set of homogeneous operations. The description of
operations in Kgr comes as an easy by-product. In the latter case, we also describe the
dual bi-algebra of co-operations. Multiplicative operations in CK and Kgr are studied in
Section 5. Finally, Section 6 is devoted to the computation of stable operations.

2. Symmetric power series

2.1. Partial derivatives. Let F (x, y) be a (commutative) formal group law over a com-
mutative ring R. We write x∗y := F (x, y).

Let G(x1, . . . , xn) ∈ R[[x1, . . . , xn]] be a power series in n > 1 variables.

Definition 2.1. The partial derivative of G (with respect to F ) is the power series

(∂G)(x1, x2, . . . , xn+1) = G(x1∗x2, x3, . . . , xn+1)−G(x1, x3, . . . , xn+1)

−G(x2, x3, . . . , xn+1) +G(0, x3, . . . , xn+1) ∈ R[[x1, . . . , xn+1]].

Note that the partial derivative is always taken with respect to the first variable (in
this case x1) in the list of variables. Write ∂m for the iterated partial derivative. We also
set (∂0G)(x1, . . . , xn) = G(x1, . . . , xn)−G(0, x2, . . . , xn).

For a subset I ⊂ [1,m+ 1] := {1, . . . ,m+ 1} write xI for the ∗-sum of all xi with i ∈ I.
In particular, x∅ = 0. Then

(2.2) (∂mG)(x1, . . . xm+n) =
∑

(−1)|I|G(xI , xm+2, . . . , xm+n) ∈ R[[x1, x2, . . . , xm+n]],

where the sum is taken over all 2m+1 subsets I ⊂ [1,m + 1]. In particular, ∂mG is
symmetric with respect to the first m+ 1 variables.

Observation 2.3. If G ∈ R[[x1, . . . , xn]] is such that ∂G is a symmetric power series,
then ∂mG is symmetric for all m > 1.

Indeed, since ∂G is symmetric, ∂mG = ∂m−1(∂G) is symmetric with respect to the last
n variables. But ∂mG is symmetric with respect to the first m + 1 variables, hence it is
symmetric.

Notation 2.4. For any commutative Q-algebra K write

lg1(x) := log(1− x) = −
∑
i>1

xi

i
∈ K[[x]]

and for any n > 0,

lgn(x) :=
1

n!

(
lg1(x)

)n ∈ K[[x]].

In particular, lg0(x) = 1.
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For the rest of this section ∗ denotes the multiplicative formal group law, i.e., x∗y =
x+ y − xy.

The power series lg1(x) belongs to the kernel of ∂. Moreover, we have the following
statement.

Proposition 2.5. For any commutative Q-algebra K and any n > 0, the kernel of ∂n−1 :
K[[x]]→ K[[x1, . . . , xn]] is equal to ∑

06r<n
K · lgr(x).

Proof. We change the variables: yi = lg1(xi) = log(1−xi), where x1 = x. The multiplica-
tive group law ∗ translates to the additive one. In the new variables the partial derivative
is homogeneous and lowers the degree in y1 by 1. Therefore, the kernel of ∂n is spanned
by 1, y1, . . . , y

n−1
1 . �

The following formula is very useful.

Proposition 2.6. Let K be a Q-algebra, G ∈ K[[x]] and n a positive integer. Then

(∂nG)(x1, x2, . . . xn+1) =
∞∑
k=1

1

k!
∂n−1

(
(1− x)k

dkG

dxk

)
(x1, x2, . . . , xn) · xkn+1.

Proof. Note that both sides don’t contain monomials xα := xα1
1 x

α2
2 · · ·x

αn+1

n+1 if at least one
αi is zero. We prove that for every multi-index α with αi > 0 for all i, the xα- coefficients
of both sides are equal. Set k = αn+1.

By (2.2), the xα-coefficient of the left hand side is the same as the xα-coefficient of
G(x1∗x2∗ · · ·∗xn+1). To determine this coefficient, we differentiate (in the standard way)
k times the series G(x1∗x2∗· · ·∗xn+1) by xn+1, plug in xn+1 = 0 and divide by k!. Since
our formal group law is multiplicative, we have 1− x ∗ y = (1− x)(1− y) and so,

d

dxn+1

(x1∗x2∗· · ·∗xn+1) = (1− x1)(1− x2) · · · (1− xn).

It follows that the xα-coefficient in the left hand side is equal to the xα1
1 x

α2
2 · · ·xαn

n -
coefficient of

1

k!
(1− x1)k(1− x2)k · · · (1− xn)k

dkG

dxk
(x1∗x2∗· · ·∗xn).

On the other hand, note that the xα-coefficient of the right hand side is equal to the

xα1
1 x

α2
2 · · ·xαn

n -coefficient of 1
k!
∂n−1

(
(1− x)k

dkG

dxk

)
(x1, x2, . . . , xn). This is the same as the

xα1
1 x

α2
2 · · ·xαn

n -coefficient of

1

k!
(1−x1∗x2∗· · ·∗xn)kG(k)(x1∗x2∗· · ·∗xn) =

1

k!
(1−x1)k(1−x2)k · · · (1−xn)k

dkG

dxk
(x1∗x2∗· · ·∗xn).

�

For a nonzero power series H ∈ R[[x1, . . . , xn]] denote by v(H) the smallest degree of
monomials in H. Set also v(0) =∞.

Observation 2.7. Suppose that a commutative ring R is torsion free. A direct calculation
shows that for positive integers n and m, we have v(∂n−1(xm)) = m if m > n. It follows
that v(∂n−1(G)) = v(G) for every G ∈ R[[x]] such that v(G) > n.
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2.2. Integration of symmetric power series.

Definition 2.8. A power series G ∈ R[[x1, . . . , xn]] is called double-symmetric if G itself
and ∂G are both symmetric.

In the following proposition we prove that double-symmetric power series can be sym-
metrically integrated over any commutative Q-algebra.

Proposition 2.9. Let K be a commutative Q-algebra and G ∈ K[[x1, . . . , xn]], n > 2, be
a symmetric power series divisible by x1 · . . . · xn. The following are equivalent:

(1) G is double-symmetric;
(2) All derivatives ∂m(G), m > 0, are symmetric power series;
(3) There is a power series L ∈ K[[x]] such that G = ∂n−1(L);
(4) There is H ∈ K[[x1, . . . , xn−1]] such that ∂(H) = G;
(5) There is a unique symmetric H ∈ K[[x1, . . . , xn−1]], divisible by x1 · . . . ·xn−1, with

zero coefficient at x1 · . . . · xn−1 and such that ∂(H) = G.

Proof. Note that (1) ⇔ (2) by Observation 2.3. We will prove the equivalence of all
statements by induction on n. The implication (3)⇒ (2) is clear, (2)⇒ (1) and (3)⇒ (4)
are trivial.

(5)⇒ (3) follows by induction applied to H.
(1) or (4) ⇒ (5) Over a commutative Q-algebra every formal group law is isomorphic

to the additive one. So we may assume that the group law is additive, i.e., the derivative
is defined by

(∂G)(x, y, t̄) = G(x+ y, t̄)−G(x, t̄)−G(y, t̄) +G(0, t̄).

We first prove uniqueness. Indeed if ∂H = 0, then H is linear in x1, and since H is
symmetric and divisible by x1 · . . . · xn−1, we must have H = 0.

Case n = 2: The implication (4) ⇒ (5) is obvious. We prove (1) ⇒ (5). We may
assume that G is a homogeneous polynomial of degree d > 1. The symmetry of the
derivative of G(x, y) results in the following cocycle condition:

G(x+ y, z) +G(x, y) = G(x+ z, y) +G(x, z).

In particular, we have the following equalities:

G(x+ y, x+ y) +G(x, y) = G(2x+ y, y) +G(x, x+ y),

G(2x+ y, y) +G(2x, y) = G(2x, 2y) +G(y, y),

G(x, x+ y) +G(x, y) = G(2x, y) +G(x, x).

It follows that

∂(G(x, x))(x, y) = G(x+ y, x+ y)−G(x, x)−G(y, y)

= G(2x, 2y)− 2G(x, y)

= (2d − 2)(G(x, y)),

hence G(x, y) = ∂(H), where H(x) = G(x, x)/(2d − 2).

Case n = 3: Write G(x, y, z) =
∑

i>1Gi(x, y)zi. By the very definition, if G satisfies
(1), respectively (4), then all Gi(x, y) also satisfy (1), respectively (4). By induction, they
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satisfy (5). Integrating each Gi(x, y), we get a power series H =
∑

i,j>1 ai,jx
iyj in two

variables such that ∂H = G.
Note that we can change H by any series

∑
i cixy

i without changing ∂H. This way, we
can make H =

∑
i,j>1 ai,jx

iyj with ai,1 = a1,i and a1,1 = 0. We claim that H is symmetric.
Indeed, from the symmetry of ∂H, we have:(

i+ k

i

)
ai+k,j =

(
j + k

j

)
aj+k,i,

for any i, j, k > 1. This implies that

1
i+l

(
i+ l

i

)
ai+l−1,1 = al,i,

and so, ai,l = al,i, for any i, l > 2. This shows that H is symmetric. Observe that such
symmetric integration is unique provided a1,1 = 0.

Case n > 3: Write G =
∑

i>1Gi · xin with Gi ∈ K[[x1, . . . , xn−1]]. Again, by the very
definition, the slices Gi of G are double-symmetric. By the inductive assumption, these
can be uniquely integrated to symmetric power series Hi ∈ K[[x1, ..., xn−2]] as in (5).
Putting these power series together, we obtain

H =
∑
i>1

Hi · xin−1 ∈ K[[x1, ..., xn−1]]

such that ∂H = G. Write

H =
∑

i1,...,in−1

ai1,...,in−1x
i1
1 . . . x

in−1

n−1 .

Modifying H by x1 . . . xn−1L(xn−1) for an appropriate power series L, we may assume
that ai,1,...,1 = a1,1,...,i for all i.

We claim that H is symmetric. The xi11 . . . x
in
n -coefficient of G = ∂H is equal to(

i1 + i2
i1

)
ai1+i2,i3,...,in . Therefore, since G is symmetric, H is symmetric with respect to

x2, ..., xn−1, if i1 > 1. Recall than H is also symmetric in x1, . . . , xn−2. Therefore, it
suffices to show that the coefficient a1,i2,...,in−1 does not change if we interchange in−1 with
ik for some k = 2, . . . , n− 2.

Suppose all indices i1, . . . , in−1 but one are equal to 1. Then the statement follows from
the equality a1,1,...,i = ai,1,...,1 = a1,i,...,1 for all i. Otherwise, at least two indices, say ik = u
and il = v with k < l are greater than 1.

If l < n− 1, set w = in−1. We have (here and below we indicate only the indices which
are permuted, hidden indices remain unchanged):

a1,u,v,w = av,u,1,w = av,w,1,u = a1,w,v,u,

so we interchanged ik and in−1. If l = n− 1, we can write

a1,u,v = au,1,v = au,v,1 = av,u,1 = av,1,u = a1,v,u,

i.e., we again interchanged ik and in−1. �
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3. The groups QnR
The formal group law is multiplicative in this section. Let R be a commutative ring

and K = R ⊗Z Q. We assume that R is torsion free (as abelian group), i.e., R can be
identified with a subring of K.

Definition 3.1. For any integer n > 1, let us denote by QnR the R-module of power series
G in xK[[x]], for which ∂n−1(G) ∈ R[[x1, ..., xn]]. For example, Q1

R = xR[[x]]. We also set
QnR = R[[x]] if n 6 0.

Note that xR[[x]] and
∑

0<r<nK · lgr(x) are contained in QnR in view of Proposition
2.5. In Theorem 4.12 below we will see that the quotient of QnR by the second of these
subspaces can be identified with the space of additive operations on CKn

R.

Lemma 3.2. Suppose R has no nontrivial Z-divisible elements. Then

xR[[x]] ∩
( ∑

0<r<n

K · lgr(x)
)

= 0.

Proof. Consider the operator Φ on K[[x]] mapping R[[x]] to itself:

Φ(F (x)) := (x− 1) · d

dx
(F (x)) .

Observe that Φ(lgr(x)) = lgr−1(x). Suppose
∑

0<r<n qr · lgr(x) ∈ xR[[x]], where qr ∈ K
and let r be the largest index such that qr 6= 0. Applying Φr−1 to the sum we see that
qr−1 +qr lg1(x) ∈ R[[x]]. Let n ∈ N be a natural number such that nqr−1 ∈ R and nqr ∈ R.
It follows that nqr ∈ iR for every integer i > 0, i.e., nqr is a nonzero Z-divisible element
in R, a contradiction. �

Definition 3.3. Let n and m be integers. If n > 0 denote by Qn,mR the submodule of
QnR consisting of all power series G such that v(∂n−1G) > m. If n 6 0, set Qn,mR =
xmax (0,m) ·R[[x]].

Theorem 4.12 permits to describe the R-module of operations OPn,m
R in terms of the

modules Qn,mR .
Since v(∂n−1G) > n for every G ∈ QnR with n > 0, we have Qn,mR = Qn,nR = QnR if

n > m. Note also that Q1,m
R = xmax (1,m) ·R[[x]].

3.1. The groups Qn
Ẑ
. In this section we determine the structure of the modules Qn

Ẑ
over

the ring Ẑ = lim(Z/nZ). We write Q̂ for Ẑ⊗Q. Note that Q̂ = Ẑ + Q and Z = Ẑ∩Q in Q̂.

Lemma 3.4. Let b1, b2, . . . , bm ∈ Ẑ be such that bi ≡ bj (mod j) for every i divisible by
j. Then there is b ∈ Z such that b ≡ bi (mod i) for all i = 1, . . . ,m.

Proof. Let p1, p2, . . . , ps be all primes at most m. For every k, let qk = prkk be the largest
power of pk such that qk 6 m. By Chinese Remainder Theorem, we can find b ∈ Z such
that b ≡ bqk (mod qk) for all k. We claim that b works. Take any i 6 m. We prove that
b ≡ bi (mod i). Write i as the product i =

∏
q′k, where q′k is a power of pk. Clearly, q′k
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divides qk. We have

bq′k ≡ bi (mod q′k) by assumption,

bqk ≡ bq′k (mod q′k) by assumption,

b ≡ bqk (mod qk) by construction.

It follows that b ≡ bi (mod q′k) for all k, hence b ≡ bi (mod i). �

Let G(x) =
∑∞

i=1 aix
i with ai ∈ Q̂.

Lemma 3.5. For positive integers j 6 s, the xjys-coefficient of ∂G is equal to

j∑
i=0

(−1)j−i
(
s+ i

s

)(
s

j − i

)
as+i.

Proof. We have
1

s!

dsG

dxs
=
∞∑
i=0

(
s+ i

s

)
as+ix

i.

The statement follows from Proposition 2.6. �

Set bi = iai for all i > 1.

Corollary 3.6. If ∂G ∈ Ẑ[[x, y]] then bi − b1 ∈ Ẑ for all i > 1. In particular, if a1 ∈ Ẑ,

then all bi are in Ẑ.

Proof. The xyj-coefficient of ∂G is equal to bj+1 − bj. �

Proposition 3.7. Let G ∈ Q2
Ẑ

and let n > 1 be an integer such that ai ∈ Ẑ for all i < n.

Let pt < n be power of a prime integer p such that pt divides n. Then pt divides bn.

Proof. Take j = pt and s = n−pt > pt. By Lemma 3.5, the xjys-coefficient of ∂G is equal
to

j∑
i=0

(−1)j−i
(
s+ i

s

)(
s

j − i

)
as+i ∈ Ẑ.

By assumption, all terms in the sum but the last one belong to Ẑ, hence so does the last

one:
(
n
pt

)
an ∈ Ẑ. But

(
n
pt

)
an =

(
n−1
pt−1

)
bn/p

t, hence
(
n−1
pt−1

)
bn is divisible by pt. As

(
n−1
pt−1

)
is prime to p, the coefficient bn is divisible by pt (recall that

(
a+b
a

)
is relatively prime to

p if and only if there is no shift of digits in the long addition of a and b written in the
p-base). �

Proposition 3.8. We have

Q2
Ẑ

= Q̂ · lg1(x)⊕ xẐ[[x]].

Proof. Let G(x) =
∑∞

i=1 aix
i ∈ Q2

Ẑ
and set as before bi = iai. Adding a1 lg1(x) to G(x)

we may assume that a1 = 0. By Corollary 3.6, bi ∈ Ẑ for all i.
We claim that for every positive integer i < n such that i divides n we have bn ≡ bi

modulo i. We prove this by induction on n. By Lemma 3.4 applied to m = n− 1, there
is b ∈ Z such that b ≡ bi modulo i for all i < n. Subtracting b lg1(x) from G(x), we may
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assume that bi is divisible by i for all i < n, or equivalently, ai ∈ Ẑ for all i < n. We
prove that bn is divisible by i, for every i < n dividing n.

Case 1: n = pk is a power of a prime p. Then i = pt is a smaller power of p. By
Proposition 3.7, i divides bn.

Case 2: n is not power of a prime. Write n as a product of powers of distinct primes:
n = q1q2 · · · qs. By Proposition 3.7, qk divides bn for every k, hence n divides bn. In
particular, i divides bn. The claim is proved.

Let b ∈ Ẑ be such that b ≡ bn (mod n) for all n. We have

G = b lg1(x) +
∑
n>1

bn − b
n

xn ∈ Ẑ · lg1(x) + xẐ[[x]]. �

Corollary 3.9. Let G(x) = ax + . . . ∈ Q2
Ẑ

be a power series with a ∈ Ẑ. Then G(x) ∈
Ẑ · lg1(x) + xẐ[[x]].

In analogy with partial derivative with respect to the first variable - Definition 2.1, we
may define the partial derivative with respect to any other variable. In the next statement
we will use such partial derivatives for H(x, y). In particular,

(∂yH)(x, y, z) = H(x, y ∗ z)−H(x, y)−H(x, z) +H(x, 0).

Lemma 3.10. Let H(x, y) =
∑

i,j>1 ai,jx
iyj ∈ Q̂[[x, y]] be such power series that both

∂-partial derivatives of H have coefficients in Ẑ and ai,1 as well as a1,i are in Ẑ, for all i.

Then H(x, y) ∈ Ẑ[[x, y]].

Proof. Consider some j-th row of H: yj ·
∑

i>1 ai,jx
i. We know that

∑
i>1 ai,jx

i ∈ Q2
Ẑ
.

By Corollary 3.9,
∑

i>1 ai,jx
i is equal to cj · lg1(x) modulo xẐ[[x]] for some cj ∈ Ẑ.

Hence
cj
i
≡ ai,j (mod Ẑ) for all i. Applying the same considerations to the i-th column

xi ·
∑

j>1 ai,jy
j, we obtain:

cj
i
≡ di

j
(mod Ẑ),

for certain di ∈ Ẑ. Let us show that all ci’s (and dj’s) are zeros. Indeed, we have:

jcj ≡ idi (mod ij).

Hence, jcj is divisible by i, for any i and, hence cj = 0. This implies that ai,j ∈ Ẑ for any
i, j. �

Lemma 3.11. Suppose, H(x1, ..., xn) =
∑

i1,...,in>0 ai1,...,inx
i1
1 · . . . · xinn ∈ Q̂[[x1, . . . , xn]] is

such a power series that all ∂-partial derivatives of H with respect to all variables have

coefficients in Ẑ and ai1,...,in ∈ Ẑ as long as all ij’s but one are equal to 1. Then H has

coefficients in Ẑ.

Proof. Induction on n. For n = 1 there is nothing to prove. For n = 2 this is Lemma 3.10.
We can assume that n > 3. Suppose we know the statement for r < n. Let L ⊂ [1, n] be
some subset. Consider the sum of monomials of H with ij = 1, for every j ∈ L. Plugging
xj = 1 for all j ∈ L, we obtain the power series in variables xj, j 6∈ L which we will call
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the L-cell HL of H. Similarly, considering the sum of the monomials of H with the given
i1 and plugging x1 = 1 into it, we get the power series Hi1(x2, . . . , xn) which we call the
hyper-slice of H. Note, that all the cells of H satisfy the conditions of the Lemma. By

our assumption, these have all coefficients in Ẑ. That is, ai1,...,in ∈ Ẑ provided, at least,
one of ij’s is 1. The hyper-slice Hi1 satisfies the conditions of the Lemma too (note that

n > 3). Thus, Hi1 has coefficients in Ẑ and so does H. �

The following theorem is a generalization of Proposition 3.8.

Theorem 3.12. For every n > 1,

Qn
Ẑ

=
∐

0<r<n

Q̂ · lgr(x)⊕ xẐ[[x]].

Proof. The statement is clear if n 6 0. Now assume that n > 1. It follows from Lemma

3.2 that
∐

0<r<n Q̂ · lgr(x) ∩ Ẑ[[x]] = 0.
We prove the rest by induction on n. For n = 1 this is so by definition and for n = 2

this is given by Proposition 3.8.

n⇒ n+ 1: Let G ∈ Qn+1

Ẑ
. Consider the power series H(x1, ..., xn) = ∂n−1(G). Let

H(x1, ..., xn) =
∑

i1,...,in>1

ai1,...,inx
i1
1 · ... · xinn .

Note that the degree-wise smallest term of ∂n−1(lgn(x)) is (−1)nx1 · ... · xn. By sub-

tracting an appropriate Q̂-multiple of lgn(x) from G, we may assume that a1,...,1 = 0.

As ∂(H) has coefficients in Ẑ, the “ray”
∑

i>1 ai,1,...,1x
i
1 is a power series with terms

of degree > 2 whose ∂-derivative is integral. By Corollary 3.9, up to a power series in

Ẑ[[x1]], it is equal to c · lg1(x1), for some c ∈ Ẑ.
Since

∂n−1(lgn)(x1, ..., xn) = lg1(x1) · . . . · lg1(xn),

subtracting from G(x) an appropriate multiple of lgn(x), we may assume that the co-

efficients ai,1,...,1 are in Ẑ, for all i > 1. Since H is symmetric, by Lemma 3.11, all

coefficients of the power series H are in Ẑ. By the induction hypothesis, G(x) ∈ Qn =∐
0<r<n Q̂ · lgr(x) + xẐ[[x]]. �

3.2. The groups Qn. Write Qn for QnZ ⊂ QnẐ.
We define a homomorphism

ρn : Qn → Q̂n−1

for n > 1 as the composition (see Theorem 3.12)

Qn ↪→ Qn
Ẑ

=
∐

0<r<n

Q̂ · lgr(x)⊕ xẐ[[x]]
proj−−→

∐
0<r<n

Q̂ · lgr(x) ' Q̂n−1.

We will show that the map ρn is surjective.
Consider the power series

l̃gr(x) = (−1)r
∑

0<i1<...<ir

xir

i1 · ... · ir
≡ (−1)r

xr

r!
(mod xr+1).
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For a sequence of a = (ai)i>1 in Ẑ let us denote by a · l̃gr(x) ∈ Q̂[[x]] the power series

(−1)r
∑

0<i1<...<ir

ai1 · xir
i1 · ... · ir

≡ (−1)r
a1

r!
xr (mod xr+1).

If all ai ∈ Z, we have a · l̃gr(x) ∈ Q[[x]].

Lemma 3.13. For every sequence a, we have

(x− 1) · d

dx

(
a · l̃gr(x)

)
= a · l̃gr−1(x).

Proof. Write (−1)ra · l̃gr(x) =
∑
bix

i and (−1)r−1a · l̃gr−1(x) =
∑
cix

i. We need to prove
that (m+ 1)bm+1 −mbm = cm for every m. We have

(m+ 1)bm+1 =
∑

0<i1<...<ir−1<m+1

ai1
i1 · ... · ir−1

.

The sum of the terms with ir−1 < m is equal to mbm. The sum of the terms with ir−1 = m
coincides with cm. �

In particular, Φ(l̃gr(x)) = l̃gr−1(x). Note that we also have Φ(lgr(x)) = lgr−1(x) and

series l̃gr(x) and lgr(x) have no constant terms for r > 1. Since the kernel of Φ consists

of constants only and l̃g1(x) = lg1(x), by definition, it follows by induction on r that

l̃gr(x) = lgr(x), for all r. In particular, we can define the product a · lgr(x) as above.

Lemma 3.14. For every c ∈ Ẑ and every integer r > 0 there is a sequence c̃ = (ci)i>1 of
integers ci ∈ Z such that ci ≡ c (mod i) for all i and

(c− c̃) · lgi(x) ∈ Ẑ[[x]]

for all i = 1, . . . , r, where c− c̃ is the sequence (c− ci)i>1.

Proof. Take any collection c̃ = (ci)i>1 of integers. Note that for every i > 1 and k =
1, . . . , r, the xi+k−1-coefficient of c̃ · lgk(x) is a linear combination of c1, . . . , ci with rational
coefficients where the ci-coefficient is equal to (−1)k/(i(i+ 1) . . . (i+ k − 1)).

We will modify c1, c2, . . . inductively to make all coefficients of the power series

Gk = (c− c̃) · lgk(x)

integral for all k = 1, . . . , r. Let c1 be an integer congruent to c modulo r!, so the xk-
coefficient of Gk is integer for every k = 1, . . . , r. Suppose we have modified c1, . . . cn so
that the xj-coefficient of Gk is integral for all k = 1, . . . , r and j 6 n+ k − 1.

By induction on k = 1, . . . , r, we will modify cn+1 to make integral the xn+k-coefficient
of Gk. Note that the integral xj-coefficients of Gk for j 6 n + k − 1 will not change. If
k = 1 we don’t modify cn+1: the power series G1 is already integral.
k ⇒ k + 1: By Lemma 3.13,

(x− 1) · dGk+1

dx
= Gk.

Hence, if Gk =
∑

i>k bix
i and Gk+1 =

∑
i>k+1 aix

i, then

an+l+1 = −1
n+l+1

(bk + . . .+ bn+l)
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for all l.
By induction, bk, . . . , bn+k are integral. Recall that these are linear combinations of the

c′i’s, where c′i = c− ci and c′n+1 appears only in bn+k. We modify cn+1 by adding to cn+1

the integer t(n + 1)(n + 2) . . . (n + k) with some t ∈ Z. Note that bk, . . . , bn+k−1 remain
unchanged and bn+k changes to bn+k + t, so it stays integral. Choose t to make an+k+1

integral.
Note that c′n+1 comes with coefficient (−1)l/((n + 1) . . . (n + l)) in the xn+l-coefficient

of Gl. Since (n + 1) . . . (n + l) divides (n + 1) . . . (n + k) when l 6 k, the xn+l-coefficient
of Gl remains integral for l 6 k. �

Now we prove that the map ρn : Qn → Q̂n−1 is surjective. Since q · lgr ∈ Qn for all q ∈ Q
and r = 1, . . . , n − 1, we have Qn−1 ⊂ Im(ρn). It suffices to show that Ẑn−1 ⊂ Im(ρn).

Choose cr ∈ Ẑ for r = 1, . . . , n − 1. By Lemma 3.14, there are sequences of integers c̃r
such that (cr − c̃r) · lgr(x) ∈ Ẑ[[x]].

As

c̃r · lgr(x) = cr · lgr(x)− (cr − c̃r) · lgr(x),

we have ρn
(∑

0<r<n c̃r · lgr(x)
)

= (cr)r=1,...,n−1 proving that ρn is surjective.

Note that the kernel of ρn is equal to xẐ[[x]]∩Q[[x]] = xZ[[x]]. Thus, we have an exact
sequence

(3.15) 0→ xZ[[x]]→ Qn ρn−→ Q̂n−1 → 0.

We have proved that if n > 1, the group Qn is generated by xZ[[x]] and the power

series (c− c̃) · lgr(x) as in Lemma 3.14, where c ∈ Ẑ and r = 1, . . . , n− 1.

The power series in Qn can be approximated by polynomials as follows:

Lemma 3.16. For every m > 0 and n, we have

Qn ⊂ Z[x]6m−1 +
∑

0<r<n

Q · lgr(x) + xmQ[[x]],

where Z[x]6m−1 is the group of integral polynomials of degree at most m− 1.

Proof. We may assume that n > 1. In view of (3.15), the group Qn modulo

xZ[[x]] +
∑

0<r<n

Q · lgr(x)

is generated by power series of the form c̃ · lgr(x), where r = 1, . . . , n − 1 and c̃ is the

collection of integers such that ci ≡ c (mod i) for all i for an element c ∈ Ẑ as in Lemma
3.14.

Let d be an integer congruent to c modulo the least common multiple of the denom-
inators of the xi-coefficients of lgr(x) for all i = 1, . . . ,m − 1. Then the xm-truncation
F of (c̃ − d) · lgr(x) is contained in Z[x]6m−1 and c̃ · lgr(x) is congruent to F modulo
Z · lgr(x) + xmQ[[x]]. �
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4. Operations

Let k be a field of characteristic 0 and write Smk for the category of smooth quasi-
projective varieties over k. An oriented cohomology theory A∗ over k is a functor from
Smop

k to the category of Z-graded commutative rings equipped with a push-forward struc-
ture and satisfying certain axioms (see [13, Definition 2.1]). We write

A∗(X) =
∐
n∈Z

An(X)

for a variety X in Smk and let A∗(k) denote the coefficient ring A∗(Spec k).
Let A∗ be an oriented cohomology theory. There is a (unique) associated formal group

law

FA(x, y) =
∑
i,j>0

aAi,jx
iyj = x+ y + a1,1 · xy + higher terms ∈ A∗(k)[[x, y]]

that computes the first Chern class of the tensor product of two line bundles L and L′

(see, for example, [9, p.3 and Section 3.9], [10, Section 2.7], [8, §1.1] or [13, §2.3]):

cA1 (L⊗ L′) = FA(cA1 (L), cA1 (L′)).

Example 4.1. The Chow theory CH∗ takes a smooth variety X to the Chow ring CH∗(X)
of X. We have CH∗(k) = Z and FCH(x, y) = x+ y is the additive group law.

Example 4.2. (see [8, Example 1.15]) The graded K-theory K∗gr takes X to the Laurent

polynomial ring K0(X)[t, t−1] (graded by the powers of the Bott element t of degree −1)
over the Grothendieck ring K0(X) of X. We have K∗gr(k) = Z[t, t−1] and FKgr(x, y) =
x+ y − txy is the multiplicative group law.

Example 4.3. (see [3] and [5]) The connective K-theory takes X to the ring CK∗(X) of
X. We have CK∗(k) = Z[t] and FCK(x, y) = x+ y − txy.

All cohomology theories in these examples are of rational type (see [13, §4.1] and [8]).
If A∗ is an oriented cohomology theory and R a commutative ring, the functor A∗R

defined by A∗R(X) = A∗(X) ⊗Z R is also an oriented cohomology theory with values in
the category of graded R-algebras.

Definition 4.4. Let A∗ and B∗ be two oriented cohomology theories. An R-linear opera-
tion G : A∗R → B∗R is a morphism between functors A∗R and B∗R considered as contravariant
functors from Smk to the category of R-modules (cf. [13, Definition 3.3]). Note that G
may not respect the gradings on A∗R and B∗R.

Let n,m ∈ Z. A morphism G : AnR → Bm
R between contravariant functors from Smk to

the category of R-modules can be viewed as an R-linear operation via the obvious compo-
sition A∗R →→ AnR → Bm

R ↪→ B∗R. All such operations form an R-module OPn,m
R (A∗, B∗).

The composition of operations yields an R-linear pairing

OPn,m
R (A∗, B∗)⊗R OPm,r

R (B∗, C∗)→ OPn,r
R (A∗, C∗).

In particular, OPn,n
R (A∗) := OPn,n

R (A∗, A∗) has a structure of an R-algebra.
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Example 4.5. (see [3] and [5]) Multiplication by t yields an operation CKn+1
R → CKn

R

that is an isomorphism if n < 0. There are graded R-linear operations

CK∗R → CH∗R and CK∗R → (K∗gr)R.

The sequence

CKn+1(X)
t−→ CKn(X)→ CHn(X)→ 0

is exact for every n and X.
If n > 0 the image of the homomorphism CKn(X) → Kn

gr(X) = K0(X)t−n ' K0(X)
is generated by the classes of coherent OX-modules with codimension of support at least
n. If n 6 0 this map is an isomorphism.

The following fundamental theorem was proved in [13, Theorem 6.2].

Theorem 4.6. Let A∗ be a cohomology theory of rational type and B∗ be any oriented
cohomology theory over k. Let R be a commutative ring. Then there is an R-isomorphism
between the set OPn,m

R (A∗, B∗) of R-linear operations G : AnR → Bm
R and the set consisting

of the following data {Gl, l ∈ Z>0}:
Gl ∈ HomR

(
An−l(k)⊗R,B∗(k)[[x1, . . . , xl]](m) ⊗R

)
satisfying

(1) Gl(α) is a symmetric power series for all l and α ∈ An−l(k)⊗R,
(2) Gl(α) is divisible by x1 · . . . · xl for all l and α,
(3) Gl(α)(y +B z, x2, . . . , xl) =

∑
i,j Gi+j+l−1(α · aAi,j)(y×i, z×j, x2, . . . , xl), for l > 0,

where aAi,j are the coefficients of the formal group law of A∗ and the sum y+B z is

taken with respect to the formal group law of B∗ (here t×i denotes i copies of t).

Here B∗(k)[[x1, . . . , xn]](m) is the subgroup in B∗(k)[[x1, . . . , xn]] consisting of all homo-
geneous degree m power series (all the xi’s have degree 1).

The functions Gl are determined by the operation G as follows (see [13, §5]). Write Li
for the pull-back of the canonical line bundle on P∞ with respect to the i-th projection
(P∞)l → P∞. Then

(4.7) Gl(α)
(
cB1 (L1), . . . , cB1 (Ll)

)
= G

(
α · cA1 (L1) · . . . · cA1 (Ll)

)
,

where c1 is the first Chern class.

Remark 4.8. Theorem 4.6 was proved in [13, Theorem 6.2] in the case R = Z. The
general case readily follows. Indeed, multiplication by an element r ∈ R yields operations
r : AnR → AnR and r : Bm

R → Bm
R . An additive operation G : AnR → Bm

R is R-linear if and
only if G ◦ r = r ◦G for all r ∈ R. The latter is equivalent to the equality Gl ◦ r = r ◦Gl

for all l, i.e., that all Gl are R-linear.

Example 4.9. (see [13, §6.3]) Let A∗ be a cohomology theory of rational type and m ∈ Z.
Consider the power series [m](x) := x +A . . . +A x ∈ A∗(k)[[x]] (m times). The Adams
operation ΨA

m ∈ OP∗,∗R is determined by (Gl)l>0, where Gl is multiplication by the power
series [m](x1) · . . . · [m](xl) (l factors), in particular, G0 is the identity. The Adams
operations satisfy the relations

ΨA
k ◦ΨA

m = ΨA
km = ΨA

m ◦ΨA
k

for all k and m.
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4.1. Operations in connective K-theory. We would like to determine the R-module
OPn,m

R of all R-linear operations G : CKn
R → CKm

R for any pair of integers n and m. By
Theorem 4.6, G is given by a collection of power series Gl(α) ∈ R[t][[x1, . . . , xn]](m), where

α ∈ CKn−l
R (k) and l > 0, satisfying conditions of the theorem. The group CKn−l

R (k) is
trivial if l < n and CKn−l

R (k) = R · tl−n otherwise. (Recall that t has degree −1.) In the
first case Gl(α) = 0 and in the latter case the power series Gl(α) are uniquely determined
by Gl(t

l−n). We will simply write Gl for Gl(t
l−n).

If l > max(1, n), condition (3) in Theorem 4.6 reads as follows (here z̄ denotes z2, ..., zl):

Gl(x+ y − txy, z̄) = Gl(x, z̄) +Gl(y, z̄)−Gl+1(x, y, z̄).

In other words,

(4.10) Gl+1 = −∂tGl,

where the derivative ∂t is taken with respect to FCK(x, y) = x + y − txy. Thus, Gl+1 is
uniquely determined by Gl.

If n > 0, the operationG yields the double-symmetric power seriesGn ∈ R[t][[x1, . . . , xn]](m)

that is divisible by x1·. . .·xn. Conversely, if H ∈ R[t][[x1, . . . , xn]](m) is a double-symmetric
power series divisible by x1 · . . . · xn, then setting Gn+i := (−1)i∂it(H) for all i > 0, we
get a sequence of power series that determines an R-linear operation G (see Observation
2.3).

If n 6 0 the operation G is determined by G0 ∈ R[t]m and power series G1 ∈ R[t][[x]]m
that is uniquely determined by (G1)|t=1 ∈ xmax (1,m)R[[x]]. If m > 0 then G0 = 0,
otherwise G0 ∈ R · t−m and we can combine G0 and G1 together into the power series
H = (G0 −G1)|t=1 ∈ R[[x]].

If L ∈ R[t][[x1, . . . , xn]](m), then v(L|t=1) > m. Conversely, for every J ∈ R[[x1, . . . , xn]]
with v(J) > m, there is a unique homogeneous power series L ∈ R[t][[x1, . . . , xn]] of
degree m such that L|t=1 = J . If L is double-symmetric and divisible by x1 · . . . · xn, then
so is L|t=1 (with respect to the derivative ∂ given by the formal group law x + y − xy)
and conversely.

We have proved the following statement.

Proposition 4.11. Let R be a commutative ring and let n and m be two integers. An
R-linear operation G : CKn

R → CKm
R is determined by

(1) A power series H ∈ xmax (0,m)R[[x]] if n 6 0. In this case G0 = H(0)·t−m and G1 ∈
xR[t][[x]](m) is a unique homogeneous power series such that H = (G0 − G1)|t=1

and Gl = (−1)l−1∂l−1
t (G1) for l > 1,

(2) A double-symmetric power series J ∈ R[[x1, . . . , xn]] divisible by x1 · . . . · xn such
that v(J) > m if n > 0. In this case Gl = 0 for l = 0, . . . , n − 1 and Gn ∈
R[t][[x1, . . . , xn]](m) is a unique homogeneous power series such that Gn|t=1 = J

and Gl = (−1)l−n∂l−nt (Gn) for l > n.

Let R be a commutative ring that is torsion free as abelian group. Define an R-module
homomorphism (see Definition 3.3)

λn,m : Qn,mR → OPn,m
R
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as follows. If n 6 0, λn,m(H) for H ∈ Qn,m = xmax (0,m) · R[[x]] is the operation given
by Proposition 4.11(1). If n > 0, λn,m(H) for H ∈ Qn,m is the operation given by the
polynomial J = (−1)n∂n−1(H) as in Proposition 4.11(2).

The following theorem determines the R-module of operations OPn,m
R in terms of the

modules Qn,mR of power series in one variable.

Theorem 4.12. Let R be a commutative ring that is torsion free as abelian group and
K = R ⊗ Q. The homomorphisms λn,m yield an R-linear isomorphisms between OPn,m

R

and the factor module of Qn,mR by the K-subspace spanned by lgi(x), i = 1, . . . , n− 1. In

particular, OPn,m
R ' xmax (0,m) ·R[[x]] if n 6 0 and OP1,m

R ' xmax (1,m) ·R[[x]].

Proof. The surjectivity of λn,m follows from Propositions 2.9 and 4.11. The kernel of λn,m
is determined in Proposition 2.5. �

Corollary 4.13. The map λn,m yields an isomorphism (see Definition 3.1)

QnR ∩ xmax (0,n,m) ·K[[x]]
∼→ OPn,m

R .

Proof. The case m 6 n follows from the theorem. Otherwise, by Observation 2.7,
v(∂n−1xi) = i for all i > n. �

Let n,m ∈ Z and i, j non-negative integers. We define an R-linear homomorphism

Qn,mR → Qn+i,m−j
R

as follows. If n 6 0,m 6 0 and n+ i > 0 the map

Qn,mR = R[[x]]→ xR[[x]] ↪→ Qn+i,m−j
R

takes H to ∂0(H) = H − H(0). Otherwise, Qn,mR ⊂ Qn+i,m−j
R , and the map we define is

the inclusion.
Multiplication by tk yields an operation CK∗+kR → CK∗R and therefore, the homomor-

phisms OPn,m
R → OPn+i,m−j

R for all i, j > 0.

Proposition 4.14. The diagram

Qn,mR
λn,m

��

// Qn+i,m−j
R

λn+i,m−j

��

OPn,m
R

// OPn+i,m−j
R ,

is commutative.

Proof. The case i = 0 follows directly from the definition. It remains to consider the case
i = 1 and j = 0.

Suppose first that n > 0. Let H ∈ Qn,mR ⊂ Qn+i,m−j
R and G = λn,m(H) ∈ OPn,m

R . In

particular, Gn|t=1 = (−1)n−1∂n−1(H). Denote by G′ the image of G in OPn+1,m
R . Write

Li for the pull-back of the canonical line bundle on P∞ with respect to the i-th projection
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(P∞)n+1 → P∞. The power series G′n+1 is determined by the equality (see (4.7))

G′n+1(c1(L1), . . . , c1(Ln+1)) = G′(c1(L1) · . . . · c1(Ln+1))

= G(tc1(L1) · . . . · c1(Ln+1))

= Gn+1(t)(c1(L1), . . . , c1(Ln+1))

= Gn+1(c1(L1), . . . , c1(Ln+1)),

hence G′n+1 = Gn+1. It follows from (4.10) that

G′n+1|t=1 = Gn+1|t=1 = −(∂tGn)|t=1 = −∂(Gn|t=1) = −∂((−1)n∂n−1(H)) = (−1)n+1∂n(H),

and therefore, G′ = λn+1,m(H).

If n < 0 or if n = 0 and m > 0 we have Qn,mR ⊂ Qn+1,m
R and the statement follows

immediately from the definitions. It remains to consider the case n = 0 and m 6 0. Let
H ∈ Q0,m

R = R[[x]] and G = λ0,m(H) ∈ OP0,m
R . In particular, H = (G0−G1)|t=1. Denote

by G′ the image of G in OP1,m
R . A computation as above shows that G′1 = G1. Hence

G′1|t=1 = G1|t=1 = −(H −H(0))

Therefore, G′ = λ1,m(H −H(0)) and H −H(0) is the image of H in Q1,m
R . �

Corollary 4.13 and Proposition 4.14 yield:

Corollary 4.15. If m 6 n then the map OPn,n
R → OPn,m

R is an isomorphism.

In particular, there is a canonical ring homomorphism

OPn,n
R → OPn+1,n

R

∼→ OPn+1,n+1
R .

Example 4.16. Note that the identification OP0,0
R = R[[x]] is not a ring isomorphism.

The corresponding ring structure on R[[x]] will be described in Section 4.5. The natural
surjective homomorphism

R[[x]] = OP0,0
R → OP1,1

R = xR[[x]]

takes a power series G(x) to G(x)−G(0). Its kernel is generated by 1. The complementary
operation G(x) 7→ G(0) on CK0 = K0 is an idempotent that takes the class of a vector
bundle E to rank(E) · 1, where 1 is the identity in K0. In particular, we get a natural
R-algebra isomorphism OP0,0

R ' R×OP1,1
R .

4.2. Adams operations. Let R be a torsion free ring. We define the composition

Adn : R[[x]]→ QnR
λn,n−−→ OPn,n

R ,

where the first map is the identity if n 6 0 and it is the composition of the projection
∂0 : R[[x]] → xR[[x]] and the inclusion of xR[[x]] into QnR. The image of Adn is denoted
OPn,n

R,cl and called the submodule of classical operations.

If n 6 0, we have OPn,n
R,cl = OPn,n

R = R[[x]]. If n > 1 it follows from Lemma 3.2
and Theorem 4.12 that in the case R has no nontrivial Z-divisible elements (for example.

R = Z or Ẑ), the restriction of Adn on xR[[x]] is injective and therefore, OPn,n
R,cl ' xR[[x]].
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Let m be an integer. In the notation of the Example 4.9, [m](x) = (1 − (1 − tx)m)/t.
In view of Proposition 4.11, the Adams operations Ψm ∈ OPn,n

R,cl are defined by

(4.17) Ψm = Adn((1− x)m).

Since the power series (1 − x)m generate R[[x]] as topological R-module in the x-adic
topology, the group of classical operations OPn,n

R,cl is topologically generated by the Adams
operations.

By Proposition 4.14, the operations Ψk are compatible with the canonical homomor-
phisms OPn,n

R → OPn+1,n+1
R .

For every k > 0 consider additive operations Υk =
∑k

i=0(−1)i
(
k

i

)
Ψi. Then Υk =

λn,n(xk) if k > 0. Recall that Υ0 = 0 if n > 1. It follows that the R-module OPn,n
R,cl

consists of all linear combinations
∑

k>0 αk · Υk with αk ∈ R (cf. [13, Theorem 6.8]). If
R has no nontrivial Z-divisible elements, the coefficients αk, (where k > 0 if n 6 0 and
k > 1 if n > 1) are uniquely determined by the operation.

4.3. Operations over Ẑ. In Section 3 we determined the modules QnR over the ring

R = Ẑ. Theorems 3.12 and 4.12 yield:

Theorem 4.18. There are canonical isomorphisms

OPn,n

Ẑ
= OPn,n

Ẑ,cl
'
{

Ẑ[[x]], if n 6 0;

xẐ[[x]], if n > 1.

In particular, the natural map OPn,n

Ẑ
→ OPn+1,n+1

Ẑ
is an isomorphism for all n > 1.

It follows from Theorem 4.12 that for any two integers n and m,

OPn,m

Ẑ
'
{
xmax (0,m) · Ẑ[[x]], if n 6 0;

{G ∈ xẐ[[x]] | v(∂n−1(G)) > m}, if n > 1.

4.4. Operations over Z. Now we turn to the case R = Z and for simplicity write OPn,m

for OPn,m
Z .

Corollary 4.13 implies that the natural homomorphism OPn,m → OPn,m

Ẑ
is injective.

In particular, we can identify OPn,n with a subgroup of OPn,n

Ẑ
= xẐ[[x]] for all n > 1, so

we have a sequence of subgroups

OP1,1 ⊂ OP2,2 ⊂ . . . ⊂ OPn,n ⊂ . . . ⊂ xẐ[[x]].

Recall (Theorem 4.12) that OPn,m ' xmax (0,m) · Z[[x]] if n 6 0 and OPn,m ' OPn,n if
m 6 n by Corollary 4.15.

Let m > n > 1. By Theorem 4.12, we can identify OPn,m with the factor group
of Qn,m by the subgroup

∑n−1
r=1 Q · lgr(x). It follows that the map ρn in (3.15) yields a

homomorphism

OPn,m → (Q̂/Q)n−1 = (Ẑ/Z)n−1.

By the proof of Lemma 3.16, this map is surjective. Its kernel is denoted OPn,m
cl and called

the subgroup of classical operations. In the case n = m this group coincides with the group
of classical operation defined earlier. In view of Corollary 4.13, OPn,m

cl is identified with

the group
(∐n−1

r=1 Q · lgr(x) + xZ[[x]]
)
∩ xmQ[[x]].



OPERATIONS IN CONNECTIVE K-THEORY 21

We view the group xZ[x]6m−1 of integral polynomials of degree at most m−1 as a lattice
in the Q-space xQ[[x]]/(xm). Denote by Ln,m the intersection of xZ[x]6m−1 with the image
in xQ[[x]]/(xm) of the space

∐n−1
r=1 Q · lgr(x). Then Ln,m is a subgroup of xZ[x]6m−1 of

rank n− 1.
We get the following description of the group of classical operations:

OPn,m
cl = Ln,m ⊕ xmZ[[x]].

If m = n > 1, the map of Q-spaces is an isomorphism and Ln,n = xZ[x]6n−1. It follows
that

OPn,n
cl = xZ[[x]].

Recall that OPn,n
cl = OPn,n = Z[[x]] if n 6 0 and OPn,m = OPn,n if m 6 n.

We summarize our results in the following statement.

Theorem 4.19. The natural homomorphism OPn,m → OPn,m

Ẑ
is injective. For any

integers m > n > 1 there is an exact sequence

0→ OPn,m
cl → OPn,m → (Ẑ/Z)n−1 → 0,

where OPn,m
cl = Ln,m ⊕ xmZ[[x]]. Moreover, OPn,n

cl = xZ[[x]].

Remark 4.20. Similar arguments yield the following formula for m > n > 1:

OPn,m

Ẑ
= Ln,m

Ẑ
⊕ xmẐ[[x]],

where Ln,m
Ẑ

= Ln,m ⊗ Ẑ.

4.5. Composition. The R-module homomorphism Adn : R[[x]] → OPn,n
R is not a ring

homomorphism. In this section we introduce a new product on R[[x]] so that Adn becomes
an R-algebra homomorphism.

Let H,H ′ ∈ R[[x]], write H ′ =
∑

i>0 aix
i and define the composition in H and H ′ by

the formula

H ◦H ′ = a0 ·H(0) +
∑
i>1

(−1)iai · (∂i−1H)(x×i).

The composition ◦ is distributive in H and H ′ with respect to addition. (Note that the
usual substitution of power series is only one-sided distributive.) The polynomial 1 − x
is the identity for the composition: (1 − x) ◦ H = H = H ◦ (1 − x) for all H. We view
R[[x]] as an R-algebra with product given by the composition.

Lemma 4.21. The maps Adn : R[[x]]→ OPn,n
R are R-algebra homomorphisms.

Proof. In view of Proposition 4.14 it suffices to consider the case n = 0. Let H,H ′ ∈
R[[x]] and write H ′ =

∑
i>0 aix

i. If G0, G1, . . . ∈ R[t][[x]] is the sequence of power series
corresponding to Ad0(H) (see Proposition 4.11), then G0 = H(0) ∈ R, H = (G0−G1)|t=1

and Gi = (−1)i−1∂i−1
t (G1) for i > 1. Note that G1(t, x) = −H(tx) +H(0).

Write L for the canonical line bundle on P∞. By (4.7) and (4.10),

Ad0(H)(c1(L)i) = Gi(c1(L)×i) = (−1)i−1(∂i−1
t G1)(c1(L)×i) = (−1)i(∂i−1H)(tc1(L)×i).
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Therefore, we have

(Ad0(H) ◦ Ad0(H ′))(c1(L)) = −Ad0(H)(
∑
i>1

aic1(L)i)

= −
∑
i>1

ai(Ad0(H))(c1(L)i)

=
∑
i>1

(−1)i−1ai · (∂i−1H)(tc1(L)×i).

On the other hand, write H ◦H ′ = (G′′0 −G′′1)|t=1, where G′′0 = a0 ·H(0) and

G′′1 =
∑
i>1

(−1)i−1ai · (∂i−1H)(tx×i).

It follows that

Ad0(H◦H ′)(c1(L)) = G′′1(c1(L)) =
∑
i>1

(−1)i−1ai·(∂i−1H)(tc1(L)×i) = (Ad0(H)◦Ad0(H ′))(c1(L)).

If r ∈ R = CK0
R(k), then

Ad0(H ◦H ′)(r) = G′′0 · r = a0 ·H(0) · r = Ad0(H)(a0 · r) = (Ad0(H) ◦ Ad0(H ′))(r).

Overall, Ad0(H ◦H ′) = Ad0(H) ◦ Ad0(H ′). �

The polynomials Am := (1 − x)m satisfy Adn(Am) = Ψm in OPn,n
R . It follows from

Lemma 4.21 and Example 4.9 that

Ak ◦ Am = Akm = Am ◦ Ak
for all k and m.

Proposition 4.22. Let R be a commutative ring and K a Q-algebra. Then

(1) The composition ◦ in R[[x]] is commutative.
(2) The power series lgr(x) ∈ K[[x]], r > 0, are orthogonal idempotents that partition

the identity, that is, lgn(x) ◦ lgm(x) = δn,m · lgn(x) and 1− x =
∑

r>0 lgr(x).

Proof. (1) It follows from the definition that the power series xn ◦ G and G ◦ xn are
contained in xnR[[x]] for all n and G. Let H,G ∈ R[[x]]. Fix an integer n > 0 and write
H = H1 +H2 and G = G1 +G2, where H1 and G1 are linear combinations of the Adams
polynomials Ai and H2, G2 ∈ xnR[[x]]. As H1 and G1 commute, the remark above yields
H ◦G−G ◦H ∈ xnR[[x]]. Since this holds for all n, we have H ◦G = G ◦H.

(2) The iterated derivative ∂i(lgn(x)) is zero if i > n and

(∂n−1 lgn)(x1, . . . , xn) =
n∏
i=1

log(1− xi).

It follows that lgn(x) ◦ xm = 0 if m > n and

lgn(x) ◦ xn = (−1)n(∂n−1 lgn)(x×n) = (−1)n(log(1− x))n = (−1)nn! lgn(x).

This calculation together with the first part of the proposition and the fact that the lowest
term of lgr(x) is xr/r! show that the power series lgr(x) are orthogonal idempotents.

Finally,
∑

n>1 lgn(x) = elg1(x) = (1− x). �
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Since lgr(x) are orthogonal idempotents which form a topological basis of the power
series ring, from continuity and distributivity of ◦ we obtain that our composition is
associative.

Theorems 4.18 and 4.19 together with Proposition 4.22 yield the following corollary.

Corollary 4.23. The rings OPn,n

Ẑ
and OPn,n are commutative.

Let K be a Q-algebra. We view K[[x]] as a ring with respect to addition and compo-
sition. Let G ∈ K[[x]] and write G =

∑
i>0 ai lgi for (unique) ai ∈ K. Denote as K [n,∞)

the ring of K-sequences, parametrized by integers > n under point-wise operations. It
follows from Proposition 4.22 that the map

(4.24) b : K[[x]]→ K [0,∞),

taking G to the sequence (ai)i>0 is a ring isomorphism. It takes xnK[[x]] onto K [n,∞) for
every n.

Example 4.25. The image of the polynomial Am(x) = (1−x)m is equal to (1,m,m2, . . .).

Indeed substituting y = log(1 − x) in the equality emy =
∑

i>0
miyi

i!
yields Am(x) =∑

i>0m
i lgi(x).

4.6. Topology. In this section we introduce three topologies on Ẑ[[x]].

Proposition 4.26. Let G ∈ OPn,n
R and m > n. The following conditions are equivalent:

(1) G ∈ Im(OPn,m
R → OPn,n

R );
(2) G is zero on every smooth variety of dimension < m.

Proof. (1)⇒ (2) Since CKm
R (X) = 0, for any variety X of dimension < m, the operation

G is zero on X.
(2) ⇒ (1) Let n > 1. By Proposition 4.11(2), the operation G is given by a double-

symmetric power series H(x1, ..., xn) ∈ R[[x1, ..., xn]](n) such that H = (Gn)|t=1. We need
to prove that v(H) > m. We will show that any monomial xr = xr11 · . . . · xrnn of H with∑

i ri < m is zero.
Consider Xr :=

∏
i P

ri . This is a variety of dimension < m. Write xi for the first Chern
class in CK1

R(Xr) of the pull-back of the canonical line bundle on Pri with respect to the
i-th projection Xr → Pri . By formula (4.7),

0 = G(x1 · . . . · xn) = Gn(x1, . . . , xn) ∈ CKn
R(Xr).

By Projective Bundle Theorem,

CKn
R(Xr) = R[[x1, . . . , xn]]/(xr1+1

1 , . . . , xrn+1
n ).

Therefore the monomial xr of H is trivial.
The case n 6 0 follows similarly (and easier) from Proposition 4.11(1). �

Corollary 4.27. Let d > 0 be an integer and G ∈ OPn,n. Then there is a Z-linear
combination G′ ∈ OPn,n of the Adams operations Ψk with k = 0, . . . , d such that G and
G′ agree on CKn(X) for all smooth varieties X of dimension 6 d.
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Proof. By Lemma 3.16, applied to m = d + 1, there is a polynomial G′ ∈ Z[x] of degree
at most d such that G−G′ ∈

∑
0<r<n Q · lgr(x) + xd+1Q[[x]]. Let X be a smooth variety

of dimension 6 d. As v(∂n−1(G − G′)) > d + 1, in view of Theorem 4.12, G − G′ ∈
Im(OPn,m → OPn,n). Therefore, by Proposition 4.26, G−G′ is trivial on X. Finally, G′

is a linear combination of the Adams polynomials Ak with k = 0, . . . , d. �

Definition 4.28. We introduce three topologies on Ẑ[[x]]:

• τs is generated by the neighborhoods of zero Um consisting of power series divisible
by xm, for some m > 0, i.e., τs is the x-adic topology.
• τw is generated by the neighborhoods of zero Um + VN , where VN consists of all

power series divisible by some N ∈ N.
• τo is generated by the neighborhoods of zero Wm consisting of power series, where

the respective operation acts trivially on varieties of dimension < m.

Recall, that a topology ϕ is coarser than the topology ψ, denoted ϕ 6 ψ, if any set
open with respect to ϕ is also open with respect to ψ.

Proposition 4.29. τw 6 τo 6 τs.

Proof. Since v(G(x)) > m implies v(∂n−1G(x)) > m and hence G ∈ Im(OPn,m

Ẑ
→ OPn,n

Ẑ
)

by Theorem 4.12. Therefore, it follows from Proposition 4.26 that τo 6 τs.

The topology τw is generated by the neighborhoods of zero UN,m = (N, xm) ⊂ Ẑ[[x]],

and τo is generated by the neighborhoods of zero Wk = {G ∈ Ẑ[[x]] | v(∂n−1(G)) > k} by
Proposition 4.26. We need to show that for every N and m there is k with Wk ⊂ UN,m.

We have similar compact (Hausdorff) topology τw on Ẑ[[x1, . . . , xn]] so that the map

∂n−1 is continuous in τw. Note that the map ∂n−1 : Ẑ[[x]] → Ẑ[[x1, . . . , xn]] is injective

and the induced map from Ẑ[[x]] to the image of ∂n−1 is a homeomorphism (since the

image of every closed subset is closed as Ẑ[[x]] is compact and the target is Hausdorff).

In particular, if Gk ∈ Ẑ[[x]] is a sequence such that the sequence ∂n−1(Gk) converges to

0, then the sequence Gk converges to 0 in Ẑ[[x]].
Now we prove that for every N and m there is k with Wk ⊂ UN,m. Assume on the

contrary that for every k we can find Gk ∈ Wk, but Gk /∈ UN,m. Then ∂n−1(Gk) converges

to 0, but Gk does not converge to 0 in Ẑ[[x]], a contradiction. �

Observation 4.30. 1) For n = 1, τo = τs;
2) For n > 1, τw 6= τo 6= τs.

Proof. 1) This follows from Proposition 4.26, since n = 1.

2) For n > 1, Wm contains, in particular, all power series
∑

i aix
i ∈ Ẑ[[x]], where

a1 = iai, for all 0 < i < m, which is not contained in any Ul, for l > 1. Thus, τo 6= τs.

For m > n > 1, Wm/Um is a free Ẑ-module of rank (n − 1), while (Um + VN)/Um is a

free Ẑ-module of rank (m− 1). Hence, τw 6= τo. �

We view OPn,n and OPn,n

Ẑ
as the topological rings for the topologies τw, τo and τs

respectively via the inclusions OPn,n ↪→ OPn,n

Ẑ
↪→ Ẑ[[x]].

Note that the x-adic topology τs can be defined on R[[x]] for every R.
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Consider the restriction b : R[[x]] → K [0,∞) of the map (4.24). We view K [0,∞) as a
topological ring with the basis of neighborhoods of zero given by the ideals K [n,∞) for all
n > 0, so that the map is continuous.

Proposition 4.31. The image of the map b : R[[x]]→ K [0,∞) is contained in R[0,∞).

Proof. By Example 4.25, the image of the Adams polynomial Am under the map (4.24) is
contained in R[0,∞). But the set of all linear combinations of Adams polynomials is dense
in R[[x]] in the topology τs. The statement follows since R[0,∞) is closed in K [0,∞). �

Proposition 4.31 identifies the ring OPn,n

Ẑ
⊂ Ẑ[[x]] with a subring of Ẑ[n,∞) and OPn,n

with a subring of Z[n,∞) if n > 0. Indeed, if n > 1 the kernel of the composition

Qn
Ẑ

λn,n−−→→ OPn,n

Ẑ

b−→ Ẑ[0,∞) → Ẑ[n,∞)

is generated by lgr with 0 < r < n and all these logarithms are contained in the kernel of
λn,n.

The ring OPn,n is not a domain: we have (Ψ1 + Ψ−1)(Ψ1 −Ψ−1) = 0. Let

e± = 1
2
(Ψ1 ±Ψ−1) ∈ OPn,n [1

2
],

so e+ and e− are orthogonal idempotents and e+ + e− = 1. There is an embedding

OPn,n ↪→ OPn,n [1
2
] = OPn,n [1

2
] e+ ×OPn,n [1

2
] e−.

Proposition 4.32. If n > 1 the rings OPn,n
[

1
2

]
e± are domains.

Proof. Recall that there is an injective ring homomorphism

b : OPn,n ↪→ Z[1,∞)

such that b(Ψm) = (m,m2,m3, . . .) for all m. In particular,

b(e+) = (0, 1, 0, 1, . . .) and b(e−) = (1, 0, 1, 0, . . .).

Lemma 4.33. Let (a1, a2, . . .) ∈ Im(b). Then for any prime integer p, we have ai ≡ aj
modulo p if i ≡ j modulo p− 1.

Proof. It suffices to prove the statement for b(Ψm). We have ai − aj = mi − mj =
mj(mi−j − 1). If m is not divisible by p, then mi−j − 1 is divisible by p. �

Let G · H = 0 in OPn,n. Set (a1, a2, . . .) = b(G) and (b1, b2, . . .) = b(H). We have
aibi = 0 for all i. To prove the statement it suffices to show that if ai 6= 0 for some i, then
bj = 0 for all j ≡ i modulo 2.

Choose an odd prime p that does not divide ai. By Lemma 4.33, aj is not divisible by
p for all j such that i ≡ j modulo p − 1. In particular aj 6= 0, hence bj = 0. Thus, we
have proved that bj = 0 for all j ≡ i modulo p− 1.

Lemma 4.34. There are infinitely many primes q such that gcd(q − 1, p− 1) = 2.

Proof. Let c be the odd part of p− 1 (that is (p− 1)/c is a 2-power). By Dirichlet, there
are infinitely many primes q such that q ≡ 3 modulo 4 and q ≡ 2 modulo c. Clearly,
gcd(q − 1, p− 1) = 2 for such q. �
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Let j be such that j ≡ i modulo 2. We need to prove that bj = 0. Take any prime q as in
Lemma 4.34. There are positive integers k and m such that t := i+(p−1)k = j+(q−1)m.
We have proved that bt = 0 since t ≡ i modulo p−1. By Lemma 4.33, 0 = bt ≡ bj modulo
q, i.e., bj is divisible by q. We have proved that bj is divisible by infinitely many primes
q, hence bj = 0. �

4.7. Operations in graded K-theory. In this section we determine the R-module of
all R-linear operations G : Kn

grR → Km
grR for any pair of integers n and m denoted by

OPn,m
R (K∗gr). Recall that Kn

grR = K0
grR · t−n = CK0

R ·t−n, hence by Theorem 4.12, we get:

Corollary 4.35.

OPn,m
R (K∗gr) = OP0,0

R (K∗gr) · tm−n = OP0,0
R (CK∗) · tm−n = R[[x]] · tm−n.

Recall that product operation in the ring OPn,m
R (K∗gr) = R[[x]] is the composition ◦

(see Section 4.5). Moreover, R[[x]] is a (topological) bi-algebra over R with co-product
defined by the rule (1− x)n → (1− x)n⊗ (1− x)n for all n > 0 that reads Ψ 7→ Ψ⊗Ψ in
the language of operations.

Let us describe the dual bi-algebra A (over Z) of co-operations as follows. Let A be the
subring of the polynomial ring Q[s] consisting of all polynomials f such that f(a) ∈ Z for
all a ∈ Z. In particular, Z[s] ⊂ A. The polynomials

en :=
1

n!
(−s)(1− s) . . . (n− 1− s) = (−1)n

(
s

n

)
∈ A

for all n > 0 form a basis of A as an abelian group. Consider a pairing

A⊗R[[x]]→ R, a⊗G 7→ 〈a,G〉 ∈ R,
such that 〈en, xm〉 = δn,m. This pairing identifies R[[x]] with the dual co-algebra for A via
the isomorphism

HomZ(A,R)
∼→ R[[x]],

taking a homomorphism α : A→ R to the power series
∑

n>0 α(en)xn.

Lemma 4.36. For every polynomial f ∈ A, we have 〈f, (1− x)m〉 = f(m).

Proof. We may assume that f = en for some n. Then

〈f, (1− x)m〉 = 〈en, (1− x)m〉 = (−1)n
(
m

n

)
= en(m) = f(m). �

The lemma shows that a co-operation f evaluated at the Adams operation Ψm is equal
to f(m).

It follows from Lemma 4.36 that

〈sn, (1− x)km〉 = (km)n = kn ·mn = 〈sn, (1− x)k〉 · 〈sn, (1− x)m〉.
As the composition in R[[x]] satisfies (1− x)k ◦ (1− x)m = (1− x)km, the composition in
R[[x]] is dual to the co-product of A taking sn to sn ⊗ sn in A⊗ A.

The equality

〈si+j, (1− x)m〉 = mi+j = mi ·mj = 〈si, (1− x)m〉 · 〈sj, (1− x)m〉
shows that the product in A is dual to the co-product in R[[x]]. Thus, the bi-algebra
R[[x]] of operations is dual to the bi-algebra A of co-operations.
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Remark 4.37. The polynomial ring Z[s] is a bi-algebra with respect to the co-product
s→ s⊗ s. The dual bi-algebra over R is R[0,∞). The dual of the embedding Z[s]→ A is
the homomorphism b : R[[x]]→ R[0,∞) defined in Proposition 4.31 since by Lemma 4.36,

〈sn, (1− x)m〉 = mn = 〈sn, b((1− x)m)〉
as b((1− x)m) = (1,m, . . . ,mn, . . .).

5. Multiplicative operations

Definition 5.1. A multiplicative operation G : A∗ → B∗ is a morphism of functors from
Smk to the category of rings. That is, the ring structure is respected. (We don’t assume
that G is a graded ring homomorphism.)

As was noticed in topology and then in the algebro-geometric context in [10, 2.7.5] there
is a functor from the category of oriented cohomology theories and their multiplicative
operations to the category of formal group laws. Let us briefly describe this functor.

If A∗ and B∗ are oriented cohomology theories over k, to any multiplicative operation
G : A∗ → B∗ one can assign the morphism (ϕG, γG) : (A∗(k), FA) → (B∗(k), FB) of the
respective formal group laws, where ϕG : A∗(k)→ B∗(k) is the restriction of G to Spec(k)
and γG(x) ∈ xB∗(k)[[x]] is defined by the condition:

G(cA1 (O(1))) = γG(cB1 (O(1))) ∈ B∗(P∞) = B∗(k)[[x]].

In the algebro-geometric context, the power series γG(x)/x was introduced in this gen-
erality in [10, Definition 2.5.1] and [11] in order to state and prove a Riemann-Roch type
theorems [10, Theorem 2.5.3, 2.5.4] for a multiplicative operation G. This series is called
the inverse Todd genus of G.

The following theorem permits to reduce the classification of multiplicative operations
to algebra.

Theorem 5.2. ([13, Theorem 6.9]) Let A∗ be a theory of rational type and B∗ any oriented
cohomology theory. Then the assignment G 7→ (ϕG, γG) is a bijection between the set of
multiplicative operations G : A∗ → B∗ and the set of morphisms of formal group laws.

Example 5.3. Let R be either Z, Zp or Ẑ and b ∈ R. The Adams operation Ψb : CK∗R →
CK∗R is homogeneous and multiplicative. The corresponding map ϕ is the identity and

γ = 1−(1−tx)b

t
. If c ∈ R×, write Ψc

b for the homogeneous multiplicative twisted Adams

operation with ϕ(t) = ct and γ = 1−(1−tx)bc

ct
(in particular, Ψ1

b = Ψb). It follows from the

equality Ψc
b(tx) = Ψc

b(t)Ψ
c
b(x) = ct · γ(x) = 1− (1− tx)bc that on CKn

R the operation Ψc
b is

equal to c−n ·Ψbc. For any c ∈ R, let Ψc
0 be the homogeneous multiplicative operation with

ϕ(t) = ct and γ = 0. This operation is zero in positive degrees and is equal to cn · rank
on CK−nR = (K0)R for n > 0.

Write Θ for the multiplicative operation CK∗R → CK∗R which is identity on CK0
R,

multiplication by tn : CKn
R → CK0

R if n > 0 and the canonical isomorphism CKn
R → CK0

R

(inverse to multiplication by t−n) if n 6 0. This operation is not homogeneous and its

image is CK0
R. Set Ψ̃c

b := Θ ◦ Ψc
b. This is a multiplicative operation with image in CK0

R.

The corresponding function ϕ(t) = c and γ = 1−(1−tx)bc

c
.
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Introduced operations satisfy the following relations (use Theorem 5.2): Ψ0
0 = Ψ̃0

0 and

Ψc
b ◦Ψe

d = Ψce
bd; Ψc

b ◦ Ψ̃e
d = Ψ̃e

cbd; Ψ̃c
b ◦Ψe

d = Ψ̃ce
bd; Ψ̃c

b ◦ Ψ̃e
d = Ψ̃e

cbd.

Over Q every formal group law is isomorphic to the additive one. Hence, for every
theory C∗, we have isomorphisms of formal group laws.

(id, expC) : (C∗ ⊗Z Q, FC)
..
(C∗ ⊗Z Q, Fadd) : (id, logC)nn

Suppose that (in the context of Definition 5.1) the coefficient ring B∗(k) of the target
theory has no torsion. Then the composition (id, expB) ◦ (ϕG, γG) ◦ (id, logA) identifies
the set of multiplicative operations A∗ → B∗ with a subset of morphisms of formal group
laws (A∗⊗Z Q, Fadd)→ (B∗⊗Z Q, Fadd). The latter morphism is defined by (ψ, γ), where,
in our case, ψ = ϕ ⊗Z Q, for some ring homomorphism ϕ = ϕG : A∗(k) → B∗(k) and
γ(x) = b ·x, for some b ∈ B∗(k). In other words, (ϕG, γG) = (id, logB)◦(ϕG, γ)◦(id, expA).
Then

γG(x) = ϕG(expA)(b · logB(x)).

5.1. Multiplicative operations in CK. For A∗ = B∗ = CK∗
Ẑ

we have: A = B = Ẑ[t],
FA = FB = x+ y − txy and

logCK(x) =
log(1− tx)

t
, expCK(z) =

1− ezt

t
.

Note that a ring homomorphism ϕ from Ẑ[t] to a ring T such that
⋂
n>0 nT = 0 is

uniquely determined by ϕ(t) in T (such a choice is realised by a homomorphism, if Ẑ can

be mapped to T ). Indeed, suppose that ϕ and ψ satisfy ϕ(t) = ψ(t). For any f ∈ Ẑ[t]

and n > 0 write f = g + nh for some g ∈ Z[t] and h ∈ Ẑ[t]. Then ϕ(g) = ψ(g) and hence
ϕ(f)− ψ(f) ∈ nT . Since this holds for all n > 0, we have ϕ(f)− ψ(f) = 0 for all f .

Thus, the map ϕG : Ẑ[t] → Ẑ[t] is determined by ϕG(t) = c(t) ∈ Ẑ[t]. Let b = b(t) ∈
Ẑ[t]. Note that any choice of b(t) and c(t) gives a morphism of rational formal group laws
and so, a multiplicative operation G : CK∗

Ẑ
⊗ZQ→ CK∗

Ẑ
⊗ZQ with

γG(t, x) =
1− (1− tx)

b(t)c(t)
t

c(t)
=
∑
n>1

(−1)n−1(tx)n
( b(t)c(t)

t
n

)
c(t)

,

which lifts to an operation CK∗
Ẑ
→ CK∗

Ẑ
if and only if the coefficients of our power series

belong to Ẑ. The coefficient at xn is

(5.4) an = (−1)n−1 b(t)
∏n−1

k=1(b(t)c(t)− kt)
n!

.

Denote as bp(t), cp(t) the Zp-components of our polynomials. If deg(bp(t)cp(t)) > 1 for
some p, the leading term of our t-polynomial will be clearly non-integral (for some n).
Similarly, if for some p, the constant term of bp(t)cp(t) is non-zero, then the smallest
term of the p-component of our t-polynomial will be non-integral, for some n. Hence, the
polynomial b(t)c(t) is linear. Then, for a given prime p, either bp(t) = bp and cp(t) = cpt,
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or bp(t) = bpt and cp(t) = cp, for some bp, cp ∈ Zp. Then the Zp- component of our
coefficient is:

(an)p = (−1)n−1tmbp

(
bpcp−1
n−1

)
n

, where m = n− 1, or m = n.

If bp 6= 0, then this will be integral for all n if and only if cp ∈ Z×p , while if bp = 0, then cp
can be an arbitrary element from Zp. Let us denote the (Zp-components of) operations

with m = n−1 as Ψ
cp
bp

, while the ones with m = n as Ψ̃
cp
bp

(see Example 5.3; we suppress p

from notations). Here Ψ
cp
bp

respects the grading on CK∗Zp
, while Ψ̃

cp
bp

maps CK∗Zp
to CK0

Zp
.

The pairs (bp, cp) run over the set (Zp\0)× Z×p ∪ {0} × Zp and, in addition, Ψ0
0 = Ψ̃0

0.
Thus, any multiplicative operation G on CK∗

Ẑ
splits into the product ×pG(p) of opera-

tions on CK∗Zp
, where each G(p) is one of the Ψ

cp
bp

or Ψ̃
cp
bp

. Let P will be the set of prime

numbers and J ⊂ P be the subset of those primes, for which (bp, cp) 6= (0, 0) and G(p) is

Ψ̃. Then the data (J, b, c), where the p-components of b, c ∈ Ẑ are bp and cp, determines
our operation G. Let us call it JΨc

b. Here (J, b, c) runs over all possible triples satisfying:
1) bp 6= 0 ⇒ cp ∈ Z×p and 2) (bp, cp) = (0, 0) ⇒ p /∈ J .

The operations ∅Ψ1
b are (non-twisted) Adams operations with ϕG = id, which naturally

form a ring isomorphic to Ẑ. These operations commute with every other operation. The

operations ∅Ψc
1 are invertible and form a group isomorphic to Ẑ×. Below we will suppress

J = ∅ from notations and will denote the respective operations simply as Ψc
b.

The formulas in Example 5.3 show that the monoid of multiplicative operations is
non-commutative.

5.2. Multiplicative operations in Kgr over Z. For A∗ = B∗ = K∗gr we have: A =

B = Z[t, t−1], FA = FB = x+y− txy. Similar calculations as in the previous section show
that the coefficient an in (5.4) will belong to Z[t, t−1] for every n, if and only if b(t)c(t) is
linear in t. Thus, c(t) = ctl, for c = ±1 and l ∈ Z, and b(t) = bt1−l, for some b ∈ Z.

Then the coefficient an is

(−1)n−1tn−l
(
bc
n

)
c
.

Denote this operation as lΨc
b. It scales the grading on K∗gr by the coefficient l. So, only

the operations 1Ψc
b are homogeneous.

The case c(t) = t and b(t) = b, that is, 1Ψ1
b corresponds to the Adams operation Ψb -

see [13, Sect. 6.3]. In this case ϕG = id. The operation −1Ψ1
1 is an automorphism of order

2 acting identically on K0
gr and mapping t to t−1.

We will omit l and c from the notation lΨc
b when these will be equal to 1.

6. Stable operations

The purpose of this section is to describe stable operations in CK and Kgr with integral

and Ẑ-coefficients. The spaces of such operations appear to have countable topological
base which we describe in Theorems 6.25 and 6.34. We also describe stable multiplicative

operations and show that these generate additive ones only in the case of Ẑ-coefficients.
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To be able to discuss stability of operations, we need the notion of a suspension. Follow-
ing Voevodsky and Panin-Smirnov [9, 11] we can introduce the category of pairs SmOp
whose objects are pairs (X,U), where X ∈ Smk and U is an open subvariety of X - see
[13, Def. 3.1], with the smash product:

(X,U) ∧ (Y, V ) := (X × Y,X × V ∪ U × Y ),

and the natural functor Smk → SmOp given by X 7→ (X, ∅). Then suspension can be
defined as:

ΣT (X,U) := (X,U) ∧ (P1,P1\0).

Any theory A∗ extends from Smk to SmOp by the rule:

A∗((X,U)) := Ker(A∗(X)→ A∗(U)).

Any additive operation A∗ → B∗ on Smk extends uniquely to an operation on SmOp.
An element εA = cA1 (O(1)) ∈ A∗((P1,P1\0)) defines an identification:

σAT : A∗((X,U))
∼=−→ A∗+1(ΣT (X,U)),

given by x 7→ x ∧ εA.

Definition 6.1. For any additive operation G : A∗ → B∗ we define its desuspension as
the unique operation Σ−1G : A∗ → B∗ such that

G ◦ σAT = σBT ◦ Σ−1G.

Definition 6.2. A stable additive operation G : A∗ → B∗ is the collection {G(n)|n > 0}
of operations A∗ → B∗ such that G(n) = Σ−1G(n+1).

Proposition 6.3. Suppose, G : A∗ → B∗ is a multiplicative operation with γG(x) ≡ bx
modulo x2 for some b ∈ B∗(k). Then Σ−1G = b ·G.

Proof. We have: G(σAT (u)) = G(u∧εA) = G(u)∧G(εA) = G(u)∧(b·εB) = σBT (b·G(u)). �

We call a multiplicative operation G stable if the constant sequence (G,G,G, . . .) is
stable. By Proposition 6.3, G is stable if and only if the linear coefficient of γG is equal
to 1 - cf. [13, Proposition 3.8].

For a commutative ring R define the operator

Φ = ΦR : R[[x]]→ R[[x]], Φ(G) = (x− 1)
dG

dx
,

6.1. Stable operations in CK over Ẑ. Recall that in the case A∗ = B∗ = CK∗
Ẑ
, the

group OPn,n

Ẑ
of additive operations for n 6 0 and n > 1 can be identified with Ẑ[[x]],

respectively, xẐ[[x]].

Proposition 6.4. The desuspension operator Σ−1 : OPn,n

Ẑ
→ OPn−1,n−1

Ẑ
is given by the

rule

Σ−1(G) =

{
Φ(G), if n 6 1;
∂0(Φ(G)) = Φ(G)− Φ(G)(0), if n > 1.
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Proof. The Adams operation Ψk is identified with the power series Ak(x) = (1 − x)k if
n 6 0 and with (1− x)k − 1 if n > 0. By Proposition 6.3, Σ−1Ψk = kΨk, so the formula
holds for G = Ψk.

The map Σ−1 is continuous in τo and the map Φ is continuous in τs. Hence both maps
are continuous as the maps τs → τo. Since τo is Hausdorff (as τw is), it follows that
the set of power series where Σ−1 and Φ coincide is closed in τs. But the set of linear
combinations of Adams operations is everywhere dense in τs. �

It follows from Proposition 6.4 that the desuspension map Σ−1 is injective and yields a
tower of injective maps in the other direction:

(6.5) Ẑ[[x]] = OP0,0

Ẑ

Σ−1

←−− OP1,1

Ẑ

Σ−1

←−− . . .
Σ−1

←−− OPn,n

Ẑ

Σ−1

←−− . . . .

Moreover, the group OPst
Ẑ

of homogeneous degree 0 stable operations CK∗
Ẑ
→ CK∗

Ẑ
that

is the limit of the sequence 6.5 is naturally isomorphic to the group

S := ∩n Im(Φn) = ∩n Im((Σ−1)n) ⊂ Ẑ[[x]].

Indeed, if {G(n)|n > 0} is a stable operation, then G(0) = Φn(G(n)) for every n, hence
G(0) ∈ S. Conversely, given G ∈ S, write G = Φn(H(n)) for every n. Since Ker(Φn)
consists of constant power series only, the sequence G(n) = Φ(H(n+1)) is a stable operation.

Lemma 6.6. Let G ∈ xẐ[[x]] and n > 1. Then

(1) ∂n(G) has coefficients in Z if and only if ∂n−1(Φ(G)) has coefficients in Z.
(2) v(∂n(G)) > m for some m if and only if v(∂n−1(Φ(G))) > m− 1.

Proof. (⇒) Follows from Proposition 2.6 for both (1) and (2).

(⇐) Simply write Hk for (x− 1)k
dkG

dxk
. We claim that ∂n−1(Hk) has coefficients in Z in

case (1) and v(∂n−1(Hk)) > m− k in case (2) for every k > 1. We prove the statements
by induction on k.
(k ⇒ k + 1) We have Hk+1 = Φ(Hk)− kHk, hence

∂n−1(Hk+1) = ∂n−1
(
Φ(Hk)

)
− k∂n−1(Hk).

Then k∂n−1(Hk) has coefficients in Z in case (1) and v(k∂n−1(Hk)) > m − k in case (2)
by the induction hypothesis. As the derivative ∂n(Hk) has coefficients in Z in case (1)
and v(∂n(Hk)) > m− k in case (2), it follows from Proposition 2.6, applied to the power
series Hk, that ∂n−1(Φ(Hk)) also has coefficients in Z in case (1) and v

(
∂n−1(Φ(Hk))

)
>

m − k − 1 in case (2). It follows that ∂n−1(Hk+1) has coefficients in Z in case (1) and
v(∂n−1(Hk+1)) > m− k − 1 in case (2). The claim is proved.

Note that all coefficients of Hk are divisible by k! in Ẑ. It follows that the power series
1
k!
∂n−1(Hk) have coefficients in Z in case (1). By Proposition 2.6, ∂n(G) has coefficients

in Z in case (1) and v(∂n(G)) > m in case (2). �

In particular, we can describe the integral operations OPn,m as follows.

Proposition 6.7. Let G ∈ xẐ[[x]] and m > n > 1. Then G ∈ OPn,m if and only if
Φn(G) ∈ Z[[x]] and v(Φn(G)) > m− n.
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Proof. Theorem 4.12 and iterated application of Lemma 6.6 show that G ∈ OPn,m if and
only if ∂0(Φn−1(G)) ∈ Z[[x]] and v(∂0(Φn−1(G))) > m− n + 1. Thus, it suffices to prove

the following for a power series H ∈ Ẑ[[x]] and integer k > 0:

1. ∂0(H) ∈ Z[[x]] ⇐⇒ Φ(H) ∈ Z[[x]],
2. v(∂0(H)) > k + 1 ⇐⇒ v(Φ(H)) > k.

If ∂0(H) ∈ Z[[x]], then clearly Φ(H) ∈ Z[[x]]. Conversely, if Φ(H) ∈ Z[[x]], then

∂0(H) ∈ Q[[x]] ∩ Ẑ[[x]] = Z[[x]]. The second statement follows from the obvious equality
v(∂0(H)) = v(Φ(H)) + 1. �

Let m a positive integer. It follows from Lemma 6.6(2) that there is a tower of inclusions
as in (6.5):

(6.8) xmẐ[[x]] = OP0,m

Ẑ
←↩ OP1,m+1

Ẑ
←↩ . . .←↩ OPn,n+m

Ẑ
←↩ . . . .

and for every n the intersection of OPn,n+m

Ẑ
and OPn+1,n+1

Ẑ
in OPn,n

Ẑ
coincides with

OPn+1,n+m+1

Ẑ
. Therefore, we obtain:

Proposition 6.9. The group of homogeneous degree m stable operations CK∗
Ẑ
→ CK∗+m

Ẑ

is naturally isomorphic to the intersection xmax(0,m)Ẑ[[x]] ∩ S.

The map Φ : Ẑ[[x]] → Ẑ[[x]] is continuous in τw and the space Ẑ[[x]] is compact

Hausdorff. Hence Im(Φn) is closed in Ẑ[[x]] for any n. It follows that the set S is also

closed in Ẑ[[x]] in the topology τw and hence in τo and τs.
It follow from Proposition 4.26 and Lemma 6.6 that the topology on OPst

Ẑ
induced by

τo is generated by the neighborhoods of zero Wm consisting of all collections {G(n)|n > 0}
such that G(n) acts trivially on varieties of dimension < n + m. We still denote this
topology by τo.

Let Ar(x) = (1− x)r ∈ Ẑ[[x]] for r ∈ Ẑ. Note that Φ(Ar) = r ·Ar. In particular, if r is

invertible in Ẑ, then Ar ∈ S.
We can describe the set S via divisibility conditions on the coefficients of the power

series.

Theorem 6.10. The set S = ∩r Im(Φr) ⊂ Ẑ[[x]] consists of all power series G =∑
i>0 aix

i satisfying the following property: for every prime p and every positive inte-
gers n and m such that m is divisible by pn, for every nonnegative j < m divisible by p,
the sum

∑m−1
i=j

(
i
j

)
ai is divisible by pn.

Proof. Let n be a positive integer, G ∈ S and write G = Φn(H) for some H ∈ Ẑ[[x]].

Consider the ideal I = (pn, xm) ⊂ Ẑ[[x]], where m is divisible by pn. Note that Φ(I) ⊂ I
since pn divides m.

Let G′ be the xm-truncation of G and H ′ the xm-truncation of H. As G−G′ ∈ I and
H − H ′ ∈ I, we have G′ − Φn(H ′) ∈ I. Since G′ and Φn(H ′) are polynomials of degree
less than m, we conclude that G′ and Φn(H ′) are congruent modulo pn.

We write G′ and H ′ as polynomials in y = x−1. Since Φn(yi) = inyi, the yi-coefficients
of Φn(H ′) are divisible by pn for all i divisible by p. It follows that the same property



OPERATIONS IN CONNECTIVE K-THEORY 33

holds for G′. As

G′ =
m−1∑
i=0

aix
i =

m−1∑
i=0

ai(y + 1)i =
m−1∑
i=0

ai
i∑

j=0

(
i

j

)
yj =

m−1∑
j=0

yj
m−1∑
i=j

(
i

j

)
ai,

the divisibility condition holds.

Conversely, as Ẑ =
∏

Zp, it suffices to prove the statement over Zp. Let G ∈ Zp[[x]]
satisfy the divisibility condition in the theorem. Choose n and m such that m is divisible
by pn and set I = (pn, xm) ⊂ Zp[[x]] as above. Recall that Φ(I) ⊂ I. Let F be the
xm-truncation of G. By assumption, we can write F ≡

∑
biy

i modulo pn, where the sum
is taken over i < m that are prime to p. In particular, G ≡

∑
biy

i modulo I.
Choose r > 0 and set F ′ =

∑
bi
ir
yi. Then Φr(F ′) =

∑
biy

i ≡ G modulo I, i.e., G is
in the image of Φr modulo I. As Im(Φr) is closed in Zp[[x]] in the topology τw, we have
G ∈ Im(Φr) for all r, i.e., G ∈ S. �

6.2. Stable operations in CK over Z. Now we turn to the study of stable operations
over Z.

Proposition 6.11. The pre-image of OPn,n under Σ−1 : OPn+1,n+1

Ẑ
→ OPn,n

Ẑ
is equal to

OPn+1,n+1 for every n > 0.

Proof. As Σ−1 = ∂0 ◦Φ, for n > 1, and Σ−1 = Φ, for n = 0, this follows immediately from
Proposition 6.7. �

Thus, we have a tower

Z[[x]] = OP0,0 ←↩ OP1,1 ←↩ . . .←↩ OPn,n ←↩ . . . ,
given by the desuspension and the group OPst of stable homogeneous degree 0 integral
operations is identified with S0 := S ∩ Z[[x]], where S is described by Theorem 6.10.
Applying Proposition 6.7 again we get:

Proposition 6.12. The group of homogeneous degree m stable operations CK∗ → CK∗+m

is naturally isomorphic to the intersection xmax(0,m)Z[[x]] ∩ S0.

We would like to determine the structure of S0.

Lemma 6.13. For every n > 0 there is a positive integer d such that dxn ∈ S+xn+1Ẑ[[x]].

Proof. Choose distinct elements r0, . . . , rn ∈ Ẑ× such that ri− rj ∈ Z for all i and j. The
xi-coefficients with i = 0, 1, . . . , n of the power series Arj(x) = (1 − x)rj ∈ S form an

(n+ 1)× (n+ 1) Van der Monde type matrix
[
(−1)i

(
rj
i

)]
. Its determinant d is a nonzero

integer since all ri − rj are integers. It follows that there is a Ẑ-linear combination of the
Arj ’s that is equal to dxn modulo xn+1. �

Note that any ideal in Ẑ that contains a non-zero integer is generated by a positive
integer (the smallest positive integer in the ideal). It follows from Lemma 6.13 that for

every n > 0 there exists a unique positive integer dn such that the ideal of all a ∈ Ẑ with

the property axn ∈ S + xn+1Ẑ[[x]] is generated by dn. We will determine the integers dn
below.

For every n > 0 choose a power series Gn ∈ S such that Gn ≡ dnx
n modulo xn+1.
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Lemma 6.14. Let G =
∑

i>0 aix
i ∈ S be such that a0, . . . , an−1 ∈ Z. Then there exist

bi ∈ Ẑ for all i > n such that G−
∑

i>n biGi ∈ S0.

Proof. Find an integer a′n such that an − a′n is divisible by dn, thus, an = a′n + dnbn for

some bn ∈ Ẑ. Then the xi-coefficients of G− bnGn are integer for i = 0, . . . , n. Continuing
this procedure, we determine all bi for i > n, so that all coefficients of G−

∑
i>n biGi are

integers. �

Theorem 6.15. For all n > 0 there are power series Fn ∈ S0 such that Fn ≡ dnx
n

modulo xn+1. Moreover,

(1) The group S0 consists of all infinite linear combinations
∑

n>0 anFn with an ∈ Z.

(2) The group of homogeneous degree m stable operations CK∗ → CK∗+m is naturally
isomorphic to the group of all infinite linear combinations

∑
n>max(0,m) anFn with

an ∈ Z.

Proof. Fix an n > 0. The coefficient dn of Gn is integer. Applying Lemma 6.14, we find

bi ∈ Ẑ for i > n + 1 such that Fn := Gn −
∑

i>n+1 biGi ∈ S0. Statements (1) and (2) are
clear. �

6.3. The integers dn. Our next goal is to determine the integers dn. Let n > 0 be an
integer. For an integer r write Lr for the n-tuple of binomial coefficients:((

r

0

)
,
(
r

1

)
, . . . ,

(
r

n− 1

))
= (1, r, . . .) ∈ Zn.

For a n-sequence ā = (a1, . . . , an) of positive integers let d(ā) be the determinant of the
n× n matrix with columns La1 , La2 , . . . , Lan . We have

(6.16) d(ā) =
( ∏
s>t

(as − at)
)
/
n−1∏
k=1

k! ∈ Z.

Let p be a prime integer. An n-sequence ā is called p-prime if all its terms are prime

to p. Let ā
(n)
min be the “smallest” strictly increasing p-prime n-sequence

(1, 2, . . . , p− 1, p+ 1, . . .).

Lemma 6.17. Let ā be a p-prime n-sequence that differs from ā
(n)
min at one term only.

Then d(ā
(n)
min) divides d(ā) in the ring of p-adic integers Zp.

Proof. Suppose ā is obtained from ā
(n)
min by replacing a term a by b. It follows from (6.16)

that
d(ā)/d(ā

(n)
min) =

∏
(b− a′)/

∏
(a− a′),

where the products are taken over all terms a′ of āmin but a. Since a is prime to p, the
product

∏
(a− a′) generates the same ideal in Zp as a!(c− a)!, where c is the last term of

āmin. Similarly, as b is prime to p, the product
∏

(b − a′) generates the same ideal in Zp

as

b(b− 1) · · · (b− a+ 1) · (b− a− 1) · · · (b− c+ 1)(b− c) = (−1)c−aa!(c− a)!
(
b

a

)(
c− b
c− a

)
. �

Corollary 6.18. The integer d(ā
(n)
min) divides d(ā

(n+1)
min ) in Zp.
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Proof. In the cofactor expansion (Laplace’s formula) of the determinant d(ā
(n+1)
min ) along

the last row all minors are divisible by d(ā
(n)
min) in view of Lemma 6.17. �

Write Mn for the Zp-submodule of (Zp)
n generated by the tuples La1 , La2 , . . . , Lan ,

where (a1, a2, . . . , an) = ā
(n)
min.

Lemma 6.19. Let b be an integer prime to p. Then the n-tuple Lb is contained in Mn.
In others words, the Zp-submodule of (Zp)

n generated by Lb for all integers b > 0 prime
to p coincides with Mn.

Proof. By Cramer’s rule, the solutions of the equation Lb = x1La1 + . . .+xnLan are given

by the formula xi = d(ā(i))/d(ā
(n)
min), where the sequence ā(i) is obtained from ā

(n)
min by

replacing the i-th term with b. By Lemma 6.17, we have xi ∈ Zp. �

The following statement is a generalization of Lemma 6.17.

Corollary 6.20. Let ā be any p-prime n-sequence. Then d(ā
(n)
min) divides d(ā) in Zp. �

Set

dn = d(p)
n := d(ā

(n+1)
min )/d(ā

(n)
min).

By Corollary 6.18, dn ∈ Zp.
Write n in the form n = (p− 1)k + i, where i = 0, 1 . . . , p− 2 and k = b n

p−1
c. Then it

follows from (6.16) that

(6.21) dnZp =
pk · k!

n!
Zp, or, equivalently vp(dn) = k + vp(k!)− vp(n!),

where vp is the p-adic discrete valuation.

Note that vp((n+ k)!) = vp((pk + i)!) = vp((pk)!) = k + vp(k!), hence dnZp = (n+k)!
n!

Zp.
Observe that the function n 7→ vp(dn) is not monotonic.

Proposition 6.22. An (n+ 1)-tuple (0, 0, . . . , 0, d) is contained in Mn+1 if and only if d
is divisible by dn in Zp.

Proof. As in the proof of Lemma 6.19, (0, 0, . . . , 0, d) ∈ Mn+1 if and only if d · d(ā(i))

is divisible by d(ā
(n+1)
min ) in Zp for all i, where the sequence ā(i) is obtained from ā

(n)
min by

deleting the i-th term in ā
(n+1)
min . We have d(ā(i)) = d(ā

(n)
min) if i = n + 1 and by Corollary

6.20, all d(ā(i)) are divisible by d(ā
(n)
min), whence the result. �

For an integer r, let as before Ar(x) = (1−x)r. Note that the n-tuple Lr is the tuple of
coefficients (after appropriate change of signs) of the xn-truncation of the polynomial Ar.
Denote by N (p) the Zp-submodule of Zp[x] generated by Ar for all integers r > 0 prime
to p. We get an immediate corollary from Lemma 6.19 and Proposition 6.22:

Proposition 6.23. Let d ∈ Zp and n > 0. Then dxn ∈ N (p) +xn+1Zp[x] if and only if d is
divisible by dn. Moreover, there is a Zp-linear combination Gn of the Adams polynomials

Aa1 , Aa2 , . . . , Aan+1, where (a1, a2, . . . , an+1) = ā
(n+1)
min , such that Gn ≡ dnx

n (mod xn+1).
�
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Proposition 6.24. The set SZp = ∩r Im(Φr
Zp

) contains a power series ≡ dxn (mod xn+1)
if and only if d is divisible by dn in Zp.

Proof. Suppose that G ∈ SZp and G ≡ dxn modulo xn+1. Choose integers k > 0 such

that pk is divisible by d(ā
(n+1)
min ) and m > n divisible by pk and consider the ideal I =

(pk, xm) ⊂ Zp. We have G = Φk(G′) for some G′ ∈ Zp[[x]] and write

G′ =
m−1∑
i=0

biAi modulo xmZp[[x]]

for some bi ∈ Zp. Applying Φk and taking into account the equality Φk(Ai) = ikAi, we
get G = Φk(G′) ∈ N (p) + I. Taking the xn+1-truncations, we see that

dxn ∈ N (p) + xn+1Zp[x] + pkZp[x].

As pk is divisible by d(ā
(n+1)
min ), we conclude that pkZp[x] ⊂ N (p) + xn+1Zp[x], hence dxn ∈

N (p) + xn+1Zp[x]. By Proposition 6.23, d is divisible by dn. �

Now we turn to the ring Ẑ. The integers dn defined before Lemma 6.14 are the products

of primary parts of dn = d
(p)
n determined as above for every prime p. In view of (6.21) we

have
vp(dn) = b n

p− 1
c+ vp(b

n

p− 1
c!)− vp(n!)

for every prime p. For example, d0 = 1, d1 = 2, d2 = 22 · 3, d3 = 23, d4 = 24 · 3 · 5,
d5 = 25 · 3, d6 = 26 · 32 · 7, d7 = 27 · 32.

Propositions 6.23 and 6.24 yield:

Theorem 6.25. Let n > 0 be an integer. Then

(1) There is a Ẑ-linear combination Gn of the Adams polynomials Aa1 , Aa2 , . . . , Aan+1

for some a1, a2, . . . , an+1 ∈ Ẑ× such that Gn ≡ dnx
n modulo xn+1.

(2) The set S = ∩r Im(Φr
Ẑ
) contains a power series ≡ dxn (mod xn+1) if and only if d

is divisible by dn in Ẑ. It consists of all (infinite) linear combinations of Gn.

Remark 6.26. It follows from Proposition 6.23 that a1, a2, . . . , an+1 ∈ Ẑ× can be chosen

so that for every prime p, we have ((a1)p, (a2)p, . . . , (an+1)p) = ā
(n+1)
min with respect to p.

In particular, a1 = 1.

Proposition 6.27. The set S = ∩r Im(Φr) is the closure in the topology τs, and hence,

in the topologies τo and τw of the set of all (finite) Ẑ-linear combinations of the power

series Ar for r ∈ Ẑ×.

Proof. Denote as Ts, Tw, To the closures of the mentioned set of linear combinations in our
three topologies. As S is closed in τw, we have Ts ⊂ To ⊂ Tw ⊂ S.

Let G ∈ xkẐ[[x]] ∩ S. Then by Theorem 6.25, G ≡ dxk (modxk+1), where d = dk · c,
for some c ∈ Ẑ. We know that there exists a Ẑ-linear combination Gk of the power
series Aa1 , Aa2 , . . . , Aak (with invertible ai’s) such that Gk ≡ dkx

k (modxk+1). Hence,

G − c · Gk ∈ xk+1Ẑ[[x]] ∩ S. Applying this inductively, we obtain that, for any G ∈ S

and any positive integer m, there exists a finite Ẑ-linear combination H of invertible Ar’s,

such that G−H ∈ xmẐ[[x]] ∩ S. Therefore, Ts = S and hence Ts = To = Tw = S. �
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6.4. Stable operations in Kgr. In section 4.7 we defined the bi-algebraA of co-operations
in Kgr with a canonical element s ∈ A. Recall that for a commutative ring R, the bi-

algebra of operations OPn,n
R (Kgr) = OP0,0

R (CK) = R[[x]] is dual to A. The same proof as
in Proposition 6.4 shows that the desuspension operator

Σ−1 : R[[x]] = OPn,n
R (Kgr)→ OPn−1,n−1

R (Kgr) = R[[x]]

coincides with Φ. It follows that

OPst
R(Kgr) = lim(R[[x]]

Φ←− R[[x]]
Φ←− R[[x]]

Φ←− . . .).

Lemma 6.28. The desuspension operator Φ is dual to the multiplication by s in A.

Proof. As Φ((1− x)m) = m(1− x)m, in view of Lemma 4.36 we have

〈en,Φ((1− x)m)〉 = 〈en,m(1− x)m〉 = m · en(m) = 〈sen, (1− x)m〉. �

The localization A[1
s
] can be identified with colim(A

s−→ A
s−→ . . .). Therefore,

OPst
R(Kgr) ' Hom(A

[1

s

]
, R),

i.e., the bi-algebra OPst
R(Kgr) of stable operations is dual to A[1

s
].

The bi-algebra A[1
s
] coincides with the algebra of degree 0 stable operations K0(K)

in topology (see [6, Proposition 3] and [2]). Moreover, A[1
s
] is a free abelian group of

countable rank [1, Theorem 2.2] and can be described as the set of all Laurent polynomials
f ∈ Q[s, s−1] such that f(a

b
) ∈ Z[ 1

ab
] for all integers a and b 6= 0.

It follows that the bi-algebra A[1
s
] admits an antipode s 7→ s−1 that makes A[1

s
] a Hopf

algebra. It follows that OPst
R(Kgr) is a (topological) Hopf algebra.

Remark 6.29. We have a diagram of homomorphisms of bi-algebras and its dual:

Z[s]

��

// A

��

R[0,∞) R[[x]]
boo

Z[s, s−1] // A[1
s
] RZ

OO

OPst
R(Kgr)

OO

oo

The bottom maps are homomorphisms of Hopf algebras. The antipode of RZ takes a
sequence ri to r−i.

The group of degree 0 stable operations OPst
Ẑ

(Kgr) coincides with OPst
Ẑ

(CK) = S whose
structure was described in Theorem 6.25. Our nearest goal is to determine the structure
of OPst

Z (Kgr). We remark that this group is different from OPst
Z (CK) = S ∩ Z[[x]].

Let R be one of the following rings: Z, Zp or Ẑ. Recall that we have an injective
homomorphism bR : R[[x]] → R[0,∞) taking (1 − x)m to the sequence (1,m,m2, . . .).
The operation Φ on R[[x]] corresponds to the shift operation Π on R[0,∞) defined by
Π(a)i = ai+1.

An n-interval of a sequence a in R[0,∞) or RZ is the n-tuple (ai, ai+1, . . . , ai+n−1) for
some i. We say that this interval starts at i.

For every n > 1, let Mn be the R-submodule of Rn generated by the n-tuples r̄ :=
(1, r, r2, . . . , rn−1) for all integers r > 0. Note that Mn is of finite index in Rn.
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Lemma 6.30. A sequence a ∈ R[0,∞) belongs to the image of bR if and only if for every
n > 0, the n-interval of a starting at 0 is contained in Mn.

Proof. The implication⇒ is clear. For the converse note that by assumption a is contained

in the closure of Im(bR). On the other hand, if R = Zp or Ẑ, the space R[[x]] is compact
in τw and R[0,∞) is Hausdorff, hence Im(bR) is closed, i.e., a ∈ Im(bR). If R = Z, it

follows from the case R = Ẑ that a = bẐ(G) for some G ∈ Ẑ[[x]]. Since at the same time
G ∈ Q[[x]], we have G ∈ Z[[x]]. �

Let TR ⊂ RZ be the R-submodule of all sequences a ∈ RZ such that every n-interval
of a is contained in Mn for all n > 1. If a ∈ TR, by Lemma 6.30, for every n > 0
there is Gn ∈ R[[x]] such that bR(Gn) = (a−n, a−n+1, . . .). Since Φ(Gn+1) = Gn, the
sequence (Gn)n>0 determines an element in OPst

R(Kgr). This construction establishes an
isomorphism OPst

R(Kgr) ' TR. Note that TẐ = OPst
Ẑ

(CK) = S = ∩r Im(Φr).

For every n > 1, let Nn be the R-submodule of Rn generated by the n-tuples r̄ for all

r ∈ R×. Then Nn is of finite index in Rn if R = Zp or Ẑ.
Note that every n-tuple r̄ with r ∈ R× extends to the sequence a with ai = ri that is

contained in TR.

Lemma 6.31. Nn ⊂Mn for all n > 1.

Proof. It suffices to consider the case R = Zp. Choose an integer m > 0 such that
pm · Zn

p ⊂ Mn. Let r ∈ Z×p . Find an integer r′ > 0 congruent to r modulo pm. Then

the tuple r̄ = (1, r, r2, . . . , rn−1) is congruent to r̄′ modulo pm. Hence r̄ = r̄′ + (r̄ − r̄′) ∈
Mn + pmZn

p ⊂Mn. �

It follows from Lemma 6.31 that every element in Nn is an n-interval of a sequence in
TR.

Proposition 6.32. If R = Zp or Ẑ, the R-module TR consists of all sequences a ∈ RZ

such that every n-interval of a is contained in Nn for all n > 1.

Proof. We may assume that R = Zp. Let a ∈ TR. In view of Lemma 6.31 it suffices to
show that every n-interval v of a starting at i is contained in Nn for all n > 1. Take an
integer m > 0 and consider the (n+m)-interval w of Π−m(a) starting at i, so that v is the
part of w on the right. Write w as a (finite) linear combination

∑
trr̄ over positive integers

r, where tr ∈ Zp and r̄ = (1, r, r2, . . . , rn+m−1) ∈ Mn+m−1. Applying Πm to Π−m(a) we
see that v =

∑
trr

mr̂, where r̂ = (1, r, r2, . . . , rn−1) ∈Mn−1. As rm is divisible by pm if r
is divisible by p, it follows from the definition of Nn that v ∈ Nn + pmMn. Since Nn is of
finite index in Mn, we can choose m such that pmMn ⊂ Nn, hence a ∈ Nn. �

Denote by θ : RZ → RZ the reflection operation taking a sequence a to the sequence
θ(a)i = a−i.

Corollary 6.33. The module TR is invariant under θ.

Proof. In the case R = Zp or Ẑ it suffice to notice that if r ∈ R×, the symmetric n-tuple
(rn−1, rn−2, . . . , r, 1) = rn−1(1, r−1, (r−1)2, . . . , (r−1)n−1) is contained in Nn. If R = Z the
statement follows from the equality TZ = TẐ ∩ ZZ. �
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Now let R = Ẑ and n > 0. The ideal of all t ∈ Ẑ such that (0, . . . , 0, t) ∈ Nn is generated

by a (unique) positive integer d̃n = n!·dn, where the integers dn were introduced in Section
6.3. We know that

vp(d̃n) = vp((n+ kp)!)

for all primes p, where kp = b n
p−1
c. By Theorem 6.15, there are power series Fn ∈ S0 =

S ∩ Z[[x]] such that Fn ≡ dnx
n modulo xn+1.

Let f (n) ∈ TẐ be the image of Fn under the map S = OPst
Ẑ

(Kgr) → ẐZ. Thus,

(0, . . . , 0, d̃n) is the n-interval of f (n) starting at 0. For example, we can choose:

f (0) = (. . . , 1, 1, 1, 1, . . .),

f (1) = (. . . , 0, 2, 0, 2, . . .).

As in the proof of Theorem 6.15, modifying f (n) by adding multiples of the shifts of f (m)

for m > n and their reflections we can obtain f (n) ∈ ZZ for all n.

Theorem 6.34. Every sequence a ∈ TZ ' OPst
Z (Kgr) can be written in the form

a =
∞∑
i=0

[
b2iΠ

−iθ(f (2i)) + b2i+1Πi(f (2i+1))
]

for unique b0, b1, . . . ∈ Z.

Proof. We determine the integers b0, b1, . . . inductively so that for every m > 0 the sum∑m
i=0 of the terms in the right hand side and the sequence a have the same 2m+2-intervals

starting at −m. �

Remark 6.35. Observe that {Π−iθ(f (2i)), Πi(f (2i+1)) | i ∈ Z>0} is also a topological basis
of OPst

Ẑ
(Kgr). Note that, at the same time, {f (j) | j ∈ Z>0} form a topological basis for

OPst
Z (CK) and OPst

Ẑ
(CK). This shows the relation between operations in CK and those

in Kgr. In particular, that there are substantially more operations in the former theory.

6.5. Stable multiplicative operations. We first consider stable multiplicative opera-
tions on CK∗

Ẑ
. From Proposition 5.3 we obtain:

Proposition 6.36. Stable multiplicative operations CK∗
Ẑ
→ CK∗

Ẑ
are exactly operations

Ψc
1, for c ∈ Ẑ×. These are invertible and form a group isomorphic to Ẑ×. Similarly, stable

multiplicative operations on CK∗ form a group isomorphic to Z×.

Restricted to CK0
Ẑ
, the operation Ψc

1 is given by G0 = 1 (as it is multiplicative and so,
maps 1 to 1), while G(tx) = G(t)G(x) = ct · γG(x) = 1− (1− tx)c and so, our operation
corresponds to the power series Ac = (1 − x)c. In other words, on CK0

Ẑ
, operation Ψc

1

coincides with the Adams operation Ψc. Then on CKn
Ẑ

it is equal to c−n ·Ψc.
Proposition 6.27 gives:

Corollary 6.37. The set of homogeneous stable additive operations on CK∗
Ẑ

is the clo-

sure in the topology τo of the set of (finite) Ẑ-linear combinations of stable multiplicative
operations.
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Remark 6.38. Note that the respective statement for Z-coefficients is not true, as there
are only two stable multiplicative operations on CK∗, namely, Ψ1

1 and Ψ−1
1 , while the

group of stable additive operations there has infinite (uncountable) rank.

Now we consider stable multiplicative operations on K∗gr over Z.

Proposition 6.39. Stable multiplicative operations K∗gr → K∗gr are exactly operations Ψc
1,

for c = ±1. These are invertible and form a group isomorphic to Z× ∼= Z/2Z.

Proof. The linear coefficient of γG for the operation lΨc
b is t1−lb - see 5.2. This will be

equal to 1 exactly when l = 1 and b = 1. �

As above, the operation Ψc
1 corresponds to the power series Ac = (1 − x)c. On Kn

gr it

coincides with c−n ·Ψ1
c .
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