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Abstract 12 

Following nuclear releases to the environment, 137Cs (half-life 30 years) is a long-term contaminant 13 

of many ecosystems, including forests.  We recently sampled soils under pine forests in temperate 14 

and tropical climates to test the hypothesis that migration of 137Cs, 50 years after nuclear weapons 15 

fallout, is coupled with organic matter (OM) accumulation in these soils.  Depth profiles of 137Cs, 16 

naturally-occurring 210Pb and weapons-derived 241Am were measured.  After 50 years, migration of 17 

137Cs into the temperate and tropical soils is limited to half-depths of 7-8 cm and 2-3 cm, 18 

respectively.  At both locations, most 137Cs is associated with OM that accumulated from the early to 19 

mid-1960s.  Illite, which immobilises radiocaesium, was undetectable by X-ray diffraction in the layer 20 

of peak 137Cs accumulation in the temperate forest soil, but apparent in the zone of peak 21 

concentration in the tropical soil.  The data indicate that long-term (50 year) fate of 137Cs in organic-22 

rich, temperate forest soil is coupled with OM accumulation; fixation of 137Cs by illite is more 23 

important in the tropical forest soil where OM is rapidly decomposed.  Models of long-term 24 

radiocaesium migration in forest soils should explicitly account for the role of OM, especially when 25 

considering forests under contrasting climatic regimes.   26 
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Introduction 27 

Caesium-137 is one of the most important radionuclides released to the environment by both 28 

reactor accidents and nuclear weapons; it often dominates the doses to humans and other 29 

organisms during the medium- and long-term after initial contamination (Smith and Beresford, 30 

2005).  The strong affinity of clay minerals, especially illite, for caesium means that soils with even a 31 

small clay content can be highly efficient in retarding the downwards migration of radiocaesium 32 

after deposition to the soil surface (Kirchner et al., 2009).  Thus, in undisturbed mineral soils (eg. 33 

under pasture) radiocaesium may remain close to the soil surface many years after deposition (Bunzl 34 

et al., 1994).  In mineral soils with a significant clay content, mixing by ploughing and bioturbation 35 

may be the dominant mechanism of radiocaesium migration through the upper soil profile.  In 36 

organic soils which are deficient in clay minerals it is expected that radiocaesium migration will be 37 

faster than in mineral soils, since sorption and retention of caesium on organic matter is 38 

considerably lower than fixation by clays (Gil Garcia et al., 2009a).  Furthermore, organic matter may 39 

actively reduce the efficiency with which clays can sequester radiocaesium (Dumat and Staunton, 40 

1999).  However, after the Chernobyl accident it was widely observed that radiocaesium that 41 

deposited on forest soils remained largely within the surface organic horizons at least up to 10 years 42 

after deposition (Ivanov et al., 1997) suggesting a significant potential for the retention of 43 

radiocaesium by organic matter in the upper portions of forest soils.   44 

Numerous studies have examined radiocaesium migration in different soil types over varying time 45 

scales.  In undisturbed organic-rich soil in Sweden in 1994-1998, Isaksson et al. (2001) found 46 

relaxation depths1 for 137Cs of 0.7 to 1.6 cm, indicating superficial distribution even of weapons 47 

fallout 137Cs that peaked in the mid-1960s.  Almgren and Isaksson (2006) measured median activity 48 

concentrations (‘half-depths’) at 8.9 cm for weapons-derived 137Cs and 4.4 cm depth for Chernobyl 49 

137Cs in grassland in 2003.  These distributions were quantified using a convection-diffusion model 50 

which assumes the vertical distribution of radiocaesium is determined purely by physical processes.  51 

Schimmack and Marquez (2006) used a convection-diffusion model to analyse radiocaesium 52 

migration in a grassland soil during a period of 15 years after the Chernobyl accident.  They found 53 

that the fitted migration parameters (convective velocity and dispersion coefficient) were so time-54 

dependent that long-term predictions of caesium migration using this type of model were not 55 

realistic.  In a meta-analysis of 99 soil profiles Jagercikova et al. (2015) concluded that the evolution 56 

of depth profiles of 137Cs is “a complex result of the variations in soil processes affecting the diffusion 57 

and convection transport and resulting in contrasted temporal evolutions”.   58 

                                                           
1
 Defined as the depth at which the surface activity concentration is reduced to 1/e (approximately 37%) 

assuming an exponentially declining distribution of activity concentration with depth. 
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Interestingly, Jagercikova et al. (2015) omitted from their analysis four soil profiles in which more 59 

than 30 % of the 137Cs inventory within the soil was held in organic horizons, presumably because 60 

these distributions were not straightforwardly explained by convection-diffusion theory.  In highly 61 

organic soils, mechanisms other than classical solute transport of radiocaesium, modified by 62 

sorption to clays, may operate.  Rosen et al. (2009) found median depths of 10.7 and 15 cm for 63 

Chernobyl-derived 137Cs in open and pine-covered bog ecosystems in Sweden from 2004 – 2007 in 64 

which the clay content was “extremely low or non-existent”.  They observed that upwards migration 65 

of 137Cs had occurred in the open bog due to uptake and upward transport in Sphagnum plants, thus 66 

emphasising that biological as well as physical processes can contribute to the observed migration of 67 

radiocaesium.  Dorr and Munnich (1989) established a link between organic matter and 68 

radiocaesium migration in forest soils in southern Germany.  They determined that naturally-69 

occurring ‘unsupported’ 210Pb deposited from the atmosphere migrated with an identical velocity as 70 

the accumulating organic matter; they also noted that migration rates of both 210Pb and 137Cs were 71 

unaffected by the soil mineral texture that, in their study, included sandy, loamy and clayey soils.  72 

This implies that, in forest soils with high annual organic matter inputs, the influence of organic 73 

matter on 210Pb and 137Cs migration can override the tendency for these radionuclides to be sorbed 74 

to mineral components of the soil. 75 

The temporal evolution of radiocaesium in an individual soil profile is key to the radiation dose 76 

received by organisms (including man) above the surface of the soil and also to its availability for 77 

root uptake by vegetation.  In the case of forests, the long-term dynamics of contamination of trees 78 

and all associated products (edible and non-edible) are thus strongly dependent on the migration of 79 

radiocaesium through the soil profile.  After major nuclear releases such as the Chernobyl and 80 

Fukushima accidents, management of contaminated forests requires accurate forecasting of the long 81 

term fate of radiocaesium, as well as careful consideration of remediation options such as removal 82 

and processing of contaminated litter from the forest floor (Hashimoto et al., 2012).  Modelling of 83 

the fate of radiocaesium in Fukushima’s forests has suggested that contamination of the mineral soil 84 

beneath the litter layer would peak within one to two years of deposition and that, after 5 to 10 85 

years, the mineral soil would hold the major portion of the deposited 137Cs (Hashimoto et al., 2013).  86 

If correct, this implies that the window of time available to intervene in the natural cycle of 87 

radiocaesium in forests is limited to 2 to 5 years; penetration of 137Cs into the deeper mineral soil will 88 

reduce the surface dose, but this material is much more difficult to remove than contaminated 89 

surface litter.  However, as described above, observations of 137Cs migration in a range of soils 90 

suggest a rather slow migration rate, possibly controlled by the accumulation of organic matter. 91 
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In this study we investigated the downwards migration of 137Cs in soils developed under two pine 92 

forests in contrasting climatic zones (temperate and tropical) in which organic matter (OM) 93 

accumulation is markedly different.  By including 210Pb analysis in our study we aimed to test the 94 

hypothesis that the long-term migration of 137Cs is coupled with OM accumulation in these soils.  As 95 

well as providing contrasting climates and OM dynamics, our two study sites were selected because 96 

they received much lower deposition following the Chernobyl and Fukushima accidents than during 97 

atmospheric nuclear weapons tests in the 1950s and 1960s.  We focussed on the fate of 137Cs from 98 

nuclear weapons fallout since this has been present in soils worldwide for more than 50 years and 99 

provides the best source of information on the long-term fate of radiocaesium in forest ecosystems.  100 
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Methods 101 

Sampling Sites 102 

Soil samples were collected from two pine forests – one in the British Isles and one in Thailand 103 

(geographical coordinates are given in Table 1).  The British site (Boundary Plantation) is a plantation 104 

of Corsican pine (Pinus nigra) in central England, established circa 1960 (estimated standing biomass 105 

was 26 kg m-2, dry mass, at the time of sampling).  It occupies a level site on a geological substrate of 106 

Sherwood sandstone (Ambrose et al., 2014); annual average temperature from 1961 – 2015 was 107 

9.8°C and annual precipitation over this period was 655 mm (Met Office, 2017).  The Thai site (Wat 108 

Ban Chan) is a plantation of Khasi pine (Pinus kesiya) established circa 1925 (estimated standing 109 

biomass was 21 kg m-2, dry mass, at the time of sampling).  It is situated close to the border between 110 

Mae Hong Son and Chiang Mai provinces and occupies a slightly sloping site on a geological 111 

substrate of granite and granodiorite (Department of Mineral Resources, Thailand).  The annual 112 

average temperatures for Mae Hong Son and Chiang Mai provinces, respectively, were 25.2°C and 113 

25.4°C from 1961 – 1990 and annual precipitation was 1261 mm and 1185 mm over the same period 114 

(World Meteorological Office, 2017).   115 

Soil Sampling and Treatment 116 

The soil at Boundary Plantation was sampled on four occasions from June 2014 to March 2015.  Six 117 

randomly located points were sampled on each occasion, giving a total of 24 soil cores across an 118 

area of approximately 25 hectares of forest.  Wat Ban Chan was visited in February 2016 when six 119 

randomly located points were sampled across an area of approximately 1 hectare of forest. 120 

At each site, soil samples were taken as cylindrical cores (6.2 cm diameter and 20 cm depth at 121 

Boundary Plantation; 6.8 cm and 15 cm depth at Wat Ban Chan).  The cores were extruded and cut 122 

into 1 cm layers with respect to soil depth from the forest floor; this was the minimum thickness 123 

which would provide sufficient sample mass for analyses.  After a short period of storage at 4°C, field 124 

moist samples were used to determine soil pH (in deionized water) and water content.  Sub-samples 125 

of each layer were oven dried overnight at 105°C then ground sufficiently to pass through a 2 mm 126 

soil sieve.  Dried samples were used to determine bulk density, carbon content, stable element 127 

concentrations and radionuclide activity concentrations.  Total and organic carbon contents were 128 

determined in small sub-samples of soil using an elemental analyser (Flash 2000, Thermo Scientific) 129 

and a total organic carbon analyser (TOC-V, Shimadzu).  The instruments were calibrated with in-130 

house standards and quality controlled using certified reference materials (chalky soil and peaty soil) 131 

obtained from Elemental Microanalysis, Okehampton, UK.  NH4-exchangeable and HNO3-extractable 132 
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stable element concentrations were determined by ICP-MS (iCAP-Q ICP-MS, Thermo Fisher 133 

Scientific).  The instrument was calibrated using Certiprep multi-element standards (Fisher Scientific) 134 

in 2% trace analysis grade HNO3.  Internal standards comprised Sc (100 μg L-1), Rh (20 μg L-1) and Ir 135 

(10 μg L-1) in 2% trace analysis grade HNO3; procedural blanks were prepared using appropriately 136 

diluted HNO3 and NH4NO3.  Details of radionuclide measurements are given below.  Three soil layers 137 

were selected from the region of each soil profile containing the majority of 137Cs (5-6, 7-8 and 9-10 138 

cm in Boundary Plantation soil; 1-2, 2-3 and 3-4 cm in Wat Ban Chan soil).  Clay-sized (≤2 μm) 139 

fractions were separated from these dried and homogenised samples by low speed centrifugation, 140 

following the method developed by USGS (Poppe et al., 2001).  After separation, the mineralogy of 141 

the clay-sized fractions was determined using powder X-ray diffraction (XRD).  Diffraction patterns 142 

were collected for each sample using a Bruker D8 powder diffractometer operating with 143 

monochromated CuKα1 radiation in reflection mode over the 2-θ range 5-50° using a 0.014° 2-θ 144 

step over a period of 3h in a flat plate sample holder. 145 

Measurement of Radionuclides 146 

Activity concentrations of 137Cs, 241Am and 210Pb were determined in seven cores from Boundary 147 

Plantation; 137Cs and 210Pb were determined in six cores from Wat Ban Chan (241Am, used as a marker 148 

for global nuclear weapons fallout, was below detection limit in all samples from Wat Ban Chan).  149 

Sub-samples of soil were dried and homogenised, then packed into small (5.4 cm ) polystyrene 150 

Petri dishes.  These were sealed and left to stand for at least three weeks prior to counting to allow 151 

ingrowth of 214Pb and 214Bi daughters in the 238U decay chain.  Samples were counted for 24 hours on 152 

a high purity germanium detector (Canberra/Mirion Technologies) shielded from ambient radiation 153 

in 10 cm thick, copper-lined lead ‘castles’.  Data were processed using Genie 2000 gamma 154 

acquisition and analysis software (Canberra Industries, 2013).  Counting efficiencies for all 155 

photopeaks of interest were determined using standards with identical geometries and densities as 156 

the soil samples being counted.  Standards were prepared using mixed gamma standard R08-01, 157 

supplied and certified by the National Physical Laboratory (Teddington, UK) and IAEA Certified 158 

Reference Material IAEA-447 (‘Radionuclides in Moss Soil’), supplied and certified by the 159 

International Atomic Energy Agency (Vienna, Austria).  Caesium-137 activity was quantified using the 160 

661.7 keV (Ba-137m) photopeak, 241Am was quantified using the 59.5 keV photopeak  and total 210Pb 161 

was quantified using the 46.5 keV photopeak.  The activities of radionuclides are presented for the 162 

time of sampling (ie. not decay corrected).  Supported 210Pb was quantified indirectly using the 351.9 163 

keV and 609.3 keV photopeaks of 214Pb and 214Bi, respectively, assuming that the activities of these 164 

two radionuclides are equal to the activity of 210Pb when the 226Ra  210Pb decay chain is in 165 

equilibrium.  The accuracy of this method was checked by comparing the measured activity of 226Ra 166 
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with the certified value for IAEA Certified Reference Material IAEA-447.  Unsupported (ie. 167 

atmospherically-derived) 210Pb (210Pbex) was calculated by subtracting supported 210Pb from total 168 

210Pb.   169 

Estimating Ages of Accumulating Organic Matter 170 

Measured vertical 210Pbex distributions in the soil profiles were used to estimate the ages of organic 171 

matter at different depths within each soil.  The Constant Rate of Supply (CRS) model was used, as 172 

described by Appleby (1998).  As leaf litter falls onto the forest floor it is subsequently covered and 173 

buried by the continuous accumulation of newer litter; the rate of burial is determined by the annual 174 

production of new litter and the rate at which the litter decomposes.  Application of the CRS model 175 

to quantify this burial rate assumes a constant flux of 210Pbex deposition from the atmosphere to the 176 

forest floor and that 210Pb binds strongly and irreversibly to soil organic matter on contact with the 177 

litter layer.  This has been confirmed by numerous studies (eg. Vile et al., 1999) and is confirmed by 178 

the very strong relationships between 210Pbex activities and soil organic carbon in both the soils 179 

studied (Figure 1).  According to the CRS model, the time t (years) since 210Pb was deposited to a 180 

specific soil layer is given by: 181 

   
 

 
   
     
 

 

where λ is the physical decay constant of 210Pb (0.0311 y-1), Atot is the total inventory of 210Pbex in the 182 

soil profile (Bq m-2) and A is the inventory of 210Pbex  (Bq m-2) below the soil layer being dated.  The 183 

deposition rate of 210Pbex, I, is calculated from Atot and λ (Appleby, 1998): 184 

        

Deposition rates ranging from 78 – 118 Bq m-2 y-1 were calculated for Boundary Plantation, 185 

consistent with a mean deposition rate of 113 Bq m-2 y-1 measured in UK woodland by Likuku and 186 

Branford (2011).  No measurements for 210Pbex deposition rates in NW Thailand are available in the 187 

literature but, from our measurements, we calculated a range of fluxes from 65 – 97 Bq m-2 y-1 at 188 

Wat Ban Chan.    189 
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Results 190 

Vertical distributions of soil organic carbon and bulk density are shown in Figure 2; other selected 191 

soil characteristics are summarised in Table 1.  The soil at Boundary Plantation is characterised by a 192 

well-developed surface organic layer (mor humus) with a strongly acidic pH.  Organic carbon (OC) 193 

content ranged from 32% at the surface to 2% at 17 cm.  Based on the USDA (1999) definition of 194 

>20% OC for freely-draining soils, the uppermost 5-6 cm of the Boundary Plantation soil is a ‘litter’ or 195 

O horizon (Figure 2a).  In contrast, OC in the upper 3 cm of the Wat Ban Chan soil ranged between 3 196 

– 5 % (Figure 2b).  The differences in OC contents throughout each of the soils are reflected in the 197 

average dry bulk density profiles for each site (Figure 2c).   Bulk density at Boundary plantation 198 

varied from 146 kg m-3 at the surface to 470 kg m-3 at the base of the organic layer (5-6 cm).  Bulk 199 

density in the upper 1 cm layer of the Wat Ban Chan soil was 789 kg m-3; this is comparable to the 200 

bulk density at a depth of 8 cm in the Boundary Plantation soil.  At Wat Ban Chan there was a large 201 

increase in bulk density to a maximum value of 1780 kg m-3 at 2 cm depth, then a reduction to a 202 

mean value of 1460 kg m-3 from 3 to 13 cm depth.  The ranges of soil pH at both sites did not 203 

overlap, with Boundary Plantation having a much lower pH range than Wat Ban Chan (Table 1).  The 204 

minimum pH at Boundary Plantation (3.69) occurred at 7 cm, where well-humified organic matter 205 

was mixed with sand grains, while minimum pH at Wat Ban Chan (5.44) was at 9 – 10 cm depth.   206 

The ranges of NH4-exchangeable and HNO3-extractable potassium concentrations overlapped at 207 

both sites, but maximum potassium concentrations were higher at Boundary Plantation than at Wat 208 

Ban Chan.  Conversely, the Wat Ban Chan soil had much higher HNO3-extractable aluminium and 209 

iron concentrations than the Boundary Plantation soil.   210 

Vertical distributions of 137Cs in the soils at Boundary Plantation and Wat Ban Chan are shown in 211 

Figures 3 and 4, respectively.  At Boundary Plantation, 137Cs activity concentration (Bq kg-1) was 212 

maximal at 5-6 cm depth (Figure 3a), characterised by moderately humified organic matter and an 213 

OC content of 20% (Figure 2a).  The peak inventory of 137Cs (Bq m-2 – the product of the 137Cs activity 214 

concentration and the soil bulk density) was located 2 cm deeper, at 7-8 cm (Figure 3b) where 215 

organic matter was more humified and OC was 6.3%.  The cumulative inventory of 137Cs, measured 216 

from the surface downwards, reached 50 % at approximately 7 cm depth (Figure 3c); this represents 217 

the ‘half-depth’ of 137Cs migration in the Boundary Plantation soil in 2015. 218 

The half-depth of 137Cs at Wat Ban Chan was much shallower than at Boundary Plantation.  219 

Caesium-137 activity concentration (Bq kg-1) at Wat Ban Chan was maximal at 2 – 3 cm depth (Figure 220 

4a); this soil layer contained 3.0 % OC.  The peak inventory of 137Cs was also located at 2 – 3 cm 221 
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depth (Figure 4b) and the ‘half-depth’ of 137Cs migration in the Wat Ban Chan soil in 2016 was 2 cm 222 

(Figure 4c).   223 

Americium was detectable in some samples at Boundary Plantation but the activity concentrations 224 

and inventories of 241Am were much lower than those of 137Cs (Figure 5).  Peak activity concentration 225 

(Bq kg-1; Figure 5a) and peak activity inventory (Bq m-2; Figure 5b) of 241Am were both located at a 226 

depth of 7-8 cm.  Cumulative percentage distribution of 241Am reached 50 % at 7 cm depth; thus the 227 

observed ‘half-depths’ for 241Am and 137Cs migration in 2015 were the same.  Americium-241 was 228 

entirely undetectable in the Wat Ban Chan soil samples; nuclear weapons tests produced much less 229 

241Am than 137Cs and global fallout was considerably lower at this latitude. 230 

The powder X-ray diffraction (XRD) patterns of clay-sized fractions from selected depth samples are 231 

shown in Supplementary Material (Figure S1 for Boundary Plantation and Figure S2 for Wat Ban 232 

Chan).  These data were phase-matched against the International Centre for Diffraction Database 233 

(ICDD) to determine the crystalline material present and these pattern numbers are given in 234 

parentheses after each phase.  Quartz (46-1045), kaolinite (06-221) and illite (26-0911) were 235 

identified in the Boundary Plantation samples while gibbsite (33-0018) was found in addition to 236 

quartz and the same clay minerals in the Wat Ban Chan samples.  The XRD results suggest that the 237 

clay-sized fraction at the base of the litter layer (5-6 cm) at Boundary Plantation contained only 238 

amorphous, non-crystalline material (probably colloidal organic matter) although very small 239 

reflections at 24.85 (d = 3.58 Å) and 26.64 (d = 3.34 Å) suggest the presence of trace quantities of 240 

kaolinite and quartz, respectively, at this depth.  At depths of 7-8 cm and 9-10 cm there are strong 241 

reflections indicating the presence of both kaolinite (12.32, d=7.18Å and 24.85, d=3.58Å) and 242 

quartz (20.86, d=4.25Å and 26.64, d=3.34Å) in the clay-sized fraction of the soil.  The only clear 243 

indication of the presence of illite (17.65, d= 5.02Å) can be seen at a depth of 9-10 cm, which is 244 

below the depths of maximum 137Cs activity concentration (5-6 cm) and activity inventory (7-8 cm), 245 

where illite is evidently absent. 246 

At Wat Ban Chan (Figure S2) there were strong and consistent reflections for kaolinite (12.32, 247 

d=7.18Å; 24.85, d=3.58Å; 37.67, d=2.39Å and 45.57, 1.99Å) and illite (8.84, d=10.00Å; 17.65, 248 

d=5.02Å and 26.67, d=3.34Å) in clay-sized fractions from each soil depth analysed.  In addition, 249 

gibbsite reflections (18.28, d=4.85Å and 20.30, d=4.37Å) were clearly evident in each sample, 250 

consistent with the high HNO3-extractable Al in the Wat Ban Chan soil and indicating the highly 251 

weathered nature of this soil. 252 
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Vertical distributions of (unsupported) 210Pbex activity concentrations (Bg kg-1) in the soils at 253 

Boundary Plantation and Wat Ban Chan are shown in Figures 6(a) and 7(a), respectively.  At both 254 

sites, peak 210Pbex activity concentrations occurred at the soil surface (forest floor) and declined in 255 

each successive depth increment, as would be expected for a radionuclide derived from continuous 256 

atmospheric deposition.  The CRS model (see methods) was used to construct the age-depth 257 

relationships for soil organic carbon shown in Figures 6(b) and 7(b) for Boundary Plantation and Wat 258 

Ban Chan, respectively.  For Boundary Plantation, the age-depth curve indicates that OC in the 7-8 259 

cm layer, in which the highest 137Cs activity inventory and ‘half-depth’ of 137Cs migration were 260 

observed (Figure 3), accumulated in 1961, within a range from 1953 – 1969. 261 

The 210Pbex activity concentration (Bg kg-1) at Wat Ban Chan decreased approximately exponentially 262 

downwards from the soil surface (Figure 7a).  The year of accumulation of OC in the 2 – 3 cm layer 263 

was estimated to be 1967, within a range from 1965 – 1969 (Figure 9b).  This layer contains the 264 

highest activity concentration and activity inventory of 137Cs at Wat Ban Chan (Figure 4).  265 
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Discussion 266 

Atmospheric weapons tests peaked in 1962 (UNSCEAR, 2000) and cumulative deposition from these 267 

tests in the northern hemisphere peaked around 1966 (Cambray et al., 1989).  From interpolated 268 

deposition data for 137Cs across the British Isles from 1955 – 1985, the average inventory in 1985 at 269 

Boundary Plantation was 2090 Bq m-2 137Cs (Wright, 2016).  A survey by Horrill et al. (1988) 270 

measured an average deposition inventory from Chernobyl of 830 Bq m-2 137Cs close to Boundary 271 

Plantation (Chaplow et al., 2015).  The summed weapons fallout and Chernobyl 137Cs would have 272 

decayed to 1485 Bq m-2 in 2015, which agrees closely with our measured inventory in 2014 – 2015 of 273 

1489 Bq m-2.   274 

Few data exist on 137Cs deposition to Thailand and these are generally expressed in activity 275 

concentrations (Bq kg-1) rather than deposition inventories (Bq m-2).  At Wat Ban Chan in 2016 we 276 

measured a total soil 137Cs inventory of 200 Bq m-2.  According to UNSCEAR (1969) the cumulative 277 

deposition up to 1968 of 137Cs between latitudes 10° and 20° N was 790 Bq m-2; this would have 278 

decayed to 260 Bq m-2 by 2016.  Measurements of radioactive fallout in east Asia after the Chernobyl 279 

accident showed mostly undetectable deposition of radiocaesium across the region (Cambray et al., 280 

1987a; 1987b).  Finer scale measurements of 137Cs throughout Vietnam showed ‘insignificant’ 281 

deposition from Chernobyl from 1986 to 1990 (Hien et al., 1994) and ‘latitude mean deposition 282 

density’ ranging from 237 Bq m–2 south of 16° latitude to 1097 Bq m–2 north of 16° (Hien et al., 283 

2002).  Contribution of 137Cs from Fukushima was negligible in the region: Long et al. (2012) reported 284 

a transient peak air concentration of 37 μBq m-3 in Ho Chi Minh City, though no deposition 285 

inventories were reported.  We conclude that the 137Cs inventory we measured at Wat Ban Chan was 286 

derived mainly from atmospheric nuclear weapons testing, with peak deposition in the mid-1960s. 287 

Even though both sites supported mature pine trees at similar tree densities, the difference between 288 

their respective soil organic carbon (OC) contents was striking (Figure 2a, b).  Production and 289 

decomposition of tree litter is strongly dependent on latitude (Berg et al., 1999; Zhang et al., 2008) 290 

and the relative accumulation of litter and partially-humified organic matter on the forest floor 291 

represents a balance between these processes.  Litter production is significantly higher in more 292 

southerly latitudes, but the rate of decomposition in tropical forests such as Wat Ban Chan is high 293 

enough to prevent any appreciable accumulation of non- or partially-humified material on the forest 294 

floor.  Conversely, significant accumulation of litter and forest floor materials is typical of temperate 295 

and boreal forests due to comparatively low rates of decomposition (Berg, 2014).  Given the greatly 296 

contrasting organic matter accumulation rates at our two study sites, the accumulation of 297 

atmospherically-derived radionuclides recorded in the upper regions of the soil at Wat Ban Chan is 298 
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substantially compressed compared with the Boundary Plantation soil.  Hence, the period of time 299 

represented by 1 cm depth in the upper part of the Wat Ban Chan soil (Figure 7b) is considerably 300 

greater than 1 cm depth in the Boundary Plantation soil’s organic layer (Figure 6b).   301 

Distributions of atmospherically derived radionuclides such as 210Pbex and 241Am are invaluable 302 

diagnostic tools when interpreting 137Cs distributions.  In analysing our data we made the 303 

assumption that, after deposition, 210Pbex is inextricably bound to the organic matter (OM) it first 304 

comes into contact with on the forest floor (ie. litter).  There is strong evidence to support this 305 

assumption. Vile et al. (1999) conducted experiments which showed that the binding of soluble 306 

(Pb2+) and particulate lead to peat is strong and stable under varying moisture content regimes.  Dorr 307 

and Munnich (1989) demonstrated that the rates of downwards transfer of OM and 210Pb in forest 308 

soils are identical, concluding that 210Pb is carried by OM and is thus a good indicator of the 309 

movement of the OM.  More recently, Teramage et al. (2015) have proposed the use of 210Pb as a 310 

reliable tracer for the cycling of OM in forests, based on the strong correlations they observed in 311 

210Pb and OM distributions vertically (in soil profiles) and horizontally in a Japanese cypress 312 

(Cryptomeria japonica) forest.  Our data confirm that 210Pbex and OC are significantly correlated at 313 

both of our sampling sites (Figure 1a, b).  Am-241 should also be strongly bound to OM since it exists 314 

in the 3+ oxidation state and forms strong complexes with the dominant functional groups on OM.  315 

Gil-Garcia et al. (2009b) presented a geometric mean solid-liquid Kd value of 2500 L kg-1 for 241Am in 316 

organic soils, with a maximum value of 110,000 L kg-1.  Thus, 241Am should provide a marker for the 317 

fate of OM as it is progressively decomposed and transported down the soil profile.  However, 241Am 318 

in soils is partly derived from direct deposition and partly from in-growth resulting from physical 319 

decay of 241Pu, which makes it difficult to determine its exact residence time in specific soil layers.  320 

Furthermore, an analysis of literature by Coughtrey et al. (1984) concluded that 241Am is potentially 321 

more mobile than Pu in acidic soils, suggesting that it may not be fully retained by solid-phase OM in 322 

acid forest soils. 323 

Given the deposition history described above, 137Cs derived from nuclear weapons fallout is the most 324 

appropriate tracer to study the long-term fate of radiocaesium in natural ecosystems, since it has 325 

been present in the environment for at least 50 years.  Due to the large differences in vertical 326 

gradients of bulk densities in the soils at Boundary Plantation and Wat Ban Chan (Figure 2c) the peak 327 

activity inventories (Bq m-2) and half-depths provide the most reliable measures of the vertical 328 

migration of 137Cs since deposition.  Peak 137Cs inventory and half-depth of 137Cs at Boundary 329 

Plantation were both located at 7-8 cm, measured from the surface of the litter layer (ie. the forest 330 

floor).   This was 2 cm below the ‘litter’ or O horizon (according to the USDA, 1999, definition – see 331 

Figure 2a) but the OC content was still relatively high (6.3 %) at this depth.  Some sand grains were 332 
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visible in these samples and there were small reflections attributable to quartz in the X-ray 333 

diffractograms of sub-2 μm material from this depth (Figure S1).  Kaolinite reflections were also 334 

evident but there was no indication of illite as a component of the clay-sized fraction at this depth.  335 

A weak illite reflection at 17.65 was evident at a depth of 9-10 cm, accompanied by much stronger 336 

quartz and kaolinite reflections illustrating the increasing mineral content of the soil 2 cm below the 337 

depth of peak 137Cs accumulation (4.6 % OC).  Co-located with the peak inventory and half-depth of 338 

137Cs were the peak inventory and half-depth of 241Am (Figure 5b, c).  The source of 241Am is global 339 

nuclear weapons fallout since no 241Am (or plutonium, including 241Pu which decays to 241Am) from 340 

Chernobyl was measured at this site; on this basis the depth of peak 137Cs accumulation can be dated 341 

to the global weapons fallout era.  More precise evidence for the age of this depth of the forest soil 342 

is provided by the 210Pbex profile in Figure 6(a) and the accompanying age-depth profile in Figure 343 

6(b).  This provides a date of 1961 (within a range of 1953 – 1969) for the depth of peak 137Cs 344 

accumulation at Boundary Plantation, which is clearly within the global nuclear weapons fallout era.  345 

Based on our assumption that 210Pbex is a reliable marker of OM accumulation, this evidence 346 

suggests that 137Cs deposited at Boundary Plantation in the 1960s has migrated at the same rate as 347 

the OM which accumulated on the forest floor at the time of peak global weapons fallout.  It is 348 

striking that this migration has not been more pronounced given the absence of illite in the layer of 349 

peak 137Cs accumulation; fixation by illite has evidently not been the key mechanism of retention of 350 

137Cs in the soil at this site.   351 

In contrast, the soil at Wat Ban Chan showed clear X-ray reflections for illite in the sub-2 μm 352 

fractions extracted from the layer of peak 137Cs accumulation and the layers immediately above and 353 

below.  Peak accumulation and half-depth of 137Cs (2-3 cm) were both much shallower than at 354 

Boundary Plantation; this probably reflects the strong retention of 137Cs by illite in the denser, more 355 

mineral soil at Wat Ban Chan.  As described above, the uppermost 3 cm at the surface of the Wat 356 

Ban Chan soil represents a compressed chronology of OC accumulation when compared with 357 

Boundary Plantation, which can be seen by comparing Figures 6b and 7b, respectively.  No 241Am 358 

was detectable at Wat Ban Chan, but an exponential depth profile of 210Pbex (Figure 7a) provided an 359 

age-depth relationship (Figure 7b) that firmly dated the peak accumulation of 137Cs to the era of 360 

maximum global nuclear weapons fallout (1967, within the range 1965-1969).  The precision of this 361 

date illustrates the applicability of 210Pbex as a means of dating OC accumulation in forest topsoil and 362 

also the strong sorptive capacity for radiocaesium of the topsoil at Wat Ban Chan. 363 

Dorr and Munnich (1989) quantified the downwards migration of 137Cs from global weapons fallout 364 

in German forest soils in 1987 (correcting for the contribution of 137Cs from Chernobyl) and 365 

concluded that 137Cs had migrated slightly faster than solid-phase OM because caesium partitions 366 
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between solid and liquid phases within the soil.  They also concluded that, in forest soils rich in 367 

organic matter, “ion exchange (of 137Cs) on mineral soil particles is of minor influence” and that 368 

mobilisation of 137Cs in such soils is largely due to soluble OC; this is supported by evidence from 369 

Agapkina et al. (1995).  Our 210Pbex date of 1961 for the soil layer in which peak 137Cs accumulation 370 

was observed at Boundary Plantation generally supports these conclusions: in other words, 137Cs 371 

deposited in the mid-1960s has migrated to a layer of solid organic material which accumulated in 372 

the early 1960s.  Similarly, peak 241Am activity in the same soil layer at Boundary Plantation suggests 373 

that this radionuclide has also migrated (to a small extent) with soluble OC rather than being 374 

retained entirely by solid-phase OM.  It is clear, however, that both 137Cs and 241Am deposited in the 375 

mid-1960s have remained predominantly associated with OM that was introduced to the soil as 376 

litter fall in the same period. 377 

Immobilisation of radiocaesium in soils is known to be controlled primarily by highly specific 378 

interaction with 2:1 clay minerals, especially illite.  Our observations and conclusions from the Wat 379 

Ban Chan site agree with this precept: however, the results from Boundary Plantation are less easily 380 

explained.  Caesium is known to sorb weakly and non-specifically to organic matter in soils.  Gil-381 

Garcia et al. (2009a) proposed a geometric mean solid-liquid Kd value of 270 L kg-1 for caesium in 382 

organic soils; however, they also proposed a maximum Kd value of 95000 L kg-1 that indicates that 383 

sorption of caesium can be very strong in some organic soils.  Rigol et al. (1998) investigated four 384 

soils ranging from 46% to 99% OM and concluded that radiocaesium sorption could be attributed to 385 

small quantities of illite in three of them; the exception was a soil with 99 % OM.  It is possible that, 386 

even though XRD analyses of Boundary Plantation soil showed an absence of illite in the layer of 387 

peak 137Cs accumulation, very small (undetectable) quantities of illite may have been present and 388 

could have been sufficient to retain the bulk of 137Cs in the layer of OM in which it was originally 389 

deposited.  This is unlikely, however; powder X-ray diffraction is extremely  sensitive for 390 

phyllosilicates when carried out in reflection mode because powder diffraction patterns of the clay 391 

minerals are prone to preferred orientation effects.  The flat plate sample holder facilitates the 392 

alignment of the platy crystals with one another and the sample holder in a non-random 393 

arrangement.  As only polycrystalline materials with individual crystals randomly oriented to the 394 

incident beam attain the expected intensity ratios calculated from the crystal structure, this 395 

arrangement of ordering of the platy crystals causes reflections originating from the well-ordered 396 

and aligned layers to be significantly enhanced compared with those that originate from the 397 

ordering between the layers and/or other materials not showing this effect.  This means that very 398 

small quantities below the detection limit of ~3 % can be observed from materials which contain 399 

these phases.  However, even if such small quantities of illite were present, it has been shown that 400 
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clays in combination with OM may not experience the lattice collapse which is necessary to fix Cs as 401 

strongly as in mineral soils (Hird et al., 1996).  Kruyts and Delvaux (2002) have described how 402 

accumulating OM in forest soils acts to ‘dilute’ the specific sorption of radiocaesium by frayed edge 403 

sites on micaceous clay minerals. 404 

Some authors have suggested that there is a significant biological role in the retention of 137Cs in 405 

organic soils (Sanchez et al., 2000).  Tegen et al. (1991) observed that migration of caesium in forest 406 

soil columns was altered by increasing the incubation temperature which resulted in an increase in 407 

microbial decomposition rate.  Rafferty et al. (2000) observed that, 10 years after Chernobyl, 408 

downwards physical migration of 137Cs in pine forest soils was ‘countered’ by uptake and 409 

translocation in plant roots and fungal mycelia. This seems to be a longer-term characteristic of 410 

radiocaesium behaviour; one year after the Fukushima accident Koarashi et al. (2012) found no 411 

evidence that the extractability of 137Cs in forest soils was affected by chloroform fumigation which 412 

would have released any biologically-held radiocaesium.  The same lead author, however, found that 413 

137Cs from the Fukushima accident was retained in the surface organic layer of a Japanese Cypress 414 

(Cryptomeria japonica) forest much more effectively than in the organic layer in a deciduous forest 415 

soil (Koarashi et al., 2016).  Prior to the Fukushima accident, Takenaka et al. (1998) found strong 416 

correlations between OM and weapons fallout 137Cs in forest soils under hinoki (Chamaecyparis 417 

obtusa) and red pine (Pinus densiflora).  Koarashi et al. (2016) concluded that the forest type plays 418 

an important role in controlling the downwards migration of 137Cs through the soil.  Since different 419 

forest types are characterised by different soil OM dynamics it is probable that this is the key 420 

variable that results in the observed differences in 137Cs behaviour between different forest soils. 421 

Conclusions 422 

Our results provide evidence that, even under strikingly different climatic regimes, the long-term (50 423 

year) downwards migration of 137Cs in coniferous (pine) forest soil is limited to a few cm and linked 424 

to OM accumulation and migration.  Migration was particularly limited in a tropical pine forest soil 425 

(Wat Ban Chan, Thailand) in which fixation by illite is the most likely retention mechanism, though a 426 

high bulk density may also have helped to limit vertical migration of 137Cs here.  Even at this site, the 427 

majority of 137Cs remains associated with the OM present when it was deposited; 210Pbex associated 428 

with OM allows the precise dating of the 137Cs here to the global nuclear weapons fallout era.  In the 429 

more highly organic soil underlying the temperate pine forest (Boundary Plantation, UK) some 430 

limited vertical movement of weapons fallout 137Cs has occurred, but the layer of peak 137Cs 431 

accumulation is still relatively shallow (7-8 cm) and clearly co-located with OM originating at the 432 

time of global weapons testing.  The absence of measurable illite in this layer suggests that retention 433 
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is due to the effects of non-specific sorption to OM, possibly coupled with biological uptake and 434 

recycling.  Furthermore, while the penetration of the temperate pine forest soil profile by 137Cs to a 435 

depth of 7-8 cm can be interpreted as downwards ‘transport’ following deposition, it is in large part 436 

due to the accumulation of organic matter above the deposited radiocaesium.  The lack of significant 437 

migration over a 50 year period at both sites has important consequences for long-term forest 438 

management and radiation doses to humans and other organisms in forests.  Models of long-term 439 

radiocaesium migration in forest soils should explicitly account for the role of OM in this process, 440 

especially when considering forests under contrasting climatic regimes.   441 
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Table 1:  Soil properties at the two study sites (to 3 significant figures). 

 

 
Sampling Site Location 

(decimal 

degrees) 

pH Total (acid-

extractable) 

potassium 

(mg kg
-1

 DW) 

Exchangeable 
potassium 
(mg kg

-1
 DW) 

Acid-

extractable 

Al  
(mg kg

-1
 DW) 

Acid-

extractable 

Fe  
(mg kg

-1
 DW) 

  
Boundary 

Plantation 

  
53.2135° N 
1.0999° W 

  
3.69 – 

4.12 

  
234 – 793 

  
33.0 - 536 

  
896 - 
1820 

  
1840 - 
6290 

  
Wat Ban 

Chan 

  
19.0650° N 
98.3155° E 

  
5.44 – 

6.22 

  
214 - 389 

  
90.4 - 331 

16400 - 
27500 

11700 - 
16100 
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Figure 1:  Relationships between organic carbon (% by weight) and 

210
Pb

ex 
activity concentrations (Bq/kg) in (a) Boundary Plantation and (b) 

Wat Ban Chan.  Points are means, vertical and horizontal bars are SEM (n=7 for Boundary Plantation, n= 6 for Wat Ban Chan). 
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 Figure 2:  Depth profiles of organic carbon (% by weight) at (a) Boundary Plantation and (b) Wat Ban Chan.  (c) shows depth profiles of bulk 
densities for both sites.  Points are means; horizontal bars are SEM based on inter-sample variation (n=24 for BP, n=6 for WBC).  The grey shaded 
area in (a) represents the litter or O horizon, based on the USDA definition of >20% organic carbon (USDA, 1999).  Each point represents the 
mid-point of a 1 cm soil layer. 
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Figure 3:  Depth profiles of (a) activity concentration (Bq kg

-1
), (b) activity inventory (Bq m

-2
) and (c) percentage and cumulative percentage 

inventory for 
137

Cs at Boundary Plantation in 2014/15.  Points are geometric means; horizontal bars in (a) and (b) are SEM based on inter-sample 
variation (n=7). Each point represents the mid-point of a 1 cm soil layer. 
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Figure 4:  Depth profiles of (a) activity concentration (Bq kg

-1
), (b) activity inventory (Bq m

-2
) and (c) percentage and cumulative percentage 

inventory for 
137

Cs at Wat Ban Chan in 2016.  Points are geometric means; horizontal bars in (a) and (b) are SEM based on inter-sample variation 
(n=6).  Each point represents the mid-point of a 1 cm soil layer. 
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Figure 5:  Depth profiles of (a) activity concentration (Bq kg

-1
), (b) activity inventory (Bq m

-2
) and (c) percentage and cumulative percentage 

inventory for 
241

Am at Boundary Plantation in 2014/15.  Points are geometric means; horizontal bars in (a) and (b) are SEM based on inter-
sample variation (n=7).  Each point represents the mid-point of a 1 cm soil layer. 
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Figure 6:  (a) Depth profile of 

210
Pb

ex
 activity concentrations at Boundary Plantation and (b) estimates of the year versus soil depth based on 

the  
210

Pb
ex

 activity concentrations.  Points are geometric means; horizontal bars are SEM based on inter-sample variation (n=7).  Each point 

represents the mid-point of a 1 cm soil layer. 
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Figure 7:  (a) Depth profile of 

210
Pb

ex
 activity concentrations at Wat Ban Chan and (b) estimates of the year versus soil depth based on the  

210
Pb

ex
 activity concentrations.  Points are geometric means; horizontal bars are SEM based on inter-sample variation (n=6). Each point 

represents the mid-point of a 1 cm soil layer. 
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