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Abstract Machines
Overlaying Virtual Worlds on Physical Rides

Anonymous Author(s)

ABSTRACT
Overlaying virtual worlds onto existing physical rides and
altering the sensations of motion can deliver new experi-
ences of thrill, but designing howmotion is mapped between
physical ride and virtual world is challenging. In this pa-
per, we present the notion of an abstract machine, a new
form of intermediate design knowledge that communicates
motion mappings at the level of metaphor, mechanism and
implementation. Following a performance-led, in-the-wild
approach we report lessons from creating and touring VR
Playground, a ride that overlays four distinct abstract ma-
chines and virtual worlds on a playground swing. We com-
pare the artist’s rationale with riders’ reported experiences
and analysis of their physical behaviours to reveal the dis-
tinct thrills of each abstract machine. Finally, we discuss how
to make and use abstract machines in terms of heuristics
for designing motion mappings, principles for virtual world
design and communicating experiences to riders.
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1 INTRODUCTION
Virtual reality has great potential as an entertainmentmedium,
including in the ‘ride industry’ where amusement parks have
recently begun exploring how overlaying virtual worlds on
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existing physical rides can deliver new thrills. This reverses
the traditional VR perspective which aims to stimulate our
physical senses to match what we are seeing in headsets, to
instead consider how to retrofit virtual worlds to existing
physical experiences. It also begs questions: What kinds of
mappings between physical and virtual motion will work
best? and how far can we separate physical and virtual sen-
sations of movement in the interest of delivering thrilling,
unusual and challenging experiences without riders feeling
truly awful?

We report the lessons learned from designing and touring
a ride that mapped the experience of an existing playground
swing onto four different virtual rides, describing the design
rationale for each ride and how it was experienced by thou-
sands of riders. This enables us to tackle a central research
question: how canwe designmappings between physical and
apparent virtual movement to balance sensations of thrill and
discomfort? This turns out to be a complex design challenge,
involving making appropriate mappings between sensations
of physical and virtual forces; designing a journey through a
virtual world that matches the characteristics of a physical
movement; and communicating the nature of the experience
to potential riders who cannot see what is happening inside
people’s headsets. We reveal how our artist introduced the
concept of riding a machine as a way of dealing with this
complexity, constraining the design space, bridging between
creative design and implementation, and communicating
among the design team and ultimately with the public. This
leads us to contribute the general concept of an abstract ma-
chine as a new form of intermediate design knowledge to
support the design of future experience that remap exist-
ing physical movements onto virtual ones. We generalise an
abstract machine as combining metaphor with mechanism,
encouraging consideration of forces and sensation and being
both implementable and rideable. We draw on our findings
to reveal principles for: mapping between forces, embedding
machines into worlds, and drawing on ride data profiles to
communicate with the public.

2 RELATEDWORK
HCI has a history of engaging with interactive ride design
(e.g., [16, 18]) and also amusement parks as a context for
photo work and souvenir generation [9]. Our particular fo-
cus on sensory alignment in ride design speaks to three
discussions within the wider literature.
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Embodied immersion
The emergence of commodity VR headsets has fueled a resur-
gence of interest in embodied immersive experiences. These
can broadly be understood as falling along a reality-virtual
continuum [17], a spectrum of possible experiences that in-
cludes VR, in which the user feels that they are removed
from their current physical environment to be immersed in
to a new one and augmented reality, in which they feel that
they have remained firmly in their local environment but
that virtual content has been introduced into it. In between,
lie interesting possibilities for combining pre-existing physi-
cal experiences with virtual worlds including Passive Hap-
tics [12] and Substitutional Reality [24] that overlay virtual
worlds on existing physical props to enhance tactility, and
Visual Kinaesthetic Experiences that overlay virtual worlds
onto existing physical movements to enhance kineasthethic
sensations [25] as we do in this paper.

Sensory alignment
Underlying these various approaches is the question of align-
ment - to what extent should physical and virtual sensations
be aligned with one another? Previous research approaches
sensory alignment in three broad ways. Firstly, some work
sees achieving tight sensory alignment as an important if
difficult challenge. The desire to enhance digitally mediated
visual and auditory stimuli with aligned tactile, haptic and
kinesthetic ones has fueled development of interfaces includ-
ing motion platforms, actuated devices and surfaces, wear-
ables, passive haptics [12] and stimulations of muscles to
simulate object impact [14]. Secondly, some research recog-
nises that a small degree of misalignment between visual
and other senses can deliver perceptions of weight [2] or
of touching multiple objects when actually holding a single
object [1], or can deliver useful effects such as appearing to
walk in an infinite straight line in a virtual world while actu-
ally moving in a circle in the physical world [19]. In these
cases, a small degree of visual misalignment is sufficient to
stimulate a useful physical sensation or behaviour while re-
maining generally imperceptible to the user so a not to jar
the overall sense of being in a tightly aligned experience.

The third camp, to which this paper belongs, is grounded
in the idea of stretching the envelope to create relatively
extreme misalignments that deliver unusual and typically
thrilling sensations in pursuit of entertainment. Inspired by
pre-digital illusions such as the Haunted Swing [28] and
the idea of "vertigo play" from Caillois [8] that turn upon
deliberate sensory conflict or confusion, several projects
have explored more extreme misalignments. Byrne et al. [7]
for example, electrically stimulated the vestibular system to
cause conflict with the visual as part of a fighting game that
involved playing with balance. Of particular relevance here is

Tennent et al, [25] who reported an early experiment called
Oscillations that overlaid a single virtual world on a physical
swing to create a vertiginous experience and articulated
key challenges for further research into "visual kinesthetic
experiences" including understanding how to design ride
trajectories, dealing with motion sickness, and designing
visibility to spectators. However, little was reported on how
to design appropriate mappings between physical and virtual
movements or how to overlay multiple virtual experiences
onto a single physical one. Our paper responds to this agenda
while digging deeper into how to design and communicate
multiple distinct mappings for a single physical experience.

Thrill, discomfort and sickness
Ride designers aim to deliver thrills, as do we in exploring
sensory misalignment. However, the notion of thrill is not
widely discussed in the HCI literature (though related no-
tions pertaining to fun most certainly are [5]). A previous
artistic exploration of thrill drew on the literature and phe-
nomenology to argue that thrill arises from a distinctive
combination of arousal, pleasure and anxiety that are experi-
enced when encountering novel stimuli [26]. Previous work
on uncomfortable interactions within HCI considered thrill
as a journey through temporary and deliberately induced
discomfort - from anxiety to catharsis - in the wider interests
of entertainment, enlightenment or sociality [4]. These dis-
cussions motivate our interest in designing mappings that
deliver appropriate mixes of positive and negative sensation.

We note that not all forms of discomfort are equal in this
regard: a degree of being scared is often a positive aspect of
undertaking a thrilling ride, whereas feelings of nausea are
rarely experienced as positive. Motion sickness in particular
is challenging for visual kinesthetic experiences [21]. Previ-
ous research has suggested that a variety of factors affects
VRmotion sickness including type of display, familiarity, age,
duration of the experience, physical ability and others [21].
Sensory Rearrangement Theory [20] identifies two physio-
logical triggers of motion sickness: 1) differences between
signals received from the visual and vestibular systems, and
2) differences in signals from the internal vestibular system
itself (between the semi circular canals that sense rotations
and the otoliths that sense linear motion). [27] suggests that
applying a noisy signal to the vestibular system during mo-
ments of inconsistent visual stimulation from VR reduces
the body’s reliance on the vestibular system for motion sens-
ing and so makes one feel less sick which may explain why
stationary VR can be more nauseating than moving VR.
Finally, we note that people have different tendencies to-

wards thrill seeking [23] as well as susceptibilities to and
tolerances of discomforts including motion sickness. Cater-
ing for such diverse tastes is a motivation for our interest in
designing multiple mappings for a single physical ride.
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3 APPROACH
We follow the approach of Performance-led Research in-the-
Wild’ [3]. This methodology emerged from HCI’s engage-
mentwith artists and cultural applications. Being performance-
led means engaging with artists to create and realise art-
works as a way of exploring novel uses of emerging interface
technologies. Being in-the-wild means revealing how pub-
lic audiences experience it under the realistically stressful
conditions of public performance as a professionally com-
missioned work. Papers that follow this approach typically
provide a reflexive account of both the artist’s design ratio-
nale and the audience’s experiences, reflecting across both
to draw out wider lessons for HCI.
In this case we worked with professional artist [ANON]

to develop a large scale touring installation called VR Play-
ground. VR Playground is an extended swing ride that draws
inspiration from previous work including Oscillations men-
tioned above. However, VR Playground layers multiple vir-
tual worlds onto a single ride to consciously explore different
physical-virtual mappings and consequent experiences of
sensory misalignment. Our paper draws on data from de-
ployments at Norfolk and Norwich Festival, Greenwich and
Docklands Festival, and Stockton Festival where over 15,000
people rode VR Playground. It has since visited South Korea,
Germany and the US, and continues to tour.

Figure 1: A set of VR Playground Swings

4 THE DESIGN OF VR PLAYGROUND
An installation of VR Playground consists of one or more
sets of up to eight swings (figure 1). A rider wears a Samsung
Gear VR headset and headphones and as they swing they
experience one of four ‘abstract machines’: High Roller, Shut-
tlecock, Jellyfish orWalker. Each employs its own ‘rules’ of
motion to map the rider’s swinging action onto an apparent
motion through a distinct virtual world, for example in High
Roller, a rider’s swinging leads to accelerated forward motion
as they rush along a road in an abstract city: the harder they
swing, the faster they appear to move. The design of the the
work unfolded in two phases, motion experimentation and
abstract machine design.

Motion Experimentation
We aimed to understand the range of virtual movement(s)
that a rider might be presented with while swinging. We
began by exploring permutations of translation and rota-
tion applied through a single viewpoint (a ‘neck’ on which
real headset rotations were applied). Trying all permuta-
tions of six degrees of freedom wasn’t practicable, leading
us to create a test environment to experiment with a sam-
ple of different movement characteristics. The intent was to
understand what types of motions felt more or less comfort-
able or challenging. Through this process we derived some
simple heuristics (table 1), based on the idea of off-axis and
on-axis movement. Off-axis means virtual movement intro-
duced in an axis in which a rider is not physically moving,
while on-axis is augmentation of an axis in which the rider is
already moving. We consider the ways in which such move-
ments can be augmented: introduction: adding new degree
of freedom of movement, amplification: increasing existing
movement, suppression: reducing existing movement, and
direction: changing the direction of movement on an axis.

Off-Axis On-Axis
Action Trans Rot Trans Rot

Introduction N/A N/A
Amplification N/A N/A
Suppression N/A N/A
Direction N/A N/A

Table 1: Heuristics for selecting virtual movement
remapping. Green - comfortable, yellow - somewhat
challenging, red - very challenging.

Abstract Machine Design
While these heuristics provided general rules of thumb for
motion mapping, they were too general and open to inform
the detailed design of specific experiences. Rather, the artist
chose to work with the notion of riders moving around vir-
tual worlds by riding a series of imaginary, but virtually func-
tional, machines, each controlled by the motion of swinging
but delivering a different sensation of movement. Ultimately,
the artistic choice was taken to make these machines invisi-
ble and simply present the rider with motions, allowing them
to draw their own conclusions about how they were mov-
ing and focus on sensations rather than the details of their
‘vehicle’. However, the machines formed an integral part
of how experiences were both designed and communicated
from artist to development team. For each world, a diagram
of a machine was provided, along with idealised physics
equations that could be used to implement its movement
with respect to the swing’s movement (reflecting the artist’s
background in engineering). Once developers implemented
this, one or more sessions of ‘tuning’ was necessary, where
coefficients of equations were tweaked to make for a more

3
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In High Roller, riders move as if in a hamster wheel - as they swing back, the wheel accelerates to roll along a road.

In Jellyfish, the downwards vertical acceleration felt on the swing is translated to upwards force as the user floats vertically
up through an abstract underwater environment.

In Shuttlecock, as the user swings, they jump from roof to roof across a city landscape. The jumping is timed such that the
zero gravity moment at the top of the jump is synchronized with the zero gravity moment at the front or back of a swing cycle.

InWalker, each swing is as if a giant robot is taking a step through a city. As the robot takes left and right steps, the view tilts
and twists from side to side, as if the viewer is looking forward from the robot’s point of view.

Figure 2: The four rides with their abstract machines. Top to bottom: High Roller, Jellyfish, Shuttlecock and Walker

engaging experience. For example, the gearing of the High
Roller machine could be changed tomake the ride seem faster
or slower. Virtual simulations of machines were developed
so that the artist could check the ride moved as intended and
further refine its design. Each machine was then placed in
its own virtual world whose visual elements and soundtrack
were designed to reinforce intended sensations of movement.
Each machine followed a distinct journey through the world
with its own way of starting, finishing and varying inten-
sity throughout. The machines were then fully implemented,

tested by the team and their movements finely tuned, with
further tweaks taking place in early public deployments. The
following paragraphs briefly introduce key characteristics of
each machine referred to in the subsequent study and discus-
sion, though their characters are perhaps best understood by
watching the video figure. Physical safety was an important
consideration - none of machines’ movement increased in
intensity once the rider had reached a fifty degree angle and
a physical constraint was introduced to prevent riders from
swinging too high.

4
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High Roller (figure 2 - top)
High Roller has you zooming through a cityscape inside an
invisible monowheel. Over time, the wheel accelerates to
great speed, then slows down again as you reach the end of
the ride. Close blocks on both sides of the road at various
points are intended to create a claustrophobic feeling and
emphasise speed; large open spaces aim for an agoraphobic
feeling at others; points where buildings are visible on only
one side create a slightly acrophobic feeling; while trains
occasionally cross your path to create a sense of peril. The
machine abruptly comes to a stop at the end of the ride.

The wheel is driven by an angular weight drag - that is a
weight is applying force to the wheel and the rider impelled
forward only while swinging back from the forward limit
to the centre of the swing. The forward movement is then
subject to drag. When we consider the viewpoint movement
in terms of the heuristics above, it amplifies movement on
the forward (z) axis, and suppresses movement on the up (y)
axis. additionally, on the backswing, the z-axis direction is
reversed, so we move only forward through the environment.

Jellyfish (figure 2 - second row)
In Jellyfish, riders sit atop an invisible, mechanical jellyfish
that, with each beat of the swing, propels them upwards
though an underwater environment from a dark abyss to
a shallow reef populated by sealife. The vertical movement
sees the users travel through a somewhat vertiginous envi-
ronment. Occasionally a large anchor suddenly drops past
the rider. By the end of the ride, the rider is drifting in the
open sea.

The machine is a deformable skirt shape, that moves from
a flat plane to a cone and back with each swing. Movements
are subject to both buoyancy and drag, with the deforming
skirt and upwards thrust creating the impulse as the jelly-
fish progresses up through the environment. As with High
Roller, the artist provided physics equations to calculate the
movement and these were used to generate the animation of
the jellyfish moving through the underwater environment.
Jellyfish is quite similar to High Roller in its movement

mapping, albeit in a different axis; though here the impulse
comes while the rider is swinging forwards, and the drag
is significantly higher - if a rider doesn’t swing, the force
of gravity will pull them back down, unlike High Roller,
where the drag will never pull you backwards. In the terms
above, jellyfish suppresses z-axis movement, amplifies y-
axis movement, and reverses y-axis movement during some
points of the swinging motion.
With jellyfish, the ability to tune the ride through the

coefficients of the equations proved especially important.
we initially tuned it to what we thought was appropriate,
however when the ride was first deployed, many riders were

unable to get the jellyfish to lift off the seabed as they were
simply not swinging hard enough. The mapping between
swing angle and thrust had to be changed in situ to allow
the jellyfish to be propelled with less movement.

Shuttlecock (figure 2 - third row)
In Shuttlecock, the rider is bounced from rooftop to rooftop
across a cityscape. These ‘jumps’ are slightly out of phase
with the swing: riders reach the peak of their jump arc when
the swing is at maximum deflection and land when the
swing is centred. The roads beneath the player are popu-
lated with trucks, while helicopters and zeppelins share the
same airspace as the rider. The height of buildings, and the
trajectory of jumps are intended to create a sense of peril.
The machine itself might be considered to be an invisi-

ble racket, which sends the rider flying like the eponymous
shuttlecock. To allow the rider to progress through the city
we had, for the first time, to introduce some off-axis move-
ment. The path through the city takes two forms: lateral -
in which we introduce x-axis movement to allow the rider
to progress sideways along a street and forward, where we
introduce x-axis movement to allow the player to move be-
tween buildings on the left and right side of the street. In this
case we also reverse the direction of the z-axis movement
on the back-swing to have the rider move only forwards.
The amount of x-axis movement was defined primarily by
the need to land on a rooftop - that is the shape of the en-
vironment created the constraints for this, and this same
need, in conjunction with the phase of the swing was used to
determine the height of the parabola of the jump so that the
amplification of movement in the y-axis is highly variable
between jumps.

Walker (figure 2 - bottom)
The Walker machine is an invisible giant robot with extensi-
ble legs that stomps through a city. As the ride progresses the
‘robot’ grows, gets too big for the road, and begins crossing
rooftops. When it walks onto a bridge, it turns, steps off and
walks under the water across a harbour, before emerging on
the other side and shrinking back down, then fading out.
By design, Walker introduces two distinct off-axis rota-

tions - one in the z-axis for each step, and one in the y-axis
each time the robot turns a corner. It also has constantly
changing values for the amplification of y-axis movement,
first from the changing height of the buildings on which the
robot is standing, and second because for the majority of the
ride the robot is growing, causing changing amplification of
both the z-axis and y-axis.
As with other machines, the artist provided equations to

calculate the movement. However, as the production dead-
line was approaching rapidly, in an attempt to ‘short-cut’
the process, the development team initially tried building
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Walker by ‘body storming’ the motions based on their un-
derstanding of the machine design. When the artist visited
for the scheduled tuning day, the motion was not at all as
he had envisioned it (the team had produced a rather jerkier
step motion that was quite uncomfortable to ride). Returning
to the original process of implementing the machine based
on the provided equations made the machine move with a
kind of swooping motion as initially envisioned.

5 WHAT RIDERS THOUGHT
We conducted in-depth interviews with 52 riders and began
our analysis by using the corpus of 15,000 captured words
to create a series of ride-specific wordclouds (see figure 2).
In each case we broadly categorised the words used into
positive (orange), negative (blue), and motion (black). These
wordclouds helped reveal the distinct characters of the ma-
chines. High roller riders largely talk about speed, relaxation,
excitement and enjoyment, as well as some reports of fear,
dizziness and sickness. Jellyfish riders predominantly find it
relaxing, interesting, enjoyable, floating and cool, with some
mention of sickness, worry and nervousness. Shuttlecock rid-
ers also comment on speed and jumping, as well as enjoyment,
excitement and cool, the (perhaps) negative terms for shuttle-
cock include weird, scared and disorientated, with less focus
on sick than the other machines. Finally walker includes
comments on walking, twisting and turning, with positive
terms like interesting and exciting, but has more negative
words than the others, including sick, disorientated and even
bored. The changing language used to describe the machines
appears to suggest that the different machines really did
create different rider experiences.
On the whole, they reported a positive experience, with

the majority claiming to have had a good time (which was
backed up by the VR Playground’s evident popularity which
often saw long queues and many repeat visits). Many riders
did also report feelings of sickness, however it is worth not-
ing that while the word sick is used a lot, there was some
conflation between sick (generally negative) and dizziness or
vertigo (perhaps positive in this context). Riders often qual-
ified negative sentiments with positive ones, such as: "the
shuttlecock one was more scary, so it kind of made me laugh
a lot from being terrified." or "I felt content, yet I mean, I was
having a good time, it was scary". Opinions of machines were
highly subjective with riders reporting different personal
preferences much as they might in an amusement park.

Motions
Certain motions definitely seemed to be enjoyable, for ex-
ample many riders enjoyed the sensation of speed in High
Roller: "The faster I swung, the faster I went. It was brilliant,
the speed became phenomenal" "I found it quite thrilling...I
was going fast when I knew I personally wasn’t going fast..

Similarly, riders of Jellyfish seemed to enjoy the floating
sensation "I found it more relaxing ... you were just floating
around." Other types of motions were reported as more dis-
orienting, though not necessarily negative for example in
Shuttlecock: "it wasn’t like a straight backwards and forwards
motion, it was complete pillar to post ... which is where you
get disoriented ... it’s great.". The twisting motion of Walker
tended to be the most challenging: for example: "I was con-
centrating quite hard, to make sure that I got through it all
right, you know ... and I felt, as I was swinging from side to
side". One observed effect of the off axis movement in both
Walker and Shuttlecock was a tendency for riders to twist
their bodies while swinging. This appears to have been a
compensation strategy for the apparent lateral movement. "I
felt like was going diagonally... but that’s probably when I was
twisting myself ... I kind of liked that, but it was kind of scary."
In High Roller and Jellyfish, riders typically found mo-

tions easy to grasp: eg."when you went back...you could feel
it almost thrust you forward" and "It’s supposed to be a Jel-
lyfish, kind of, squeezing, and then going up.", whereas more
complex movements in Shuttlecock and Walker were more
of a mixed bag in terms of users understanding the motion.
Some certainly did, for example: "It seemed like when I went
back and forth...there were greater jumps up or down." and Uh,
yeah, walking [in Walker] with a bounce in my step. However
others found the motions more difficult to grasp: "I’ve no
idea because I couldn’t work out whether I was swinging for-
ward or backwards [in shuttlecock], honestly I got to one point
where I’d just jumped up, but my legs felt like they were going
backwards and I kind of couldn’t get my body to go in time
with what was going on" or "I was bouncing [in Walker], but
that was my impression, I was expecting to walk, but I wasn’t
walking, I was travelling through the space.". Other riders put
their own interpretation on the motions: "Shuttlecock’s more
like Spiderman. Bouncing from building to building, but you’re
going sideways as well as forwards, and you’re really high up."

Environments
The virtual worlds appeared to influence the experience. "It
[High Roller] makes you feel like you’re flying or something
very fast through a city in one direction.". In Jellyfish, several
riders commented about looking down, both as pleasant but
also as scary: "You looked down...and it’s a long way down...I
felt like very light...and quite nervous". Riders recalled key
features of the worlds, for example the trains in High Roller:
"You know, how the train, the sort of simulation train running
over your head are like that, yeah, so I like the full, the full
immersive experience rather than just a, a straight ahead." One
rider commented on the disorientating effect of the colour
palette in Walker: "I did have a bit of motion sickness. Um, I
think this was probably more just the colour vibrancy ... the
contrast was quite disorientating".
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Ride Mean Amplitude (degrees) s.d.
High Roller 65 28
Jellyfish 64 27

Shuttlecock 66 26
Walker 57 29
Table 2: Mean amplitudes for each ride

6 HOW RIDERS BEHAVED
The success of VR Playground as a touring experience pro-
vided an opportunity to log swing sensor data that might
yield insights into riders’ behaviours on the four machines.
We analysed quantitative logfile data from 6609 riders from
the first three deployments to understand how they had be-
haved. We first looked at how high people swung, in terms of
swing amplitude, or the angle between front and back swing.
Table 2 shows the mean amplitude for the central 60% of the
ride time for each machine (i.e. ignoring acceleration at start
and stopping at end). On average, riders swung significantly
less hard inWalker (Kruskall-Wallis, p<0.001).

To explore what was different, we considered each rider’s
behaviour over time, using 100 amplitude measurements
evenly spaced over the full ride and normalised to the maxi-
mum amplitude. For each of the four machines, we applied
k-means clustering to identify the five most common tra-
jectories of amplitude. We grouped these manually into tra-
jectories which had visually similar characteristics. Table 3
shows a breakdown of how many riders exhibited each of
the five identified trajectories which were:

• Zero Trajectory: Approximately 5% of riders of each
machine spent most of their time stopped.

• Default Swing: The most common trajectory is a fast
start, followed by remaining swinging relatively con-
stantly. We believe that this kind of ‘default swing-
ing’ represents swinging without altering behaviour
greatly in response to the virtual world.

• Rising:We saw patterns of slowly rising swinging on
all machines - this is most likely to suggest some kind

of habituation and learning to swing with the visuals
during the ride time.

• Falling: We also saw falling trajectories - similar to
the default swing initially, but then fall to 75% or less
after a time, which suggests someone trying to swing
as normal, but then finding the machine’s movements
too much and backing off to a more comfortable level.

• Stopping: In Walker only, we saw a number of riders
who began to default swing, but then very noticeably
dropped their swing amplitude to <25% of their peak
amplitude - suggesting people were strongly affected
by the ride and unable to continue swinging hard.

Looking at differences between machines, while there
were significant differences between the trajectory distri-
bution for all machines (χ 2(12)=672, n=6609,p<0.001). For
machines except Walker, these differences were minimal, of
the order of ±2%, whereas Walker is clearly different, with
large effect sizes.Walker is clearly an outlier in several ways:
Firstly, default swinging only happens 41% of the time, versus
69% on other machines. This suggests that Walker’s motion
mapping and visual world has more effect on ability or desire
to swing than in other worlds. In the other trajectories, more
riders (21%) showed rising trajectories, suggesting they had
to take time but got used to the machine; the big difference
however is that 33% of Walker riders showed trajectories
which started normally then dropped (with 11% practically
stopping). This suggests that riders were unable to keep up
their initial swinging when faced with themotions and visual
environment of Walker, in contrast to the other machines
where almost all riders were able to swing successfully.

These results demonstrate three things: first, people swing
differently depending on machine and environment design;
second, individuals have very different responses to rides.
Third, those responses suggest different experiences and ori-
entations towards the machine, with many riders seeming to
just swing and watch the visuals (default trajectory), whilst
other trajectories show strong links to the machine’s pro-
gram, or suggest that visuals may be interfering with ability
to ride, or perhaps making it too intense to ride, as inWalker.

0 20 40 60 80 100
0

1
Zero Trajectory

0 20 40 60 80 100
0

1
Default Swing

0 20 40 60 80 100
0

1
Rising

0 20 40 60 80 100
0

1
Falling

0 20 40 60 80 100
0

1
Stopping

High Roller 5% 69% 12% 14% 0%
Jellyfish 7% 67% 10% 16% 0%

Shuttlecock 5% 69% 9% 17% 0%
Walker 5% 41% 21% 22% 11%

Table 3: Per ride breakdown of ride trajectory type
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7 DISCUSSION: ABSTRACT MACHINES
We now return to our central research question: how can
we design mappings between physical and apparent virtual
movement to balance sensations of thrill and discomfort?
The evident success of VR playground as a viable tour-

ing experience, being popular with promoters, festivals and
riders alike, demonstrates that one can indeed successfully
overlay multiple virtual worlds on a single physical ride so
as to deliver a series of distinctly thrilling, if sometimes chal-
lenging, experiences. The above analysis of interviews and
movement data reveals in greater detail how our riders ex-
perienced each of our four machines as offering a distinctive
mix of positive and negative sensations. The positive in-
cluded the pleasurable sensations of acceleration and relaxed
floating, while the negative included fear, motion sickness
and occasionally even boredom. We have have also revealed
how balancing pleasure and discomfort in the pursuit of
thrill is a complex design challenge requiring designers to:
appreciate the experiential characteristics of physical move-
ments; narrow down the possibilities for translating these
into virtual movements; embed the resulting translation into
a journey through a wider virtual world; and communicate
the resulting experience to potential riders. In what follows
we generalize the notion of the abstract machine as a poten-
tially powerful approach to help address these challenges in
an integrated way.

The early stages of our process explored a complex space
of possibilities and yielded some useful heuristics (that we
generalize below) for mapping physical movements onto
virtual ones. However, such general heuristics proved insuf-
ficient to support the detailed or comprehensive design of
multiple experiences as they were: (i) too open to help the
team narrow down the bewildering design space of possibil-
ities; (ii) incomplete, failing to account for all of the relevant
aspects of a mapping such as the design of the surrounding
virtual world and (iii) not readily actionable, failing to com-
municate the fine details of a design among team members
or being directly implementable in rides or simulations.
The abstract machine was a creative response to these

limitations - one that we believe has wider possibilities be-
yond this single project. This idea first emerged as a way of
conceptualizing different designs, but subsequently played
a significant role in communicating, testing and ultimately
implementing them. The notion of the abstract machine
proved useful throughout the design and implementation
process and it is notable that the one occasion the team tried
to bypass creating an abstract machine - the realisation of
Walker - resulted in an unsatisfactory design followed by
the introduction of an abstract machine to help correct this.
Generalising from our specific examples, we define an

abstract machine to be a virtual mechanism that embodies a

mapping between real and virtual movements. We therefore
propose that Abstract machines exhibit several key char-
acteristics that enable them to provide a common design
language:

• Metaphor: the abstract machine provides a metaphor
to communicate how the design is intended to work
between designer, implementers and potentially even
the public. This also helps communicate a sense of
what a rider might be intended to feel and may suggest
appropriate theming and design for the virtual world.

• Mechanism: beyond offering a general metaphor, the
clarity of the machine as a mechanism, for example
being expressed through detailed mechanical sketches
and even equations, helps communicate the specifics of
design and resolve ambiguities between designer and
implementer - for example axis naming conventions.

• Implementable: a machine-like mechanism tends to
focus attention on implementability from an early
stage. We saw how abstract machines were imple-
mentable both as simulators to support testing and
ultimately as the final rides.

• Forces: working with a machine-like mechanism en-
courages consideration of the forces felt by riders and
hence the sensations of movement. This contrasts with
the more conventional approach of thinking about de-
grees of freedom of movement of input devices (e.g.,
when mapping an general input device such as a 2D
mouse to interactions such as controlling perspective
in a virtual world).

• Rideable: an abstract machine is not just a mecha-
nism, but is one that is designed to be rideable (even
if in a fantastical way). In particular, an abstract ma-
chine is set on controlled trajectory through a virtual
world that changes over time to reflect the temporal
characteristics of the underlying physical experience.

The first three characteristics enable abstract machines to
communicate design at three distinct levels of abstraction -
metaphor, mechanism and implementation - which may be
suited to different stages of the design process but also to
different stakeholders - artist, world designer, programmer
and also users. The last two are specific characteristics that
help designers wrestle with the complexities of the design
space. In more general terms, abstract machines are a form
of intermediate design knowledge [11], sitting somewhere
between specific design instances and general theory. They
are more general than individual ride designs that include de-
tails of virtual worlds, but also more specific than heuristics
or guidelines. To some extent, they reflect aspects of design
patterns [6] and might potentially be published and made
reusable as part of libraries (a contribution of our paper is to
publish four initial designs for abstract machines) but also
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place a heavy emphasis on simulation and implementation.
We shall see below in our discussion of motion sickness how
they might also potentially help designers make connections
to general theory from other disciplines.

We now consider three key aspects of designing abstract
machines in greater depth: mapping between physical and
virtual forces; designing a journey through a virtual world;
and communicating with potential riders.

Mapping between physical and virtual forces
At the heart of each abstract machine is the mapping of expe-
rienced physical forces into apparent virtual ones. Our expe-
rience of VR Playground suggests three high-level heuristics
to guide the design of such mappings.

• Heuristic 1:Amplifying or diminishing apparent forces
along existing physical dimensions of movement can
lead to powerful sensations of movement at relatively
low risk of motion sickness. They can amplify sen-
sations of acceleration or floating up high that, even
if sometimes scary, are often seen a being positive
aspects of rides. High Roller and Jellyfish both am-
plify and diminish forces along existing axes: High
Roller zooms forward without apparent upwards mo-
tion while Jellyfish floats up without apparent for-
wards motion.

• Heuristic 2: Reversing the direction of forces along
an existing physical axis of movement is a potentially
powerful tactic but with somewhat higher risk. In Shut-
tlecock each forwards jump is made from half of a
backswing and half of a forwards swing, while the
effects of gravity are applied normally. The resulting
effect is more extreme and thrilling than High Roller
and Jellyfish, as can be seen in our rider interview data,
suggesting higher potential for thrill but higher risk
of nausea than simple amplification.

• Heuristic 3: Introducing off-axis movement delivers
the most extreme and challenging ride experiences
with the highest risk of nausea. It may also cause peo-
ple to move in odd ways as they try and respond to the
apparent motion. The addition of a side-to-side rock-
ing motion to Walker resulted in a more extreme ride
with greater risk of nausea (perhaps similar to adding
rotation to non-moving VR users [13] and some riders
felt the need to swing sideways in synchronisation
with it.

The aim in introducing these heuristics is to help balance
positive and negative sensations to deliver a suite of thrilling
ride experiences, so while machines may draw on the first
two heuristics, some judicious application of the third may
be appropriate to create some more extreme machines as
part of a wider collection.

These heuristics also broadly reflect the theoretical ac-
counts of motion sickness discussed earlier. On the one
hand noticeable differences in the signals between visual and
vestibular systems, potentially compounded by differences
within the vestibular system arising from angular move-
ments, may contribute to motion sickness as accounted for
by Sensory Rearrangement Theory [20]. However, it maybe
that the swinging motion also sends a noisier signal to the
vestibular system which helps reduce motion sickness as
described in [27], so that experiencing VR while swinging
might potentially be less sickening than while seated for
example, though this needs investigating further.

A virtual machine in a virtual world
In order to deliver an overall ride experience the mapping
defined by an abstract machine needs to be embedded in
a virtual world through which the rider appears to move.
Our experience reveals that there are two key aspects to this.
First, it is necessary to recognize that each existing physical
movement has its own natural trajectory, shaped by physical
properties such as momentum, that will determine how it be-
gins and ends and accelerates and decelerates throughout. It
takes time, effort and skill to get a playground swing moving
from a standing start (with some riders needing a helping
hand) as it does to bring it to a halt and dismount. Adjusting
intensity also takes time and then there is the need to back
off if riders swing dangerously hard. We note that other ex-
isting physical movements, from rollercoasters to vehicles,
will bring their own distinctive patterns of acceleration that
need to be matched to the dynamics of the abstract machine
as it moves through the world. Second, the world design
needs to be sympathetic to the movement of the machine. It
is well understood that the visual design of virtual worlds
can influence the experience of physical sensations, for ex-
ample in reducing perception of pain [15] or tricking people
into believing they are touching multiple physical objects
when there is in fact only one [1]. Our experience reveals
how world design can complement sensations of movement:
closed corridors with low overhangs and onrushing objects
amplify speed and evoke the peril of collision while open
landscapes with elements floating far below the rider reflect
the sensation of floating but with the peril of falling. The
placement of specific features may encourage riders to look
fixedly ahead and so help prevent motion sickness or alter-
natively, may encourage looking around while they swing
to experience unusual viewpoints such as the powerful mo-
ment of looking down at the apex of the swing in Jellyfish.
Sound design also plays a part in the apparent sensation of
movement, such as the swish of acceleration in High Roller
and the re-equalisation when going from above to under
water in walker.
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Figure 3: The artist’s cartoon renderings of the machines

Communicating machines to riders
Our final application of abstract machines concerns com-
municating the experience of machines to potential riders.
Theme parks and fairgrounds cater for a diverse range of visi-
tors, from adult thrill seekers to families with young children.
Moreover, objective physiological responses to thrill rides
are strongly modulated by personality factors such as sensa-
tion seeking tendencies [23] while susceptibility to motion
sickness appears to vary according to a variety of factors
including exposure, age, illness and alcohol consumption
[10]. In response, parks provide a variety of rides to cater to
many tastes alongside resources to help visitors choose rides
that suit their personal preferences and tolerances including:
seeing the ride as a spectator, theming, zoning and explicit
ratings and warnings. Our approach of layering multiple
virtual experiences on top of a single physical ride delivered
differentiated ride experiences. However, it was difficult for
riders to gauge them simply by watching others as distin-
guishing features of each were largely hidden inside virtual
reality headsets. In HCI terms, our rides are ‘intriguing’ spec-
tator interfaces in which manipulations of the interface are
amplified while consequent effects are hidden [22].
All of this suggests the need for additional resources to

communicate rides to riders. Our artist had already drawn
on the four abstract machine designs as simple cartoons on
a ride menu (figure 3) to help communicate the character
of each, however, our analysis reveals considerable scope
to extend this with more in depth ride profiles. We might,
for example, present versions of our word clouds to riders,
or draw on the evidence of rider behavior (their different
patterns of swinging) to assign intensity ratings and scores
grounded in measurements of actual rider behaviour. We
might also recommend a default order in which people ex-
perience the rides; in our case this would begin with High
Roller or Jellyfish before moving onto Shuttlecock and then
Walker. We therefore suggest that abstract machines, and by
extension their virtual ‘ride’ experiences could be packaged
in terms of their mechanics (a representation of the machine
to suggest the motion), environment (a representation of the
world to suggest what the machine is moving through) and
experience (a representation of what the machine feels like
to ride). We have applied this method of packaging our four
abstract machines in figure 2.

We suggest that in the longer term, published abstract ma-
chines may be associated with ride profiles, data summaries

that characterize how riders feel about them and behave
on them, and that this could be matched with rider profiles,
based on captured data about riders own experiences to rec-
ommend specific rides to specific riders. At a more mundane
level, we saw potential riders often seek advice from opera-
tors and each other in the queue and around the ride while
some notably performed their ride experience as a specta-
cle. Such behaviours might be encouraged by the physical
organisation of the ride or translated onto social media.

8 CONCLUSION
We have shown it is possible to overlay one physical ride
withmultiple virtual worlds to create differentiated ride expe-
riences that offer different balances of positive and negative
sensation to create thrilling experience. We revealed that this
is a complex proposition involving constraining and tuning
motion mappings between physical and virtual movements
then embedding these into a journey through a virtual world
and ultimately into an overall ride experience. Based on our
experience, we introduced the idea of abstract machines - an
intermediate form of design knowledge that communicates
at the levels of metaphor, mechanism and implementation.
Our findings have significant practical implications for

ride designers and operators as they support the process of
reskinning expensive physical infrastructure with relatively
inexpensive virtual content to deliver differentiated ride ex-
periences. While amusement parks already differentiate their
rides through their types (e.g., ‘round rides’ and ‘coasters’
of varying types and scales) and their theming, zoning and
rating, the step change here is to enable more fine-grained
differentiation by tuning the mappings between physical and
virtual movements alongside the designs of the worlds in
which they are embedded. Such fine-grained differentiation
may help personalize the park experience to diverse visitors
and also encourage repeat business as visitors return to try
out different variations.
Our approach raises directions for further research in-

cluding: exploring beyond swings, not just other rides, but
potentially also more everyday experiences such as ‘planes,
trains and automobiles’; extending data-driven approaches
to profiling rides towards techniques for automatically rec-
ommending them and even dynamically adapting them, for
example adjusting intensity as riders speed up or slow down;
profiling riders as well as rides to better understand individ-
ual preferences and tolerances as so match people to rides
and worlds; and more systematically exploring the complex
relationships between the perceived sensations that con-
tribute to thrill.
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